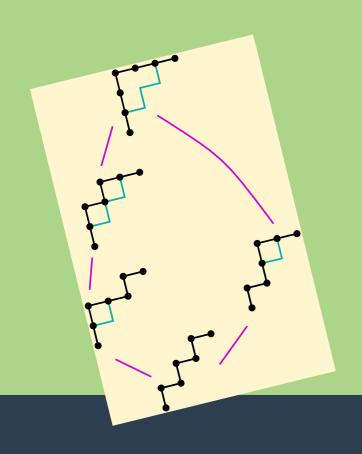
The ascent lattice on Dyck paths



with Jean-Luc Baril, Sergey Kirgizov (LIB, Dijon) and Mehdi Naima (LIP6, Paris)

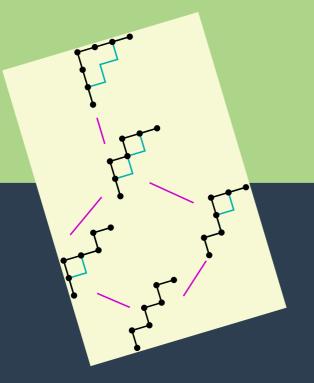
arXiv:2409.15982

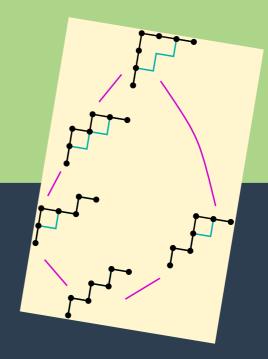
Mireille Bousquet-Mélou CNRS, LaBRI, Université de Bordeaux

Outline

- → Orders on Dyck paths --- The ascent order
- → Lattice properties (the Nadeau-Tewari lattice)
- → Counting intervals
- → m-Dyck paths, and mirrored m-Dyck paths
- -> Connection with the sylvester congruence [Hivert, Novelli, Thibon 05]

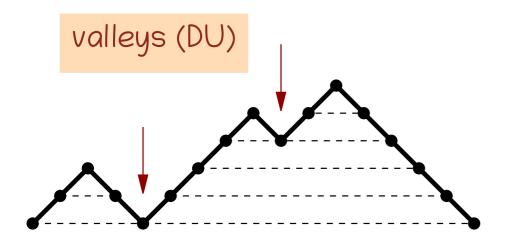
I. Orders on Dyck paths





Dyck paths

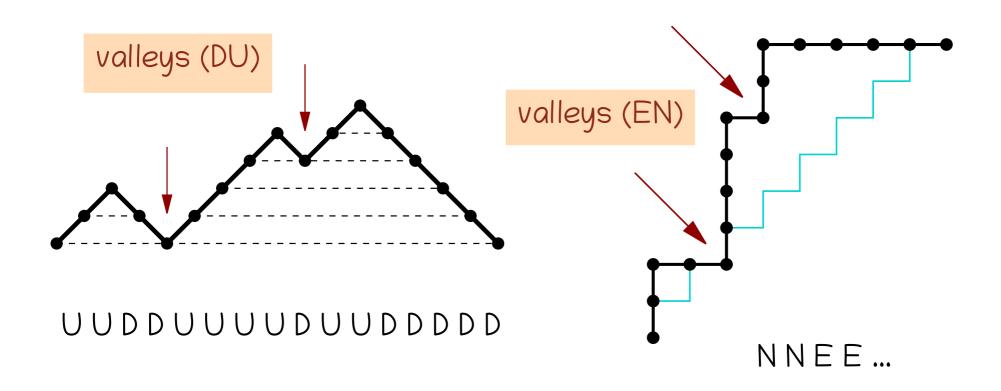
• A Dyck path of size n=8 (size=number of up steps)



UUDDUUUDUUDDDD

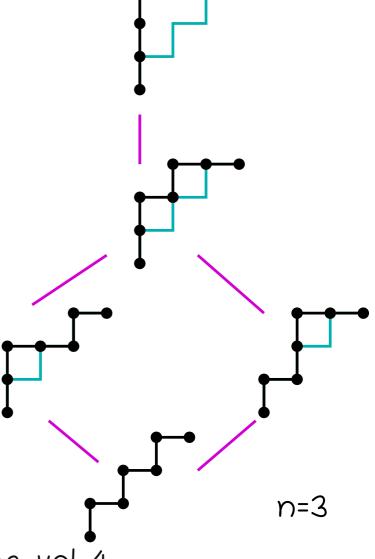
Dyck paths

• A Dyck path of size n=8 (size=number of up steps)



A poset on Dyck paths of size n

Def. The path u is smaller than v if u lies below v.

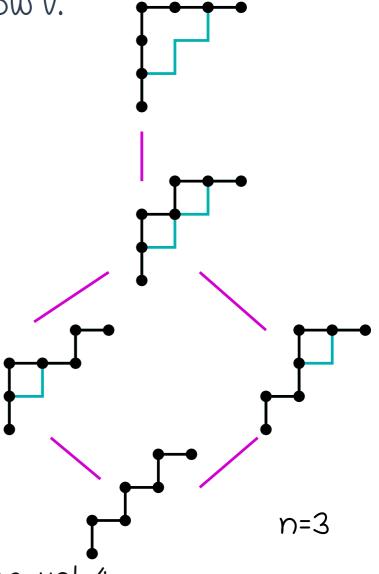


A poset on Dyck paths of size n

Def. The path u is smaller than v if u lies below v.

Cover relations are given by

 $EN \rightarrow NE$ (that is, valley \rightarrow peak)



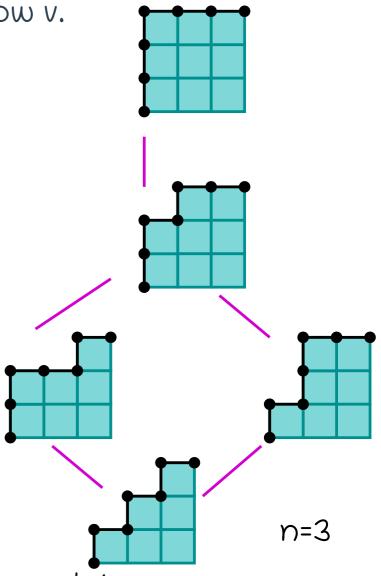
A poset on Dyck paths of size n

Def. The path u is smaller than v if u lies below v.

Cover relations are given by

 $EN \rightarrow NE$ (that is, valley \rightarrow peak)

A sub-lattice of the Young lattice



A poset on Dyck paths of size n

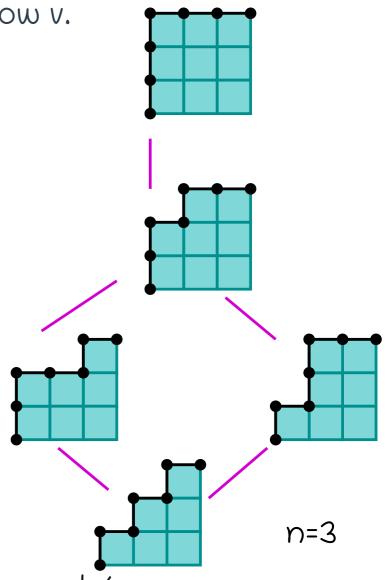
Def. The path u is smaller than v if u lies below v.

