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Abstract. We provide an algebraic characterization of the expressive
power of various naturally defined logics on finite trees. These logics are
described in terms of Lindström quantifiers, and particular cases include
first-order logic and modular logic. The algebraic characterization we give
is expressed in terms of a new algebraic structure, finitary preclones, and
uses a generalization of the block product operation.

1 Introduction

The notion of recognizability emerged in the 1960s (Eilenberg, Mezei, Wright,
and others, cf. [12, 22]) and has been the subject of considerable attention since,
notably because of its close connections with automata-theoretic formalisms and
with logical definability, cf. [4, 9, 13, 30] for some early papers.

Recognizability was first considered for sets (languages) of finite words, cf.
[11] and the references contained in op. cit. The general idea is to use the alge-
braic structure of the domain, say, the monoid structure on the set of all finite
words, to describe some of its subsets. More precisely, a subset of an algebra is
said to be recognizable if it is a union of classes in a (locally) finite congruence.
The same concept was adapted to the case of finite trees, traces, finite graphs,
etc, cf. [12, 22, 8, 6].

It follows rather directly from this definition of (algebraic) recognizability
that a finite – or finitary – algebraic structure can be canonically associated
with each recognizable subset L, called its syntactic structure. Moreover, the
algebraic properties of the syntactic structure of L reflect its combinatorial and
logical properties. The archetypal example is that of star-free languages of finite
words: they are exactly the languages whose syntactic monoid is aperiodic, cf.
[26]. They are also exactly the languages that can be defined by a first-order
(FO) sentence, cf. [21], and the languages that can be defined by a temporal
logic formula, cf. [18, 16, 5]. In particular, if we want to decide whether a given
regular language L is FO-definable, we do not know any algorithm that does
not, in one form or another, verify that the syntactic monoid of L is aperiodic.

An important open problem is the analogous question concerning languages
of finite trees [24]: can we decide whether a regular tree language is FO-definable?
Based on the existing literature, it is tempting to guess that an answer to this
problem could be found using algebraic methods. A central motivation for this
paper is to present an algebraic framework which allows a nice characterization
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of FO-definable tree languages. Let us say immediately that we do not know yet
whether this characterization can be turned into a decision algorithm!

Let Σ be a ranked alphabet. The set of Σ-labeled trees can be seen in a
natural way as a (free) Σ-algebra, where Σ is now seen as a signature. It has been
known since [12, 22, 9] that the regular tree languages are exactly the recognizable
subsets of this Σ-algebra. We refer the reader to [17, 23, 24] for attempts to use
this algebraic framework and some of its variants to characterize FO-definable
tree languages. In this paper, we propose a different algebraic view – which
preserves however the recognizable sets of trees.

More precisely, we consider algebras called preclones (they lack some of the
operations and axioms of clones [7]). Precise definitions are given in Section 2.1.
Let us simply say here that, in contrast with the more classical monoids or
Σ-algebras, preclones have infinitely many sorts, one for each integer n ≥ 0.
As a result, there is no nontrivial finite preclone. The corresponding notion is
that of finitary preclones, that have a finite number of elements of each sort.
An important class of preclones is given by the transformations T (Q) of a set
Q. The elements of sort (or rank) n are the mappings from Qn into Q and the
(preclone) composition operation is the usual composition of mappings. Note
that T (Q) is finitary if Q is finite.

It turns out that the finite Σ-labeled trees can be identified with the 0-sort of
the free preclone generated by Σ. The naturally defined syntactic preclone of a
tree language L is finitary if and only if L is regular. In fact, if S is the syntactic
Σ-algebra of L, the syntactic preclone is the sub-preclone of T (S) generated by
the elements of Σ (if σ ∈ Σ is an operation of rank r, it defines a mapping from
Sr into S, and hence an element of sort r in T (S)). Note that this provides an
effectively constructible description of the syntactic preclone of L.

