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Abstract Let V be a pseudovariety of finite groups such that free groups
are residually V, and let ϕ:F (A) → F (B) be an injective morphism between
finitely generated free groups. We characterize the situations where the
continuous extension ϕ̂ of ϕ between the pro-V completions of F (A) and
F (B) is also injective. In particular, if V is extension-closed, this is the
case if and only if ϕ(F (A)) and its pro-V closure in F (B) have the same
rank. We examine a number of situations where the injectivity of ϕ̂ can be
asserted, or at least decided, and we draw a few corollaries.
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In this paper, we are interested in the pro-V topologies on finitely gen-
erated free groups, where V is a pseudovariety of groups (a class of finite
groups closed under taking subgroups, quotients and finite direct products).
These topologies were introduced in the 1950s by Hall. When V is the
class of all finite groups, the finite index subgroups are exactly the open
subgroups, and Hall proved [6] that every finitely generated subgroup is
closed. More recent papers (Ribes and Zalesskĭı [9], Margolis, Sapir, Weil
[7], Weil [12]) focused on the problem of effectively computing the pro-V
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closure ClV(H) of a given finitely generated subgroup H of a free group. It
is known for instance that if V is extension-closed, then ClV(H) has finite
rank, at most equal to the rank of H [9]. In general, a finite rank subgroup
may have an infinite rank closure (e.g. if V is the pseudovariety of finite
abelian groups), or it may be the case that if H is a finite rank subgroup,
then its closure always has finite rank, possibly greater than the rank of H
(e.g. if V is the pseudovariety of finite nilpotent groups [7]). It is interesting
to note that deciding whether a given subgroup is pro-V-closed is equivalent
to deciding an extension property for a certain set of partial isomorphisms
of a finite set [7]. If V consists of all finite p-groups, for some fixed prime
p, the closure of a given finite rank subgroup can be effectively computed
[9], in polynomial time [7]. On the other hand, it is not known whether
the pro-solvable closure of a finite rank subgroup is effectively computable;
a positive solution for this difficult open question would have interesting
consequences in finite monoid theory [7] and in computational complexity
(Straubing, Thérien [10]).

It is also known that finite rank closed subgroups are free factors of
clopen subgroups, and that the converse holds if V is extension-closed [9].
Moreover, again in the extension-closed case, if H is a finite rank pro-V-
closed subgroup of a free group F , then the pro-V topology of H coincides
with the topology it inherits from F . The central result in this paper (The-
orem 1.1) characterizes the situations where this property of coincidence of
topologies holds: it is equivalent to another extension property, namely to
the fact that a certain injective morphism between two free groups F and
F ′ admits an injective continuous extension between the pro-V completions
of F and F ′. It turns out that in the extension-closed case, this is equivalent
to the fact that H and its pro-V closure have equal rank.

After the proof of the main result, we list a number of immediate conse-
quences: for instance, it follows from our result that if V is extension-closed,
the continuous extension of an injective endomorphism of the free group of
rank 2 is always injective. In the last section, we illustrate our result by
considering a simple example of an injective morphism ϕ:F → F ′ between
finitely generated free groups whose continuous extension ϕ̂ to the pro-p
completions is not injective, and we exhibit a sequence (tn)n of elements of
F whose limit points are non-trivial elements of ker ϕ̂.
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1 Injective extendability

If A is an alphabet (that is, a finite non-empty set), then F (A) denotes
the free group on A. Let V be a pseudovariety of finite groups: the pro-V
topology on a group G is the least topology which makes every morphism
from G into an element of V continuous. A basis of neighborhoods of 1 in
this topology is given by the finite-index normal subgroupsK of G such that
G/K ∈ V.

The pro-V topology on G is Hausdorff if and only if G is residually V.
In that case, the pro-V topology on G can be defined by an ultrametric
distance function. This situation arises in particular if G is a free group and
V is a non-trivial extension-closed pseudovariety. In the sequel, we consider
only pseudovarieties V such that free groups are residually V.

If G is a group, we denote by Ĝ the pro-V completion of G: it is compact
and totally disconnected. If G = F (A), we write F̂V(A) for Ĝ; this is also
the free pro-V group on A. If H ⊆ G, we write ClV(H) (or simply Cl(H))
for the closure of H in G. If H ⊆ Ĝ, we write H for the closure of H in
Ĝ. In particular, if H ⊆ G, H = Cl(H) and, if G is residually V, then
Cl(H) = H ∩G.