Cover relations are given by

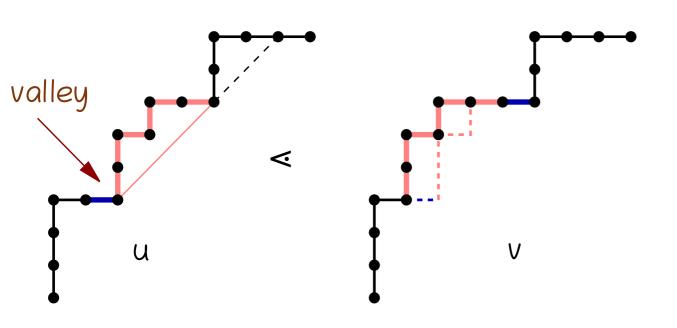
 $EN \rightarrow NE$ (that is, valley \rightarrow peak)

A sub-lattice of the Young lattice

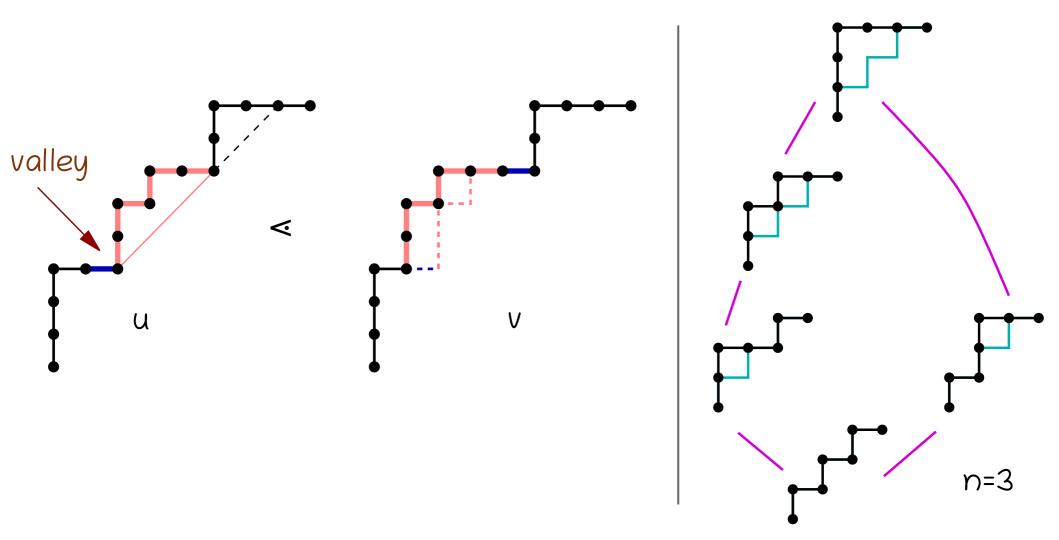
Graded (by area)



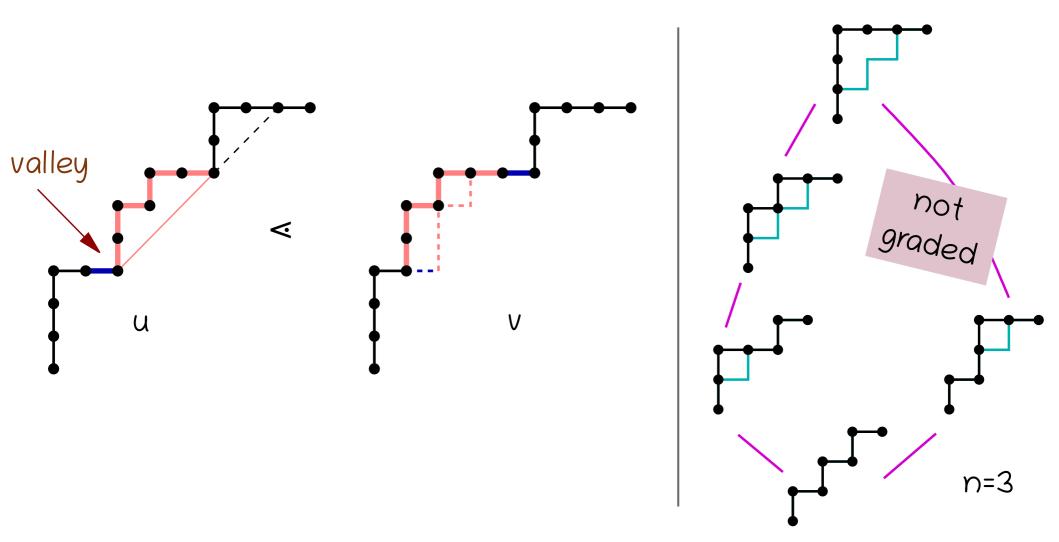
- A poset on Dyck paths with n up steps
- Cover relations: choose a valley in the path u. Swap the East step and the shortest Dyck path that follows.



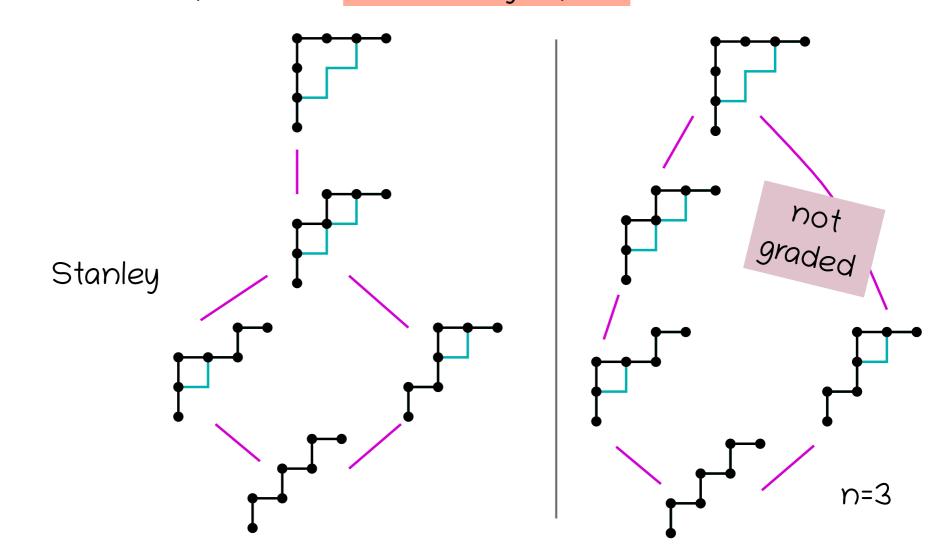
- A poset on Dyck paths with n up steps
- Cover relations: choose a valley in the path u. Swap the East step and the shortest Dyck path that follows.



- A poset on Dyck paths with n up steps
- Cover relations: choose a valley in the path u. Swap the East step and the shortest Dyck path that follows.

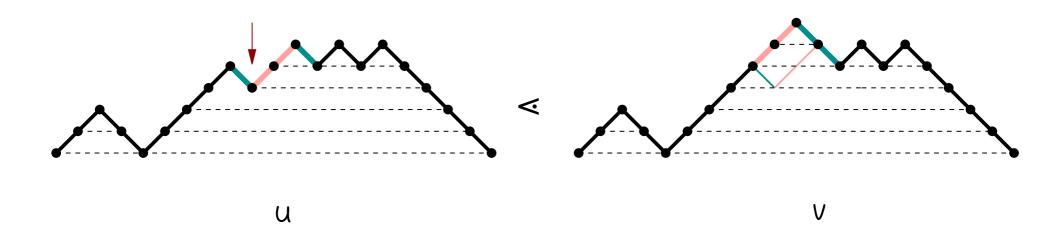


- A poset on Dyck paths with n up steps
- Cover relations: choose a valley in the path u. Swap the East step and the shortest Dyck path that follows.