One can develop the expected theory of varieties of recognizable tree lan-
guages and pseudovarieties of preclones, leading to an Eilenberg-type variety
theorem, related to that presented in [14]. This requires combinatorially much
more complex proofs than in the classical settings, and we give a brief overview
of this set of results, as needed for the sequel of the paper.

However our main concern in this paper is to give algebraic characterizations
of certain natural logically defined classes of tree languages. A representative
example of such classes is that of the FO-definable tree languages, but our results
also apply to the (FO + MOD)-definable tree languages of [23, 29] and many
other classes. The common point of these classes of formulas is that they use
new quantifiers, each of which is based on a regular tree language. For instance,
the usual existential quantifier is associated with the language of those trees
containing at least one vertex labeled by a symbol corresponding to the truth
value 1. (See Example 10 for a more precise description).

The algebraic characterization which we obtain uses a notion of block product
(or 2-sided wreath product) of preclones, inspired by Rhodes and Tilson’s block
product [25] and Eilenberg’s bimachines [11].

Technically, if K is a family of regular tree languages and V is the pseudova-
riety of preclones generated by the syntactic preclones of the elements of K, if
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Lind(K) is the formal logic whose formulas use the language of Σ-labeled trees,
the Boolean connectives and the Lindström quantifiers [19, 10] associated with
the languages of K, then a regular tree language is Lind(K)-definable if and only
if its syntactic preclone lies in the least pseudovariety of preclones containing V
and closed under block product. To be completely accurate, the preclones in this
statement must formally be accompanied by a designated subset of generators,
and K and Lind(K) must satisfy certain simple closure properties.

Returning to FO-definable tree languages, this tells us that a tree language
is FO-definable if and only if its syntactic preclone lies in the least pseudovariety
closed under block product and containing the sub-preclone of the preclone of
transformations of the two-element set {0, 1}, generated by the binary or function
and the (nullary) constants 0, 1. As pointed out earlier, we do not know whether
this yields a decidability proof for FO-definable tree languages, but it constitutes
at least an avenue to be explored in the search for such a decision procedure.

In order to keep this paper within the required format, full proofs are reserved
for a later publication.

2 The algebraic framework

Let Q be a set and let Tn(Q) denote the set of n-ary transformations of Q, that
is, mappings from Qn to Q. Let then T (Q) = (Tn(Q))n≥0, called the preclone
of transformations of Q. The set T1(Q) of transformations of Q is a monoid
under the composition of functions. Composition can be considered on T (Q)
in general: if f ∈ Tn(Q) and gi ∈ Tmi

(Q) (1 ≤ i ≤ n), then the composite
f(g1, . . . , gn), defined in the natural way, is an element of Tm(Q) where m =
∑n

i=1 mi. This composition operation and its associativity properties are exactly
what is captured in the notion of a preclone.

Remark 1. Preclones are an abstraction of sets of n-ary transformations of a
set, which generalizes the abstraction from transformation monoids to monoids.
Clones, [7], or equivalently, Lawvere theories [3, 14] are another such abstraction,
more classical. We will not take the space to discuss the differences between
clones and preclones, simply pointing here the fact that each of the m arguments
of the composite f(g1, . . . , gn) above is used in exactly one of the gi, in contrast
with the definition of the clone of transformations of Q. Readers interested in this
comparison will have no difficulty to trace those differences in the sequel. The
category of preclones is equivalent to the category of strict monoidal categories
[20] or magmoids [2] “generated by a single object”.