We note that every morphism ϕ:F → F ′ between free groups is uni-
formly continuous when both groups are equipped with their respective
pro-V topologies. In particular, ϕ admits a (uniquely defined) continuous
extension between the pro-V completions, written ϕ̂: F̂ → F̂ ′.

For a justification of these assertions, we refer the readers, for instance,
to [7]. We now consider injective morphisms, and we state our main result.

Theorem 1.1 Let ϕ:F (A) → F (B) be an injective morphism and let H =
ϕ(F (A)). Let V be a pseudovariety of groups such that free groups are
residually V. The following conditions are equivalent:

• The continuous extension of ϕ, ϕ̂: F̂V(A) → F̂V(B) is one-to-one.

• The pro-V topology on H coincides with the topology on H induced by
the pro-V topology on F (B).

If, in addition, V is extension-closed, these properties are equivalent to:

• H and Cl(H) have the same rank.

The proof of Theorem 1.1 follows directly from Propositions 1.4, 1.6
and 1.8 below.
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1.1 Comparing the pro-V topologies on a subgroup

We will use the following elementary remark.

Lemma 1.2 Let ϕ:F (A) → F (B) be a morphism between finitely generated
free groups, let H = ϕ(F (A)) be the range of ϕ and let ϕ̂: F̂V(A) → F̂V(B)
be the continuous extension of ϕ between the pro-V completions of F (A)
and F (B). Then the range of ϕ̂ is H.

Proof. By continuity, we have ϕ̂(F̂V(A)) = ϕ̂(F (A)) ⊆ ϕ(F (A)) = H. Of
course, we also have H ⊆ ϕ̂(F̂V(A)). Finally, as F̂V(A) is compact and ϕ̂ is
continuous, the group ϕ̂(F̂V(A)) is closed, so ϕ̂(F̂V(A)) = H. ut

Next we consider the following property of a finitely generated subgroup
H of a free group F (B):

[Property Coinc(V)] The pro-V topology on H coincides with the
topology on H induced by the pro-V topology on F (B).

This property translates as follows.

Lemma 1.3 Let H be a finitely generated subgroup of a free group F (B), let
ı:H → F (B) be the natural injection of H into F (B), and let ı̂: Ĥ → F̂V(B)
be the continuous extension of ı between the pro-V completions of H and
F (B). Then H has Property Coinc(V) if and only if ı̂ is injective. In
particular, H is homeomorphic to Ĥ.

Proof. This is immediate once we observe that ı̂ has range H (by Lemma
1.2). ut

We are now ready to prove the first equivalence in Theorem 1.1.

Proposition 1.4 Let V be a pseudovariety of groups such that free groups
are residually V. Let ϕ, ϕ̂ and H be as in the statement of Theorem 1.1.
Then ϕ̂ is injective if and only if H has Property Coinc(V).

Proof. Let ψ:F (A) → H be the restriction of ϕ to an isomorphism between
F (A) and H, and let ψ̂: F̂V(A) → Ĥ be the continuous extension of ψ. As
ψ is an isomorphism, ψ̂ is a homeomorphism.

Let ı:H → F (B) and ı̂: Ĥ → F̂V(B) be as in Lemma 1.3. We observe
that ϕ = ı ◦ψ, so that ϕ̂ = ı̂ ◦ ψ̂. As ψ̂ is a homeomorphism, ϕ̂ is one-to-one
if and only if ı̂ is. By Lemma 1.3, this is equivalent to H having Property
Coinc(V), as we wanted to prove. ut
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1.2 The extension-closed case

The following sufficient condition for a finitely generated subgroup to have
Property Coinc(V) was proved in [7, Proposition 2.17]:

Proposition 1.5 If V is extension-closed, then every finitely generated,
closed subgroup of F (A) has Property Coinc(V).

We will see that this sufficient condition is not necessary (Proposition 1.7
below). However, we can immediately use this property to prove one half of
the remaining equivalence.

Proposition 1.6 Let V be a non-trivial extension-closed pseudovariety of
groups. Let ϕ:F (A) → F (B) be a morphism between free groups, let H =
ϕ(F (A)), and let ϕ̂ be the continuous extension of ϕ between the pro-V
completions of F (A) and F (B). If ϕ and ϕ̂ are injective, then H and Cl(H)
have equal ranks.

Proof. By Lemma 1.2, the range of ϕ̂ is H. Since ϕ̂ is injective between
two compact spaces, it is a homeomorphism onto its image, so H is homeo-
morphic to the free pro-V group of rank |A| = rank(H).