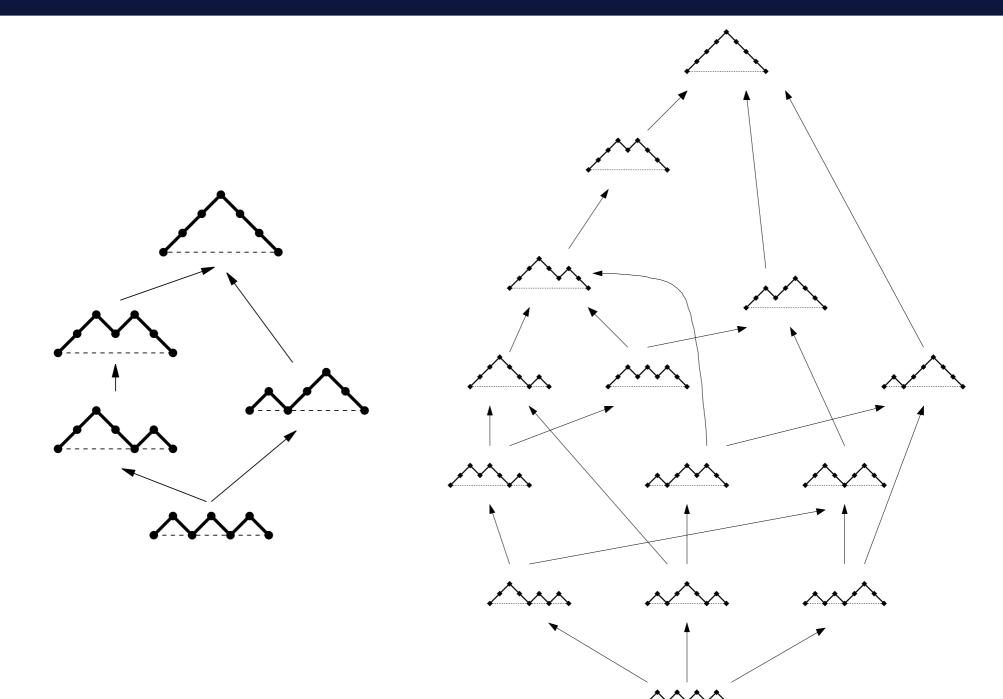
The ascent poset (or: greedy Stanley?)

- A poset on Dyck paths with n up steps
- Cover relations: choose a valley in the path u.
 Swap the down step and the ascent that follows.
 (the path moves up)

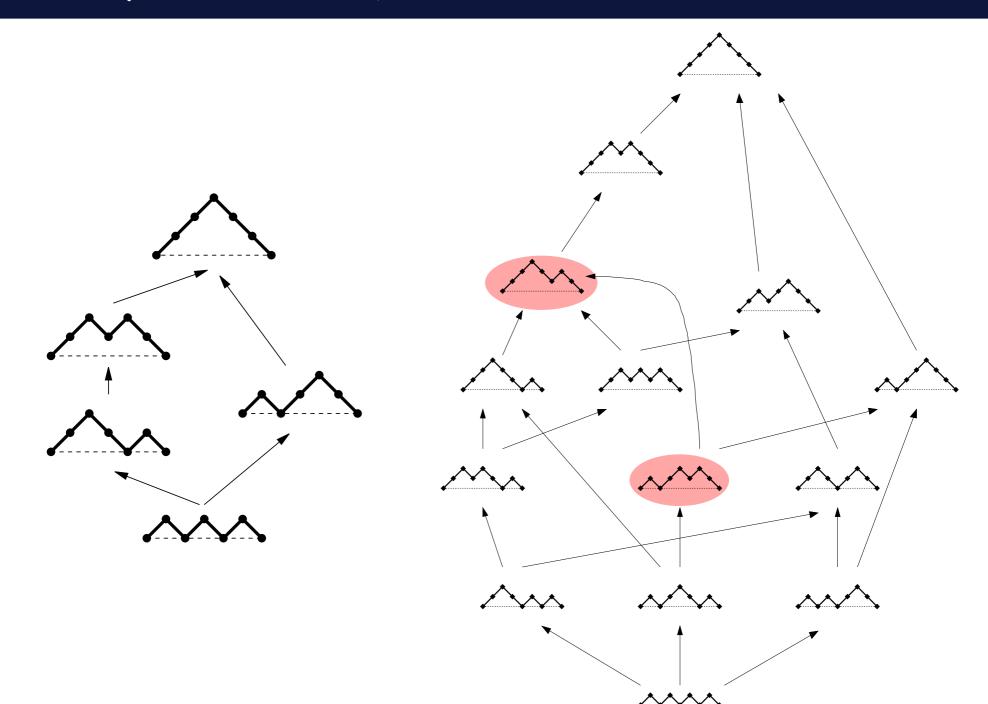


[Chenevière, Nadeau...]

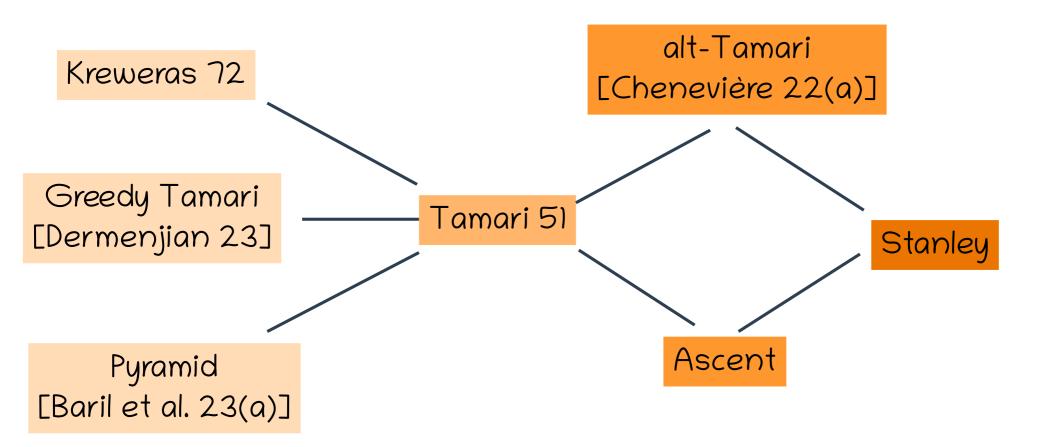
Ascent posets: n = 3, 4



Ascent posets: n = 3, 4



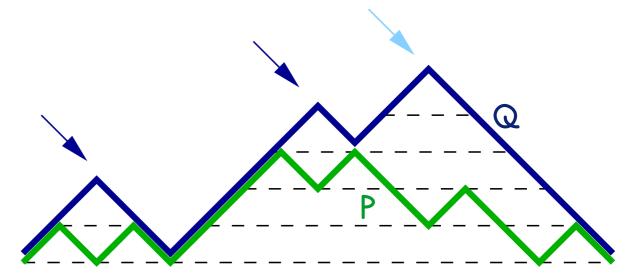
Poset inclusion



A characterization of the ascent order

Proposition. In the ascent poset, $P \leq Q$ iff

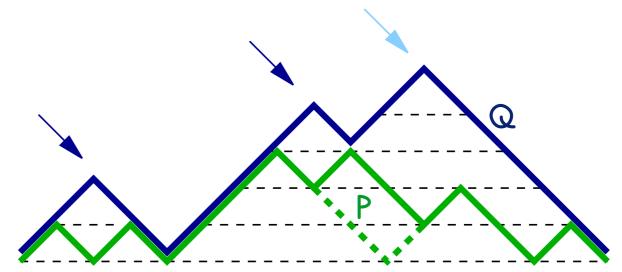
- ◆ P lies below Q
- every descent of Q is (i.e. lies on the same diagonal as)
 a descent of P.