2.1 Preclones

A preclone is a many-sorted algebra S = ((Sn)n≥0, ·,1), where n ranges over the
nonnegative integers, equipped with a composition operation · such that for each
f ∈ Sn and g1 ∈ Sm1

, . . . , gn ∈ Smn
, ·(f, g1, . . . , gn) ∈ Sm where m =

∑

i∈[n] mi.
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We usually write f · (g1 ⊕ · · · ⊕ gn) for ·(f, g1, . . . , gn). The constant 1 is in S1.
We require the following three equational axioms:

(f · (g1 ⊕ · · · ⊕ gn)) · (h1 ⊕ · · · ⊕ hm) = f · ((g1 · h1) ⊕ · · · ⊕ (gn · hn)), (1)

where f, g1, . . . , gn are as above, hj ∈ Skj
, j ∈ [m], and hi = hm1+...+mi−1+1 ⊕

· · · ⊕ hm1+...+mi
, i ∈ [n], and

1 · f = f (2)

f · (1 ⊕ · · · ⊕ 1) = f, (3)

where f ∈ Sn and 1 appears n times on the left hand side of the last equation.
An element of Sn is said to have rank n.

The notions of morphism between preclones, sub-preclone, congruence and
quotient are defined as usual. Note that a morphism maps elements of rank n to
elements of the same rank, and that a congruence only relates elements of the
same rank. It is not difficult to establish the following.

Fact 2. Every preclone can be embedded in a preclone of transformations.

We say that a preclone S is finitary if each Sn is finite. For instance, if Q
is a finite set, then T (Q) is finitary. Note that a finitary preclone S does not
necessarily embed in the transformation preclone of a finite set.

For technical reasons it is sometimes preferable to work with generated pre-
clones (gp’s), consisting of a pair (S, A) where S is a preclone, A is a nonempty
subset of S, and S is generated by A. The notions of morphisms and congruences
must be revised accordingly: in particular, a morphism of gp’s from (S, A) to
(T, B) must map A into B. A gp (S, A) is said to be finitary if S is finitary and
A is finite.

Example 3. Let Σ be a ranked alphabet, so that Σ is a finite set of ranked
symbols, and let Q be a Σ-algebra. Recall that Q can also be described as (the
set of states of) a tree automaton accepting Σ-labeled trees. The elements of
Σ of rank n can be viewed naturally as elements of Tn(Q). The preclone they
generate within T (Q), together with Σ, is called the gp associated with Q.

2.2 Trees and free preclones

Let Σ be a ranked alphabet and let (vk)k≥1 be a sequence of variable names.
We let ΣMn be the set of finite trees whose inner nodes are labeled by elements
of Σ (according to their rank), whose leaves are labeled by elements of Σ0 ∪
{v1, . . . , vn}, and whose frontier (the left to right sequence of variables appearing
in the tree) is the word v1 · · · vn: that is, each variable occurs exactly once, and
in the natural order. Note that ΣM0 is the set of finite Σ-labeled trees. We let
ΣM = (ΣMn)n.

The composite tree f · (g1 ⊕ · · ·⊕ gn) (f ∈ ΣMn) is obtained by substituting
the root of the tree gi for the variable vi in f , and renumbering consecutively
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the variables in the frontiers of g1, . . . , gn. Let also 1 ∈ ΣM1 be the tree with a
single vertex (labeled v1). Then (ΣM, ·,1) is a preclone.

Each letter σ ∈ Σ of rank n can be identified with the tree with root labeled
σ, where the root’s immediate successors are leaves labeled v1, . . . , vn. Then
every rank-preserving map from Σ to a preclone S can be extended in a unique
fashion to a preclone morphism from ΣM into T . That is:

Fact 4. ΣM is the free preclone generated by Σ, and (ΣM, Σ) is the free gp
generated by Σ.

Note that ΣMn is nonempty for all n ≥ 0 exactly when Σ0 and at least one
Σn with n > 1 are nonempty. Below we will only consider such ranked sets.
Moreover, we will only consider preclones S such that Sn is nonempty for all
n ≥ 0.

3 Recognizable tree languages

The algebraic framework described in Section 2 leads naturally to a definition
of recognizable languages: a subset L of ΣMk is recognizable if there exists a
morphism α from ΣM to a finitary preclone S such that L = α−1α(L). As usual,
the notion of recognizability can be expressed equivalently by stating that L is
saturated by some locally finite congruence on ΣM (a congruence is locally finite
if it has finite index on each sort).