On the other hand, we know from Proposition 1.5 that Cl(H) has Prop-
erty Coinc(V). Applying Lemma 1.3 to Cl(H), we find that Cl(H) is home-
omorphic to the free pro-V group of rank rank(Cl(H)).

But H = Cl(H), so we have proved that rank(H) = rank(Cl(H)). ut

Before we prove the reverse implication, we show the following result,
which does not require the hypothesis that V is extension-closed.

Proposition 1.7 Let H be a finitely generated subgroup of the free group
F (A). If H is dense in the pro-V topology of F (A) and if rank(H) =
rank(F (A)), then H has Property Coinc(V).

Proof. As H and F (A) have the same rank, we may consider an injective
endomorphism ψ of F (A) with range H. Let ψ̂: F̂V(A) → F̂V(A) be the
continuous extension of ψ. By Lemma 1.2, ψ̂ is an onto endomorphism of
F̂V(A). But every onto continuous endomorphism of a finitely generated
profinite group is injective [4, Prop. 15.3]. So ϕ̂ is injective: by Proposi-
tion 1.4, this implies that H has Property Coinc(V). ut

We can now give the last element in the proof of Theorem 1.1.
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Proposition 1.8 Let H be a finitely generated subgroup of the free group
F (A). If V is extension-closed and rank(H) = rank(Cl(H)), then H has
Property Coinc(V).

Proof. By Proposition 1.5, the pro-V topology on Cl(H) coincides with
the topology on Cl(H) induced by the pro-V topology on F (A). Therefore
H is dense in the pro-V topology on Cl(H). Now Proposition 1.7 implies
that the pro-V topology on H coincides with the topology on H induced by
the pro-V topology on Cl(H), and this concludes the proof. ut

2 Corollaries

The following collection of remarks is immediately deduced from Theo-
rem 1.1. Throughout this section, V denotes a pseudovariety of groups
such that free groups are residually V, ϕ:F (A) → F (B) is an injective mor-
phism between free groups, ϕ̂: F̂V(A) → F̂V(B) is the continuous extension
of ϕ between the pro-V completions of F (A) and F (B), and H = ϕ(F (A)).

Corollary 2.1 Whether ϕ̂ is injective depends only on H, not on ϕ.

If V = G, the pseudovariety of all finite groups, the pro-V completion of
a group is called its profinite completion. It is well-known that for the pro-G
topology, every finitely generated subgroup of the free group is closed [6].
As a result, we have:

Corollary 2.2 Every injective morphism between free groups of finite rank
admits an injective continuous extension to the profinite completions of these
groups.

Let p be a prime number and let Gp be the pseudovariety of finite p-
groups. The pro-Gp completion of a group is called its pro-p completion. It
is shown in [9] that if p is a prime number, one can effectively compute the
pro-p closure of a finitely generated subgroup of the free group (see [7] for a
polynomial time algorithm). It follows that:

Corollary 2.3 Given a prime number p, one can decide whether the conti-
nous extension of ϕ to the pro-p completions is injective.

Let Gsol be the pseudovariety of finite solvable groups; the pro-Gsol

completion of a group is called its pro-solvable completion. It is also shown
in [12] that one can compute the rank of the pro-solvable closure of a finite
index subgroup:
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Corollary 2.4 If H has finite index, one can decide whether the continous
extension of ϕ to the pro-solvable completions is injective.

For the general case however, we do not know whether one can effectively
compute the rank of the pro-solvable closure of a given finitely generated
subgroup (see the conclusion of [7] or [12] for a discussion). In particular,
we do not know whether the injectivity of the continuous extension of ϕ to
the pro-solvable completions is decidable.

In [7], the pro-V topology is considered also when V is the pseudovariety
Gnil of finite nilpotent groups, a pseudovariety which is not extension-closed.
An example is given of a finitely generated subgroup which is closed in that
topology yet does not have Property Coinc(V) [7, Example 1.10]. This
shows that the extension-closed assumption in Proposition 1.8 cannot be
dispensed with. However, we also know [7] that the pro-nilpotent completion
of the free group (its pro-Gnil completion) is a subdirect product of its pro-p
completions (p prime). Therefore we have:

Corollary 2.5 The continuous extension of ϕ to the pro-nilpotent comple-
tions is injective if and only if, for each prime p, the continuous extension
of ϕ to the pro-p completions is injective.

In view of Theorem 1.1, deciding the injectivity of the pro-nilpotent
extension of ϕ is equivalent to deciding whether every p-closure of H has
the same rank as H. But there are only finitely many subgroups of F (A)
of the form Clp(H), and they are effectively computable [7, 12]. It follows
that:

Corollary 2.6 It is decidable whether the extension of ϕ to the pro-nilpotent
completions is injective.