A characterization of the ascent order

Proposition. In the ascent poset, $P \leq Q$ iff

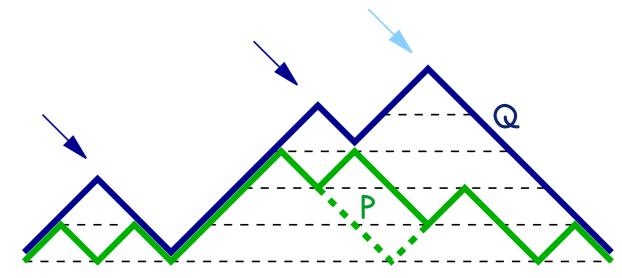
- ◆ P lies below Q
- every descent of Q is (i.e. lies on the same diagonal as)
 a descent of P.



A characterization of the ascent order

Proposition. In the ascent poset, $P \leq Q$ iff

- ◆ P lies below Q
- every descent of Q is (i.e. lies on the same diagonal as)
 a descent of P.



Applications:

- lattice structure
- · recursive construction of intervals

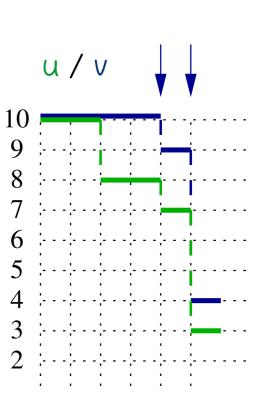
II. Lattice structure

(Each pair of elements has a sup and an inf)

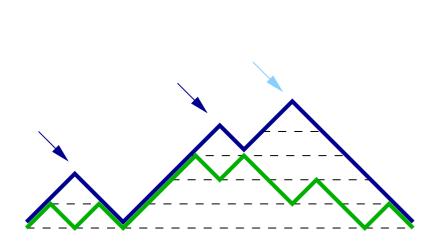
- u lies below $v(u_i \le v_i)$
- every descent of v is a descent of u.

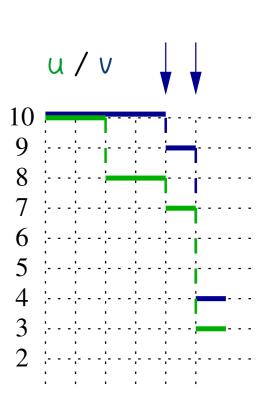
$$V = (10, 10, 10, 10, 9, 4)$$

$$u = (10, 10, 8, 8, 7, 3)$$

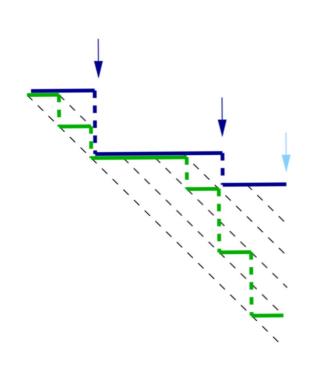


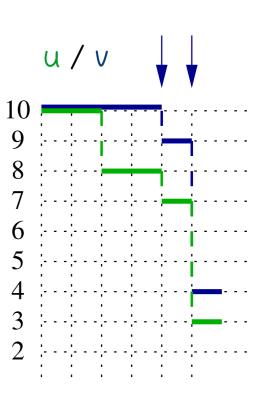
- u lies below $v(u_i \leq v_i)$
- every descent of v is a descent of u.



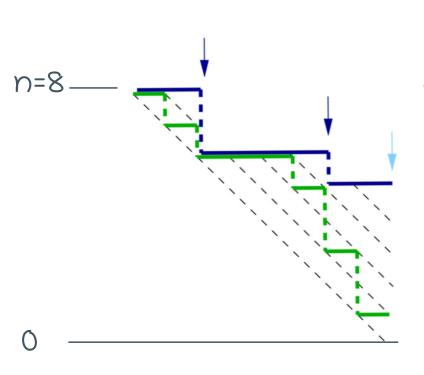


- u lies below $v(u_i \leq v_i)$
- every descent of v is a descent of u.



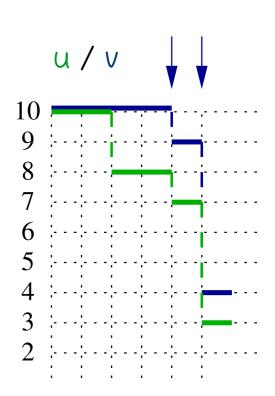


- u lies below $v(u_i \le v_i)$
- · every descent of v is a descent of u.



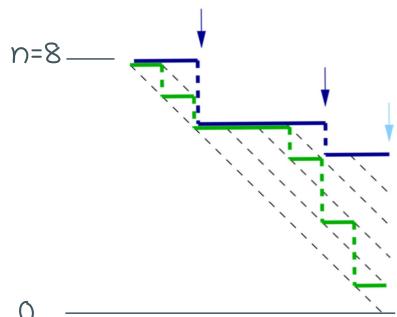
$$v = (8, 8, 6, 6, 6, 6, 5, 5)$$

$$u = (8, 7, 6, 6, 6, 5, 3, 1)$$



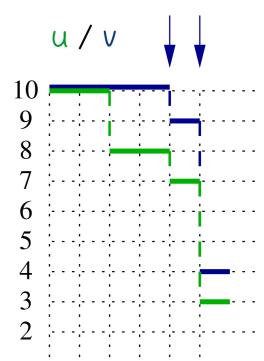
- u lies below $v(u_i \leq v_i)$
- · every descent of v is a descent of u.

Observation: Dyck paths of size n can be encoded by nonincreasing sequences of length n, and then the ascent order coincides with the NT order.

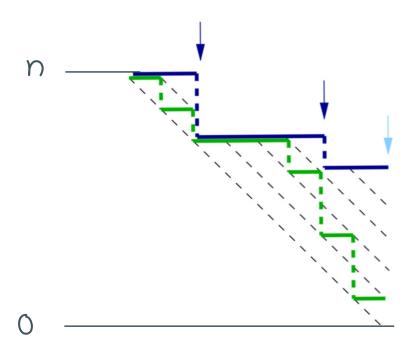


$$v = (8, 8, 6, 6, 6, 6, 5, 5)$$

$$u = (8, 7, 6, 6, 6, 5, 3, 1)$$



Observation: The ascent order is the order induced by the NT order on sequences $u=(u_1, ..., u_n)$ such that $n-i+1 \le u_i \le n$ for all i.

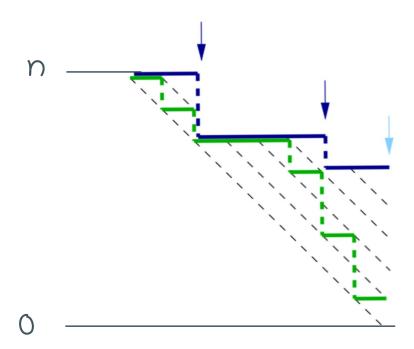


$$v = (8, 8, 6, 6, 6, 6, 5, 5)$$

$$u = (8, 7, 6, 6, 6, 5, 3, 1)$$

Observation: The ascent order is the order induced by the NT order on sequences $u=(u_1, ..., u_n)$ such that $n-i+1 \le u_i \le n$ for all i.

These sequences form an interval with $u_{min} = (n, n-1, ..., 1)$ and $u_{max} = (n, n, ..., n)$.



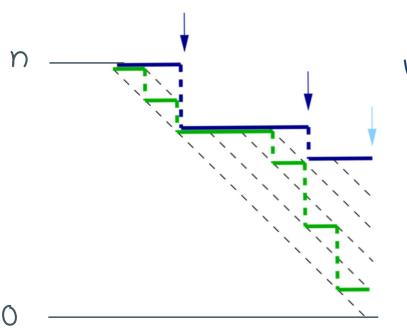
$$v = (8, 8, 6, 6, 6, 6, 5, 5)$$

$$u = (8, 7, 6, 6, 6, 5, 3, 1)$$

Observation: The ascent order is the order induced by the NT order on sequences $u=(u_1, ..., u_n)$ such that $n-i+1 \le u_i \le n$ for all i.