If L ⊆ ΣMk is any tree language, recognizable or not, then there is a coarsest
congruence ∼L saturating it, called the syntactic congruence of L. This congru-
ence can be described as follows. First, an m-ary context in ΣMk is a tuple
(u, k1, k2, v) where
• v is an m-tuple (v1, . . . , vm), written v = v1⊕· · ·⊕vm, with vi ∈ T`i

, 1 ≤ i ≤ m,
• u ∈ Tk1+1+k2

and
• k = k1 + ` + k2 with ` =

∑m

i=1 `i.
(u, k1, k2, v) is an L-context of an element f ∈ ΣMm if u ·(k1⊕f ·v⊕k2) ∈ L.

Here n denotes the ⊕-sum of n terms equal to 1. Then, for each f, g ∈ ΣMm,
we let f ∼L g iff f and g have the same L-contexts. We denote by (ML, ΣL) the
quotient gp (ΣM/ ∼L, Σ/ ∼L), called the syntactic gp of L. ML is the syntactic
preclone of L and the projection morphism ηL: ΣM → ML is the syntactic
morphism of L.

Fact 5. The congruence ∼L of a language L ⊆ ΣMk is the coarsest preclone
congruence that saturates L. In other words, if α: ΣM → S is a preclone mor-
phism, L = α−1α(L) if and only if α can be factored through ηL. In particular,
L is recognizable if and only if ∼L is locally finite, if and only if ML is finitary.

One can also show the following proposition, relating preclone recognizability
with the usual notion of regular tree languagess.

Proposition 6. The syntactic gp of a tree language L ⊆ ΣM0 is the gp asso-
ciated with the syntactic Σ-algebra of L. In particular, L is recognizable if and
only if L is a regular tree language.
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While not difficult, this result is important because it shows that we are not
introducing a new class of recognizable tree languages: we are simply associating
with each regular tree language a finitary algebraic structure which is richer
than its syntactic Σ-algebra (a.k.a. minimal deterministic tree automaton). The
proposition implies that the syntactic gp of a recognizable tree language has an
(effectively computable) finite presentation.

One can define pseudovarieties of preclones as those nonempty classes of
finitary preclones closed under direct product, sub-preclones, quotients, finitary
unions of ω-chains and finitary inverse limits of ω-sequences. (The latter two
constructs are needed because preclones have an infinite number of sorts.) Here,
we say that a union T = ∪nTn of an ω-chain of preclones Tn, n ≥ 0 is fini-
tary exactly when T is finitary. Finitary inverse limits limn Tn of ω-diagrams
hn : Tn+1 → Tn, n ≥ 0 are defined in the same way. Also, one can define pseu-
dovarieties of gp’s as those classes of finitary gp’s closed under direct product,
sub-preclones, quotients and finitary inverse limits of ω-sequences. (Closure un-
der finitary unions of ω-chains comes for free, since all finitary gp’s are finitely
generated.)

Suppose now that V is a nonempty class of recognizable tree languages L ⊆
ΣMk, where Σ is any finite ranked set and k ≥ 0. We call V a variety of tree
languages, or a tree language variety, if it is closed under the Boolean operations,
inverse morphisms between free preclones generated by finite ranked sets, and
quotients defined as follows. Let L ⊆ ΣMk be a tree language and let (u, k1, k2, v)
be an m-ary context in ΣMk. Then the left quotient (u, k1, k2)

−1L and the right
quotient Lv−1 are defined by

(u, k1, k2)
−1 = {t ∈ ΣMn | k1 + n + k2 = k, u · (k1 ⊕ t ⊕ k2) ∈ L}

Lv−1 = {t ∈ ΣMm | t · v ∈ L}.