Returning to extension-closed pseudovarieties, it is shown in [9] that
rank(Cl(H)) ≤ rank(H). As free groups and free pro-V groups of rank
1 are commutative, it follows that if H has rank 1 or 2, then rank(H) =
rank(Cl(H)). This translates into the following result.

Corollary 2.7 If V is extension-closed and ϕ is defined on the free group
of rank 1 or 2, then ϕ̂ is injective.

This last result leads to the following consequences. Let G be the pseu-
dovariety of all finite groups, B be a finite alphabet, and u ∈ F̂G(B). We
say that a finite group G satisfies the pseudo-identity u = 1 if, for every
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continuous morphism ψ: F̂G(B) → G, we have ψ(u) = 1. The class of finite
groups which satisfy a given set of pseudo-identities is a pseudovariety, and
every pseudovariety can be defined in this fashion (Reiterman’s theorem, see
[1]).

Let A = {a, b}, B be a finite alphabet, ϕ:F (A) → F (B) be an injective
morphism (that is, ϕ(a)ϕ(b) 6= ϕ(b)ϕ(a)) and ϕ̂: F̂G(A) → F̂G(B) be the
continuous extension of ϕ to the free profinite groups over A and B.

Corollary 2.8 Let V be a non-trivial extension-closed pseudovariety and
let (ui)i∈I be a collection of elements of F̂G(A). If V satisfies the pseudo-
identities ϕ̂(ui) = 1, then V satisfies the pseudo-identities ui = 1.

To build from this result, let us observe that, if p is a prime number,
it is immediate that a finite group is a p-group if and only if every one of
its cyclic subgroup is a p-group. That is equivalent to saying that Gp is
defined by a set of one-variable pseudo-identities. In fact, it is even the case
that there exists a single element up ∈ F̂G(a) such that a finite group is a
p-group if and only if it satisfies the pseudo-identity up = 1 (up is the limit

in the profinite topology of the sequence apn!

, denoted up = apω

[2, Example
2.6(1)]).

It is also known that a finite group is nilpotent (resp. solvable) if and only
if each of its 2-generated subgroups is nilpotent (resp. solvable), so that the
pseudovarieties Gnil and Gsol are both defined by a set of 2-variable pseudo-
identities. In the nilpotent case, this is a result of Neumann and Taylor [8]
and in the solvable case, it was proved by Thompson [11], see also Flavell [3].
In fact, it is known that there exists an element unil(a, b) (resp. usol(a, b))
of F̂G(A) such that the single 2-variable pseudo-identity unil(a, b) = 1 de-
fines exactly Gnil, Almeida [2, Example 2.7(1)] (resp. usol(a, b) = 1 defines
exactly Gsol, Bandman et al. [5]).

Thus, Corollary 2.8 implies the following.

Corollary 2.9 Let B be a finite alphabet, and let x, y ∈ F (B) such that
xy 6= yx. Let V be an extension-closed pseudovariety of groups.

• If V satisfies the pseudo-identity xpω

= 1, then V = Gp.

• If V satisfies the pseudo-identity unil(x, y) = 1, then V = Gp for some
prime p.

• If V satisfies the pseudo-identity usol(x, y) = 1, then V = Gsol.
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This can be rewritten in the, perhaps more readable, following form
(without actually using the subtle results of the existence of a single pseudo-
identity defining Gp, Gnil or Gsol).

Corollary 2.10 Let B be a finite alphabet, and let x, y ∈ F (B) such that
xy 6= yx. Let V be an extension-closed pseudovariety of groups.

• If for every morphism ψ:F (B) → G into an element G ∈ V, ψ(x) has
exponent a power of p (for some fixed prime p), then V = Gp.

• If for every morphism ψ:F (B) → G into an element G ∈ V, ψ(x)
and ψ(y) generate a nilpotent subgroup of G, then V = Gp for some
prime p.

• If for every morphism ψ:F (B) → G into an element G ∈ V, ψ(x) and
ψ(y) generate a solvable subgroup of G, then V = Gsol.

3 An example

We now give an explicit example of an injective morphism ϕ between finitely
generated free groups whose continuous extension ϕ̂ between the correspond-
ing free pro-p groups is not injective, and we exhibit a sequence of words
(tn)n such that limϕ(tn) = 1, yet 1 is not a limit point of (tn)n: thus the
limit points of (tn)n are non-trivial elements of ker ϕ̂. Put differently, this
means that p-groups ultimately satisfy ϕ(tn) = 1, yet there exists a p-group
that does not satisfy any of the identities tn = 1.