These sequences form an interval with $u_{min} = (n, n-1, ..., 1)$ and $u_{max} = (n, n, ..., n)$.

Proposition [NT 24]: the NT poset is a lattice.



$$v = (8, 8, 6, 6, 6, 6, 5, 5)$$

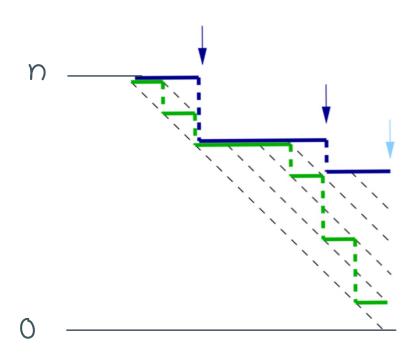
$$u = (8, 7, 6, 6, 6, 5, 3, 1)$$

Observation: The ascent order is the order induced by the NT order on sequences $u=(u_1, ..., u_n)$ such that $n-i+1 \le u_i \le n$ for all i.

These sequences form an interval with $u_{min} = (n, n-1, ..., 1)$ and $u_{max} = (n, n, ..., n)$.

Proposition [NT 24]: the NT poset is a lattice.

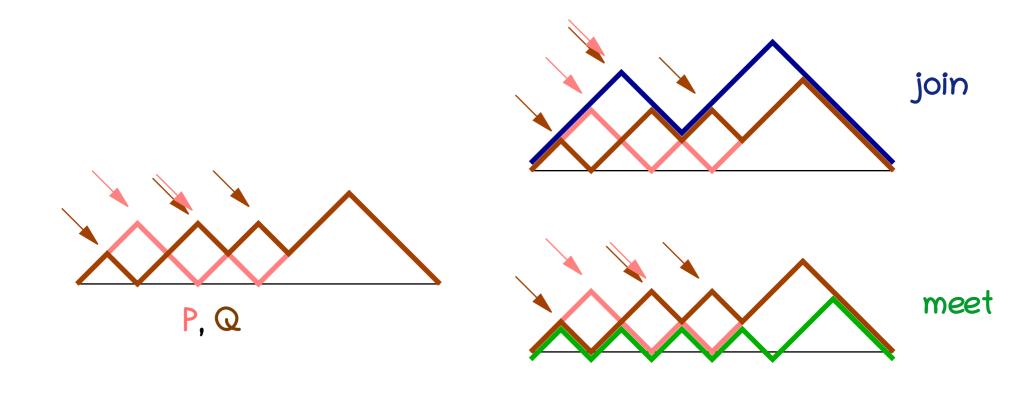
Corollary. The ascent order on Dyck paths of size n defines a lattice.



$$v = (8, 8, 6, 6, 6, 6, 5, 5)$$

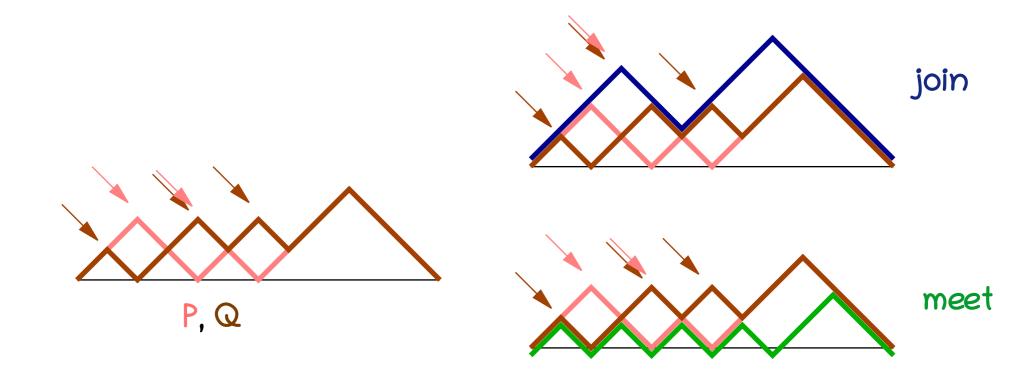
$$u = (8, 7, 6, 6, 6, 5, 3, 1)$$

Corollary. The ascent order on Dyck paths of size n defines a lattice.



Corollary. The ascent order on Dyck paths of size n defines a lattice.

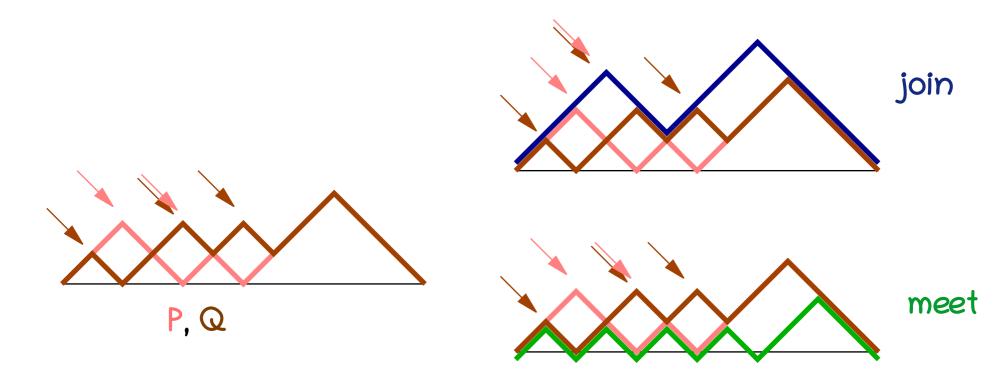
Join(P,Q): the lowest Dyck path above P and Q whose descents are included in des(P) and in des(Q).



Corollary. The ascent order on Dyck paths of size n defines a lattice.

Join(P,Q): the lowest Dyck path above P and Q whose descents are included in des(P) and in des(Q).

Meet(P,Q): the highest Dyck path below P and Q whose descents contain those of P and Q.



III. The number of intervals

Interval $[P,Q] \sim (P,Q)$ with $P \leq Q$

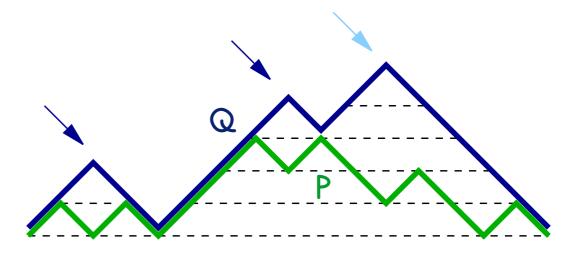
Recursive construction of ascent intervals

Proposition. In the ascent poset, $P \leq Q$ iff

◆ P lies below Q

• every descent of Q is (i.e. lies on the same diagonal as) a

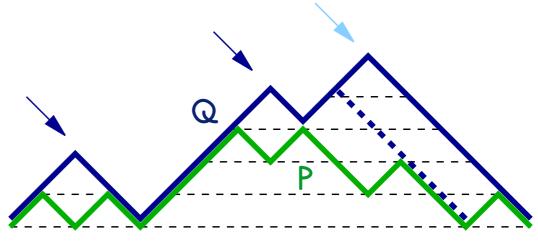
descent of P.