A literal variety of tree languages is defined similarly, but instead of closure
under inverse morphisms between finitely generated free preclones we require
closure under inverse morphisms between finitely generated free gp’s. Thus, if
L ⊆ ΣMk is in a literal variety V and h : ∆M → ΣM is a preclone morphism
with h(∆) ⊆ Σ, where ∆ is finite, then h−1(L) is also in V .

Below we present an Eilenberg correspondence between pseudovarieties of
preclones (gp’s respectively), and varieties (literal varieties) of tree languages.
For each pseudovariety V of preclones (resp. gp’s), let V denote the class of those
tree languages L ⊆ ΣMk, where Σ is any ranked alphabet and k ≥ 0, whose
syntactic preclone (syntactic gp, resp.) belongs to V.

Theorem 7. The correspondence V 7→ V defines an order isomorphism between
pseudovarities of preclones (gp’s, resp.) and tree language varieties (literal vari-
eties of tree languages, resp.).

Remark 8. Two further variety theorems for finite trees exist in the literature.
One uses minimal tree automata as syntactic algebra [1, 27], and the other uses
syntactic Lawvere theories, i.e. clones [14]. No variety theorem is known for the
3-sorted algebras proposed in [31].
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4 Logically defined tree languages

Let Σ be a ranked alphabet. We will define subsets of ΣMk by means of logical
formulas. Our atomic formulas are of the form

Pσ(x), x < x′, Succi(x, x′), leftj(x) and rightj(x)

where σ ∈ Σ, i, j are positive integers, i is less than or equal to the maximal
rank of a letter in Σ, and x, x′ are first-order variables. If k is an integer, subsets
of ΣMk will be defined by formulas of rank k, composed using atomic formulas
(with j ∈ [k]), the Boolean constants false and true, the Boolean connectives and
a family of generalized quantifiers called Lindström quantifiers, defined below.

When a formula is interpreted on a tree t ∈ ΣMk, first-order variables are
interpreted as vertices of t, Pσ(x) holds if x is labeled σ (σ ∈ Σ), x < x′ holds if
x′ is a proper descendant of x, and Succi(x, x′) holds if x′ is the i-th successor
of x. Finally, leftj(x) holds (resp. rightj(x) holds) if the index of the highest
numbered variable labeling a leaf to the left (resp. right) of the frontier of the
subtree rooted at x is j.

We now proceed with the definition of (simple) Lindstöm quantifiers, adapted
from [19, 10] to the case of finite trees. Let ∆ be a ranked alphabet containing
letters of rank m for each m such that Σm 6= ∅, and let K ⊆ ∆Mk. Let x be
a first-order variable. We describe the interpretation of the quantified formula
QKx.〈ϕδ〉δ∈∆, where the quantifier QK binds the variable x – here 〈ϕδ〉δ∈∆ is a
family of (previously defined) formulas on Σ-trees which is deterministic w.r.t.
x. We may assume that x is not bound in the ϕδ. Deterministic means that for
each t ∈ ΣMk, for each m such that ∆m 6= ∅, for each interpretation λ of the
free variables in the ϕδ mapping x to a vertex of t labeled in Σm, then (t, λ)
satisfies exactly one of the ϕδ, δ ∈ ∆m.

Given this family 〈ϕδ〉, a tree t ∈ ΣMk and an interpretation λ of the free
variables in the ϕδ except for x, we construct a tree tλ ∈ ∆Mk as follows: the
underlying tree structure of tλ is the same as that of t, and the vertices labeled
vj (j ∈ [k]) are the same in both trees. For each vertex v of t labeled by σ ∈ Σm,
let λ′ be the interpretation obtained from λ by mapping variable x to vertex v:
then the same vertex v in tλ is labeled by the element δ ∈ ∆m such that (t, λ′)
satisfies ϕδ .

Finally, we say that (t, λ) satisfies QKx · 〈ϕδ〉δ∈∆ if tλ ∈ K.

Example 9. Let ∆ be a ranked alphabet such that each ∆n is either empty or
equal to {0n, 1n} (such an alphabet is called Boolean), and let k ≥ 0.