Let q be a fixed odd prime, let B = {x, y}, and let H be the kernel of
the morphism from F (B) into the additive group Z/qZ which maps letters
x and y to 1. Then H has rank q + 1 and if A = {a0, a1, . . . , aq}, then H is
the range of the injective morphism ϕ:F (A) → F (B) given by

ϕ(ai) = xiyx−(i+1), i = 0, . . . , q − 2 ϕ(aq−1) = xq−1y ϕ(aq) = xq.

As F (B)/H is a q-group, H is closed in the pro-q topology: by The-
orem 1.1, the continuous extension of ϕ to the pro-q completions of F (A)
and F (B) is injective. On the other hand, one can show that for every
other prime number p, H is dense in the pro-p topology (see [7, Section
3.1]), and by Theorem 1.1 again, the continuous extension of ϕ to the pro-p
completions is not injective.

Let u0 = x, v0 = y, and for each n ≥ 0, un+1 = unvn and vn+1 = vnun.
We now fix a prime number p 6= q. It is well-known that the identities
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un = vn are ultimately verified by every finite p-group (Engel identities,
[8]). This means that the sequence (unv

−1
n )n converges to 1 in the pro-p

topology. It is also easily verified that, for each n ≥ 0, the word unv
−1
n is

reduced and lies in H. Thus there exists a (unique) word tn ∈ F (A) such
that ϕ(tn) = unv

−1
n for each n ≥ 0.

Let S be the q-dimensional vector space over the p-element field Fp with
basis e0, . . . , eq−1. Let π be the projection of F (A) onto S defined by π(ai) =
ei for i = 0, . . . , q − 1 and π(aq) = 0. We prove that π(tn) is never 0 in S,
so that the additive group S (an abelian p-group) does not satisfy tn = 1.

We consider the morphism π ◦ ϕ−1 from H to S. For each n ≥ 0, let
sn = π(tn) = π ◦ ϕ−1(unv

−1
n ). Then

sn+1 = π ◦ ϕ−1(un+1v
−1
n+1) = π ◦ ϕ−1(unvnu

−1
n v−1

n ).

Since H is normal, unvnu
−1
n u−1

n ∈ H and we have

sn+1 = π ◦ϕ−1(unvnu
−1
n u−1

n )+π ◦ϕ−1(unv
−1
n ) = sn−π ◦ϕ

−1(ununv
−1
n u−1

n ).

Let σ be the linear isomorphism of S given by σ(ei) = ei+1 where the
indices i and i + 1 are taken modulo q. We leave it to the reader to verify
that, for each i = 0, . . . , q − 1, we have

π ◦ ϕ−1(xϕ(ai)x
−1) = π ◦ ϕ−1(yϕ(ai)y

−1) = σ ◦ π(ai).

It follows that for each g ∈ F (A), we have

π ◦ ϕ−1(xϕ(g)x−1) = π ◦ ϕ−1(yϕ(g)y−1) = σ ◦ π(g).

Now un is a positive word in x and y of length 2n, so we have

sn+1 = sn − σ2n

(sn) = (id − σ2n

)(sn).

We observe that the linear transformation σ of V has order q and a
one-dimensional eigenspace associated to the eigenvalue 1 (generated by
w = e0 + · · · + eq−1) and the supplementary hyperplane W of equation
x0 + · · · + xq−1 = 0 is stable under σ. Now we use the fact that σq = id
and q is odd: for each integer n ≥ 0, σ is equal to a power of σ2n

. As 1 is
not an eigenvalue of the restriction σ|W , it cannot be an eigenvalue of any

2n-th power of σ|W . It follows that the linear transformation id− σ2n

of W
is invertible for all n ≥ 0. As s0 6= 0, we find that sn = π(tn) 6= 0 for each
n, as announced.
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[10] H. Straubing, D. Thérien. Regular languages defined by generalized
first-order formulas with a bounded number of variables, in Proc.
STACS ’01, Lecture Notes in Computer Science 2010 (Springer, 2001)
551–562.

[11] J. Thompson. Nonsolvable finite groups all of whose local subgroups
are solvable, Bull. Amer. Math. Soc. 74 (1968) 383-437.

[12] P. Weil. Computing closures of finitely generated subgroups of the free
group, in Algorithmic problems in groups and semigroups (J.-C. Birget,
S. Margolis, J. Meakin, M. Sapir éds.), Birkhaüser, 2000, 289–307.
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