Proposition. In the ascent poset, $P \leq Q$ iff

◆ P lies below Q

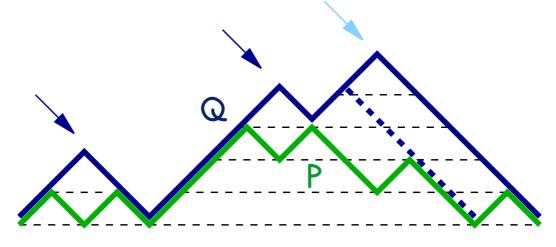
 every descent of Q is (i.e. lies on the same diagonal as) a descent of P.



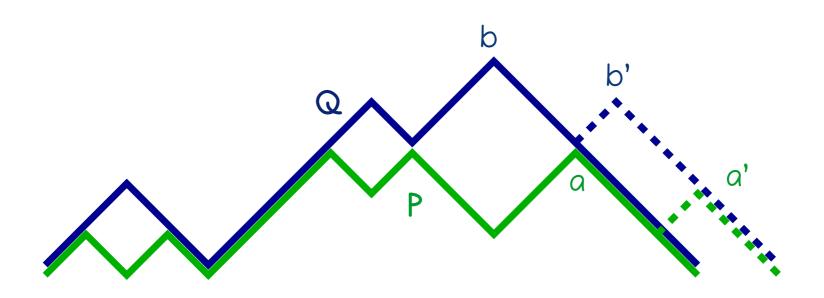
Proposition. In the ascent poset, $P \leq Q$ iff

◆ P lies below Q

 every descent of Q is (i.e. lies on the same diagonal as) a descent of P.

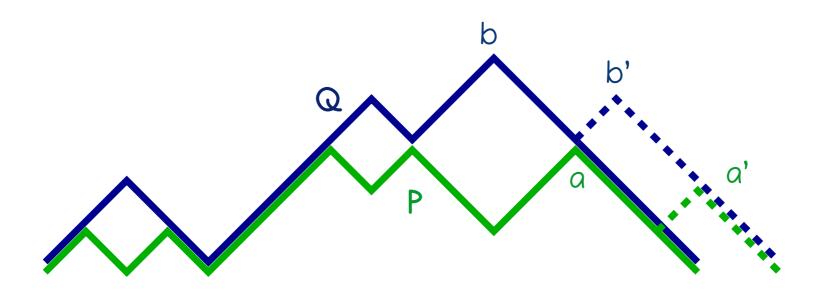


Corollary: if [P,Q] is an interval, deleting the last peak of P and the last peak of Q gives a new interval.

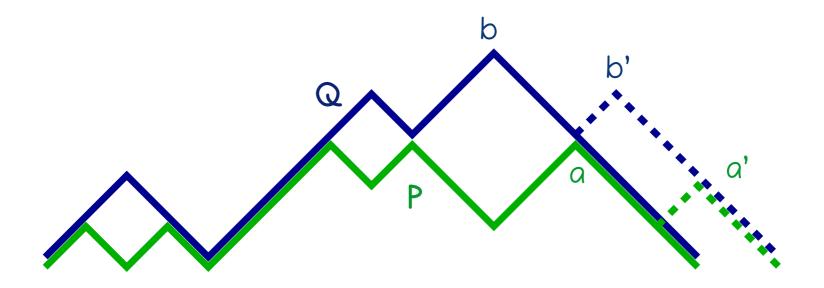


Conversely, starting from an interval [P,Q] with final peaks at heights a ≤ b, adding peaks in P and Q at heights a' and b' gives an interval iff...

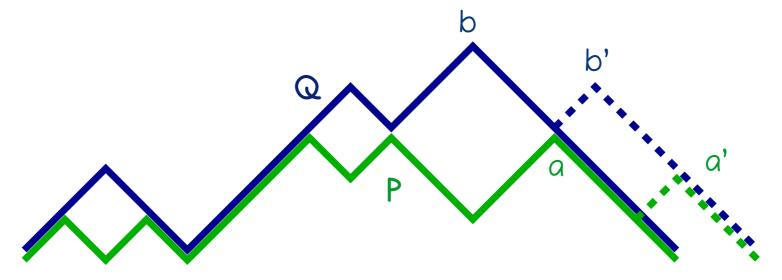
 $\bullet \quad 1 \le a' \le a+1, \quad 1 \le b' \le b+1$



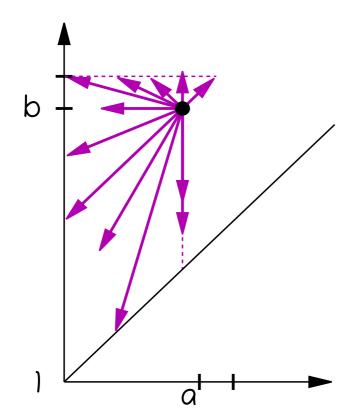
- $\bullet \quad 1 \le a' \le a+1, \quad 1 \le b' \le b+1$
- a' ≤ b'



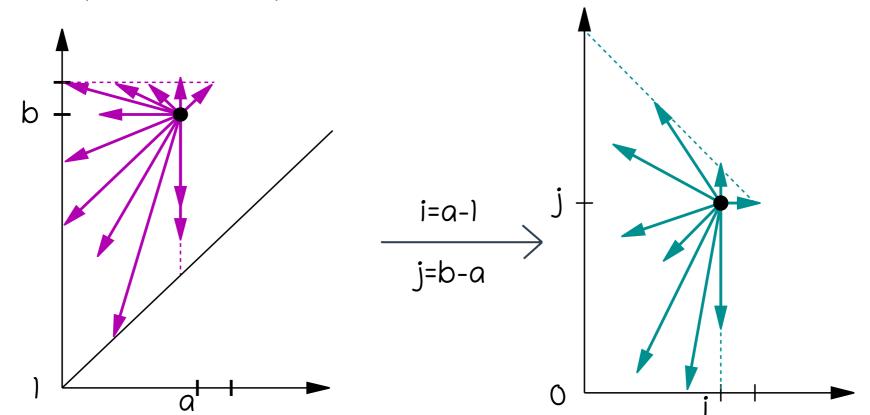
- $\bullet \quad 1 \le a' \le a+1, \quad 1 \le b' \le b+1$
- a' ≤ b'
- if a' = a+1 then b' = b+1.



- $\bullet \quad 1 \le a' \le a+1, \quad 1 \le b' \le b+1$
- a' ≤ b'
- if a' = a+1 then b' = b+1.



- $\bullet \quad 1 \le a' \le a+1, \quad 1 \le b' \le b+1$
- a' ≤ b'
- if a' = a+1 then b' = b+1.



Conversely, starting from an interval [P,Q] with final peaks at heights a ≤ b, adding peaks in P and Q at heights a' and b' gives an interval iff...

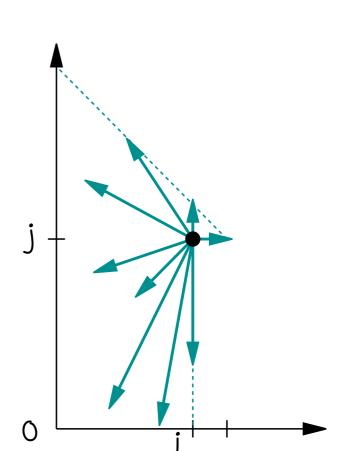
- $\bullet \quad 1 \le a' \le a+1, \quad 1 \le b' \le b+1$
- a' ≤ b'
- if a' = a+1 then b' = b+1.