(1) Let K = K(∃) denote the (recognizable) language of all trees in ∆Mk

containing at least one vertex labeled 1n (for some n). Then the Lindström
quantifier corresponding to K is a sort of existential quantifier. More precisely,
let (ϕδ)δ∈∆ be a collection of formulas: let us write ϕn for ϕ1n

and note that
ϕ0n

is equivalent to ¬ϕn. Now let t ∈ ΣMk and let λ be an interpretation of
the free variables in the ϕδ except for x. Then (t, λ) satisfies QKx · 〈ϕδ〉δ∈∆ if
and only if, for some n, ϕn is satisfied by (t, λ′) for some extension λ′ of λ which
maps variable x to a vertex of rank n.
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For instance, if Σ consists only of constants and one symbol of rank 2 and if
ϕ0 = false, then (t, λ) satisfies QKx ·〈ϕδ〉δ∈∆ if and only if ϕ2 is satisfied by some
(t, λ′) where λ′ extends λ by mapping variable x to a vertex of rank 2 of t. In
particular, if x is the only free variable in the ϕδ , then t satisfies QKx · 〈ϕδ〉δ∈∆

if and only if there exists x, a vertex of rank 2 of t which satisfies ϕ2(x).

(2) In the same manner, if p ≥ 1, r < p and K = K(∃r
p) denotes the (recogniz-

able) language of those trees in ∆Mk such that the number of vertices labeled
1n (for some n) is congruent to r modulo p, then the Lindström quantifier QK

is a modular quantifier.

(3) Let K = K(∃path) be the set of all trees in ∆Mk such that all the inner
vertices along at least one maximal path from the root to a leaf are labeled 1n

(for the appropriate n). Then QK is an existential path quantifier.

(4) Let Knext denote the collection of all trees in ∆Mk such that each maximal
path has length at least three and the vertices on the second level are labeled
1n (for the appropriate n). Then Knext is a sort of next modality. Other next
modalities can be expressed likewise.

For a class K of tree languages, we let Lind(K) denote the logic defined above,
equipped with Lindström quantifiers associated to the languages in K, and we
let Lind(K) denote the class of Lind(K)-definable tree languages: a language
L ⊆ ΣMk belongs to Lind(K) iff there is a sentence ϕ of rank k over Σ all of
whose Lindström quantifiers are associated to languages in K such that L is the
set of those trees t ∈ ΣMk that satisfy ϕ.

Example 10. Let K∃ be the class of all the languages of the form K(∃) on a
Boolean ranked alphabet (see Example 9 (1)). One can verify that Lind(K∃) is
exactly the class of FO-definable tree languages. And when K∃,mod is the class
of all languages of the form K(∃) or K(∃r

p), then Lind(K∃,mod) is the class of
(FO + MOD)-definable tree languages.

Theorem 11. Let K be a class of tree languages.
• K ⊆ Lind(K), K1 ⊆ K2 ⇒ Lind(K1) ⊆ Lind(K2) and Lind(Lind(K)) =
Lind(K) (that is, Lind is a closure operator).
• Lind(K) is closed under the Boolean operations and inverse morphisms be-
tween finitely generated free gp’s. It is closed under quotients iff any quotient of
a language in K belongs to Lind(K).

It will follow from our main result that if K consists of recognizable tree
languages, then so does Lind(K). This can also be proved directly by expressing
the Lindström quantifiers associated to the languages in K in monadic second-
order logic.

Corollary 12. Let K be a class of recognizable tree languages. Then Lind(K)
is a literal variety iff any quotient of a language in K belongs to Lind(K) (e.g.
if K is closed under quotients).

Lind(K) is a variety iff any quotient and any inverse image of a language in
K under a morphism between finitely generated free preclones belongs to Lind(K).
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5 Algebraic characterization of Lind(K)

5.1 Block product

The block product of monoids was introduced in [25] as a two sided generalization
of the wreath product [11]. It is closely related to Eilenberg’s bimachines and
triple products [11]. Block products of monoids have been used extensively in
[28] to obtain algebraic characterizations of the expressive power of certain logics
on finite words. In this section we extend this operation to preclones and gp’s.

Let S, T be preclones and k ≥ 0. For each m ≥ 0, let Ik,m be the set
of all m-ary contexts in Tk (see Section 3). Then for each m ≥ 0, we let

(S utk T )m = S
Ik,m
m × Tm. This defines the carriers of the block product S utk T .

The operation of composition is defined as follows. For simplicity, we denote an
element (u, k1, k2, v) of Ik,m by just (u, v), where it is understood that u comes
with a splitting of its argument sequence as k1 + 1 + k2. Let (F, g) ∈ (S utk T )n,
let (Fi, gi) ∈ (S utk T )mi

for each i ∈ [n] and let m =
∑n

i=1 mi. Then we let

(F, g) · ((F1, g1) ⊕ · · · ⊕ (Fn, gn))

be the element (F ′, g ·(g1⊕· · ·⊕gn)) of (SutkT )m such that, for each (u, v) ∈ Ik,m

(using the notation of Section 3),

F ′(u, v) = F (u, g1 · v1 ⊕ · · · ⊕ gn · vn) ·
[

F1(u1, v1) ⊕ · · · ⊕ Fn(un, vn)
]

,

where v1 denotes the ⊕-sum of the first m1 vi’s, v2 denotes the ⊕-sum of the
next m2 vi’s, etc, and where for each 1 ≤ i ≤ n,

ui = u · (k1 ⊕ g · (g1 · v1 ⊕ · · · ⊕ gi−1 · vi−1 ⊕ 1⊕ gi+1 · vi+1 ⊕ · · · ⊕ gn · vn)⊕ k2).

If we let `1 denote the sum of the first m1 `i’s, `2 denotes the sum of the next
m2 `i’s, etc, one can verify that (ui, vi) ∈ Ik,mi

, where the argument sequence
of ui is split as k = (k1 +

∑

j<i `j) + 1 + (
∑

j>i `j + k2). It is long but routine
to verify the following.

Proposition 13. S utk T is a preclone.

When (S, A) and (T, B) are gp’s and k ≥ 0, we define the block product
(S, A) utk (T, B) as the gp (R, C), where C is the collection of all pairs (F, b) in
S utk T such that b ∈ B and F (u, v) ∈ A, for all appropriate u, v, and where R
is the sub-preclone generated by C in S utk T .

5.2 Main theorem

We need one more technical definition before stating the main result. Let K be
a class of tree languages. We say that Lind(K) admits relativization if, for each
sentence ϕ of Lind(K), each integer i ≥ 1 and each first-order variable x, there
exist formulas ϕ[≥i x] and ϕ[6> x], with x as sole free variable, such that:
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• ϕ[≥i x] holds on t if the subtree of t whose root is the i-th child of vertex x
satisfies ϕ;
• ϕ[6> x] holds on t if the tree r obtained from t by deleting the subtree rooted
at x and relabeling that vertex with a variable, satisfies ϕ.

Formally, we require the following:
• given ϕ, a sentence of rank `, and integers k1, k2, there exists a formula ϕ[≥i x]
of rank k = k1 + ` + k2 such that, if t ∈ ΣMk, the label of vertex w of t is in
Σm with m ≥ i, t = r · (k1 ⊕ s⊕ k2) for some s ∈ ΣM`, and the root of s is the
i-th successor of vertex w in t, then (t, x 7→ w) |= ϕ[≥i x] if and only if s |= ϕ;
• given integers k1, k2, a sentence ϕ of rank k1+1+k2 and an integer k ≥ k1+k2

there exists a formula ϕ[6> x] of rank k such that, if t ∈ ΣMk, t = r ·(k1⊕s⊕k2)
and vertex w of t is the root of the subtree s, then (t, x 7→ w) |= ϕ[6> x] if and
only if r |= ϕ.