Bijection intervals of size n ≈

quadrant walks of length n-1 starting from (0,0)

 \approx

quadrant walks of length n starting and ending at (0,0)



• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(x,y) = \sum_{w} t^{|w|} x^{i} y^{j}.$$

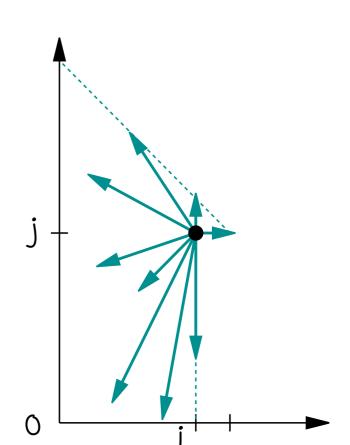
Then the GF of ascent intervals is G=tQ(1,1)=Q(0,0)-1.

Bijection intervals of size n

quadrant walks of length n-1 starting from (0,0)

 \approx

quadrant walks of length n starting and ending at (0,0)

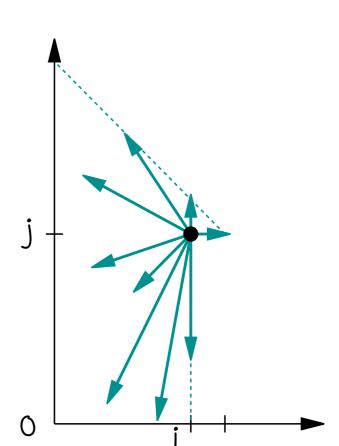


• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(x,y) = \sum_{w} t^{|w|} x^{i} y^{j}.$$

Then the GF of ascent intervals is G=tQ(1,1)=Q(0,0)-1.

Step-by-step description of the walks:



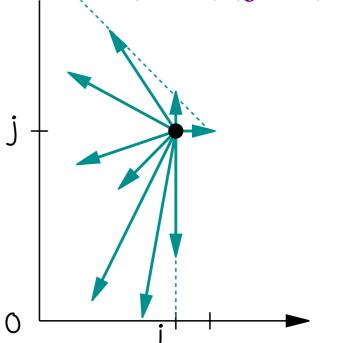
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(x,y) = \sum_{w} t^{|w|} x^{i} y^{j}.$$

Then the GF of ascent intervals is G=tQ(1,1)=Q(0,0)-1.

• Step-by-step description of the walks:

$$Q(x,y) = 1 + txQ(x,y) + ty^{2} \frac{xQ(x,y) - yQ(y,y)}{(x-y)(y-1)} - t \frac{xQ(x,1) - Q(1,1)}{(x-1)(y-1)}.$$



A functional equation with two catalytic variables

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

$$Q(x,y) = 1 + txQ(x,y) + ty^{2} \frac{xQ(x,y) - yQ(y,y)}{(x-y)(y-1)} - t \frac{xQ(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

Walks in the quadrant: a much studied topic! Very few algebraic cases.

A functional equation with two catalytic variables

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

$$Q(x,y) = 1 + txQ(x,y) + ty^{2} \frac{xQ(x,y) - yQ(y,y)}{(x-y)(y-1)} - t \frac{xQ(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

Walks in the quadrant: a much studied topic! Very few algebraic cases.

Thm. Ascent intervals have an algebraic GF, namely

$$G = Z(1-2Z+2Z^3)$$
, where $Z = t(1+Z)(1+2Z)^2$.

Uses Tutte's invariants

[Bernardi, mbm, Raschel 17(a)]

A functional equation with two catalytic variables

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

$$Q(x,y) = 1 + txQ(x,y) + ty^{2} \frac{xQ(x,y) - yQ(y,y)}{(x-y)(y-1)} - t \frac{xQ(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

Walks in the quadrant: a much studied topic! Very few algebraic cases.

Thm. Ascent intervals have an algebraic GF, namely

$$G = Z(1-2Z+2Z^3)$$
, where $Z = t(1+Z)(1+2Z)^2$.

Uses Tutte's invariants

[Bernardi, mbm, Raschel 17(a)]

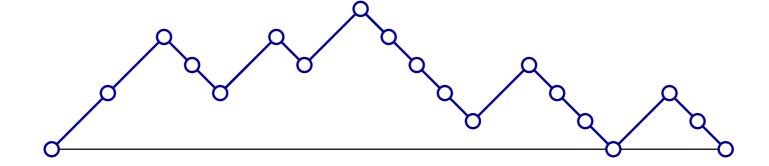
Asymptotics:

$$g(n) \sim \kappa \, \mu^n n^{-7/2}, \qquad \text{with} \qquad \mu = \frac{11 + 5\sqrt{5}}{2}.$$

IV. m-Dyck paths, and mirrored m-Dyck paths

m-Dyck paths and mirrored m-Dyck paths

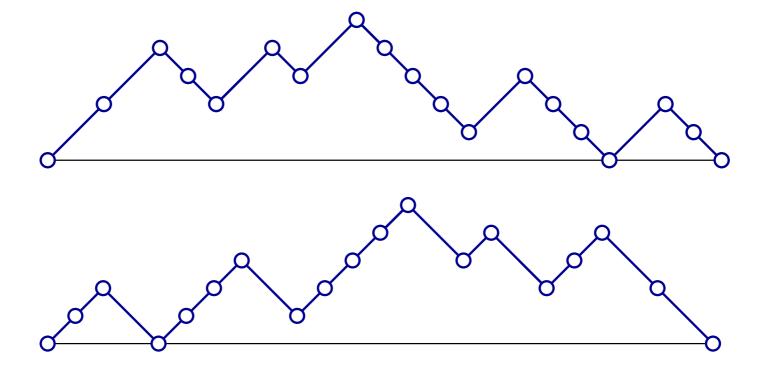
In an m-Dyck path, the length of all ascents is a multiple of m.



m-Dyck paths and mirrored m-Dyck paths

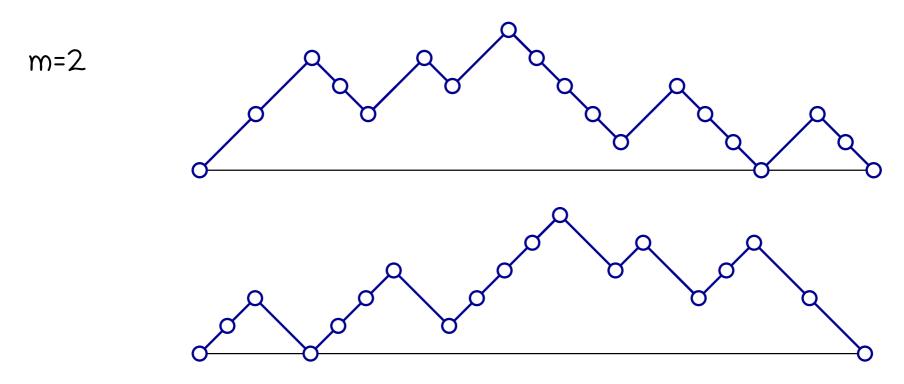
In an m-Dyck path, the length of all ascents is a multiple of m. In a mirrored m-Dyck path, the length of all descents is a multiple of m.

m=2



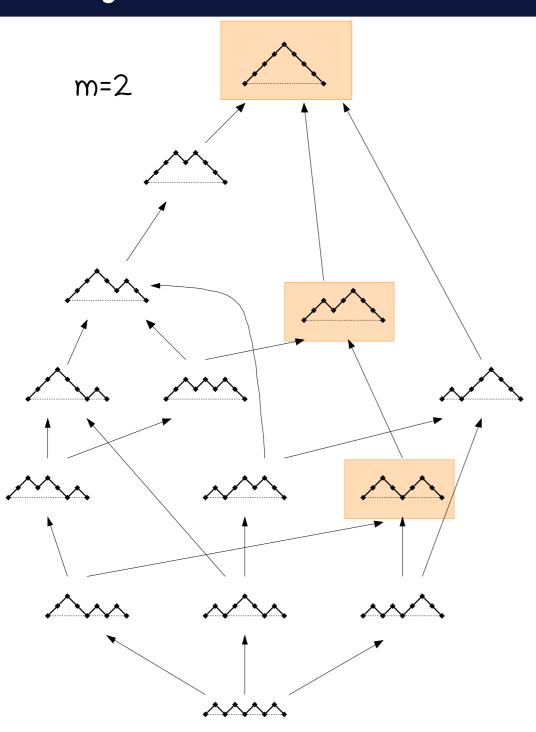
m-Dyck paths and mirrored m-Dyck paths

In an m-Dyck path, the length of all ascents is a multiple of m. In a mirrored m-Dyck path, the length of all descents is a multiple of m.