We now state our main theorem, which extends the main result of [15] (re-
lating to finite words) to finite trees.

Theorem 14. Let K be a class of recognizable tree languages such that any
quotient of a language in K belongs to Lind(K) and such that Lind(K) admits
relativization. Then a language is in Lind(K) iff its syntactic gp belongs to the
least pseudovariety of finitary gp’s containing the syntactic gp’s of the languages
in K and closed under block products.

5.3 Applications

The class of all recognizable tree languages is closed under taking quotients and
one verifies easily that the corresponding logic admits relativizations. It follows
that:

Corollary 15. If K consists of recognizable languages, then so does Lind(K).

By Example 10, the class of FO-definable tree languages is Lind(K∃). One
can verify that Lind(K∃) admits relativization, and any quotient of a language
in K∃ belongs to Lind(K∃). In order to use Theorem 14, we need to compute
the syntactic gp’s of the tree languages in K∃. Let ∆ be a Boolean alphabet,
k ≥ 0 and K ⊆ ∆Mk be as in Example 9 (1). It is not difficult to verify that
the syntactic ∆-algebra of K has two elements, say B = {true, false}, and if
∆n 6= ∅, then 1n is the constant function true and 0n is the n-ary or function. By
Proposition 6, the syntactic gp of K is the pair (T, ∆) where T is the sub-preclone
of T (B) generated by ∆.

Now let T∃ be the sub-preclone of T (B) generated by the binary or function
and the nullary constants true and false: then (T∃)n consists of the n-ary or

function and the n-ary constant true. One can verify that no proper sub-preclone
of T∃ contains the nullary constants true and false, and some n-ary or function
(n ≥ 2). Since we are assuming that ∆n 6= ∅ for some n ≥ 2, it follows that the
syntactic gp of K is a pair (T∃, ∆).

Next let K∃ be the class of gp’s whose underlying preclone is isomorphic to
T∃. By Theorem 14, a tree language L is FO-definable if and only if its syntactic
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gp lies in the least pseudovariety of gp’s containing K∃ and closed under block
product. Next one verifies that a gp belongs to this pseudovariety if and only
its underlying preclone lies in the least pseudovariety of preclones containing T∃

and closed under block product. Finally, we get the following result.

Corollary 16. A tree language is FO-definable iff its syntactic preclone belongs
to the least pseudovariety containing T∃ and closed under block product.

Let p ≥ 2 and let Bp = {0, 1, . . . , p−1}. Let Tp be the sub-preclone of T (Bp)
whose rank n elements (n ≥ 0) consists of the mappings fn,r: (r1, . . . , rn) 7→
r1 + · · · + rn + r mod p for 0 ≤ r < p. By a reasoning similar to that used for
Corollary 16, we can show the following.

Corollary 17. A tree language is FO+MOD-definable iff its syntactic preclone
belongs to the least pseudovariety containing T∃ and the Tp and closed under block
product.

Conclusion

We reduced the characterization of the expressive power of certain naturally
defined logics on tree languages, a chief example of which is given by first-order
sentences, to an algebraic problem.

For this purpose, we introduced a new algebraic framework to discuss tree
languages. However, the resulting notion of recognizability coincides with the
usual one: we simply gave ourselves a richer algebraic set-up to classify recog-
nizable tree languages. This does not yield directly a decidability result for, say,
first-order definable tree languages, but we can now look for a solution of this
problem based on the methods of algebra. In this process, it will probably be
necessary to develop the structure theory of preclones, to get more precise results
on the block product operation.

A positive aspect of our approach is its generality: it is not restricted to the
characterization of logics based on the use of Lindström quantifiers (nor indeed to
the characterization of logics). For instance, the use of wreath products instead
of block products, will yield algebraic characterizations for other natural classes
of recognizable tree languages.
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