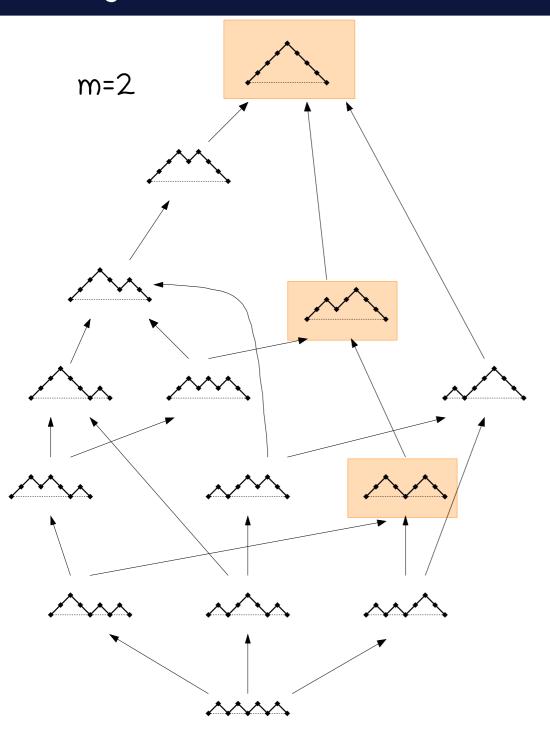


→ Study the order induced by the ascent order on m-Dyck paths and mirrored m-Dyck paths.

m-Dyck paths



m-Dyck paths



m-Dyck paths form an interval in the ascent lattice A_{mn} , with

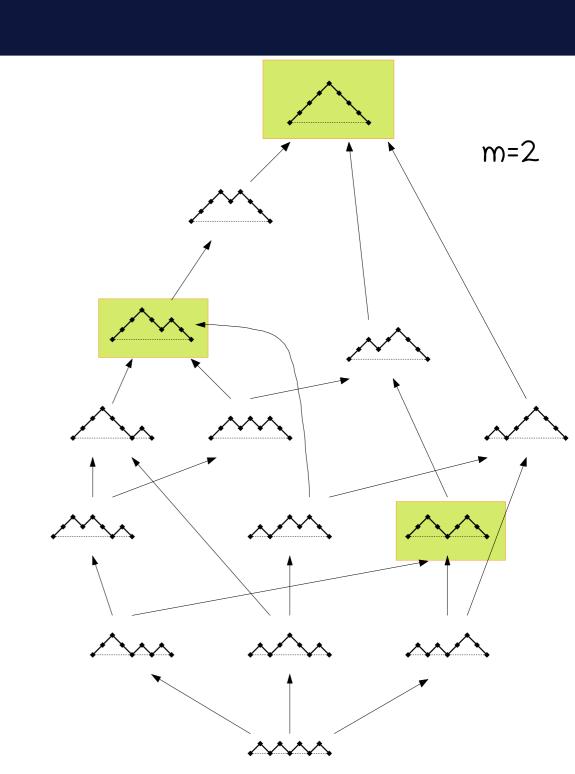
$$min = (U^m D^m)^n$$

$$max = U^{mn} D^{mn}$$
.

In particular, it is a lattice.

Mirrored m-Dyck paths

Mirrored m-Dyck paths only form a join semi-lattice.



What about intervals?

What about intervals?

Intervals in m-Dyck paths:

Stanley lattice: D-finite GF (i.e., linear DE with pol. coeffs)

$$\frac{2(m+2)((m+1)n)!((m+1)(n+1))!}{n!(n+1)!(mn+2)!(m(n+2)+2)!}$$

Tamari lattice: algebraic GF [mbm, Fusy, Préville-Ratelle 11]

$$\frac{m+1}{n(mn+1)} \binom{(m+1)^2n+m}{n-1}$$

Conj: Bergeron, Préville-Ratelle

Greedy Tamari lattice: algebraic GF [mbm, Chapoton 24]

$$\frac{(m+2)(m+1)^{n-1}}{(mn+1)(mn+2)}\binom{(m+1)n}{n}.$$

What about intervals?

Intervals in mirrored m-Dyck paths:

Stanley lattice: D-finite GF (i.e., linear DE with pol coeffs)

$$\frac{2(m+2)((m+1)n)!((m+1)(n+1))!}{n!(n+1)!(mn+2)!(m(n+2)+2)!}$$

Tamari lattice ?

Greedy Tamari lattice ?

m-Dyck paths: delete the final large peak $U^mD^m \rightarrow quadrant$ walks.

m-Dyck paths: delete the final large peak U^mD^m → quadrant walks.

The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

$$Q(x,y) = 1 + tx^{m}Q(x,y)$$

$$+ty^{2} \frac{x^{m}Q(x,y) - y^{m}Q(y,y)}{(x-y)(y-1)} - t \frac{x^{m}Q(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

m-Dyck paths: delete the final large peak U^mD^m → quadrant walks.

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

$$Q(x,y) = 1 + tx^{m}Q(x,y) + ty^{2} \frac{x^{m}Q(x,y) - y^{m}Q(y,y)}{(x-y)(y-1)} - t \frac{x^{m}Q(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

• Asymptotics (from random walk results) [Denisov & Wachtel 15]

m-Dyck paths: delete the final large peak U^mD^m → quadrant walks.

The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

$$Q(x,y) = 1 + tx^{m}Q(x,y) + ty^{2} \frac{x^{m}Q(x,y) - y^{m}Q(y,y)}{(x-y)(y-1)} - t \frac{x^{m}Q(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

• Asymptotics (from random walk results) [Denisov & Wachtel 15] $g_m(n) \sim \kappa \mu^n n^{\alpha},$

m-Dyck paths: delete the final large peak U^mD^m → quadrant walks.

The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

$$Q(x,y) = 1 + tx^{m}Q(x,y) + ty^{2} \frac{x^{m}Q(x,y) - y^{m}Q(y,y)}{(x-y)(y-1)} - t \frac{x^{m}Q(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

• **Asymptotics** (from random walk results) [Denisov & Wachtel 15] $g_m(n) \sim \kappa \mu^n n^{\alpha}$,

where
$$\mu = \frac{m\sqrt{m^2+4}+m^2+2}{2} \cdot \left(\frac{2+\sqrt{m^2+4}}{m}\right)^m$$

m-Dyck paths: delete the final large peak U^mD^m → quadrant walks.

The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

$$Q(x,y) = 1 + tx^{m}Q(x,y) + ty^{2} \frac{x^{m}Q(x,y) - y^{m}Q(y,y)}{(x-y)(y-1)} - t \frac{x^{m}Q(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

• Asymptotics (from random walk results) [Denisov & Wachtel 15] $g_m(n) \sim \kappa \mu^n n^{\alpha}$,

where
$$\mu = \frac{m\sqrt{m^2+4}+m^2+2}{2} \cdot \left(\frac{2+\sqrt{m^2+4}}{m}\right)^m$$

m-Dyck paths: delete the final large peak U^mD^m → quadrant walks.

• Asymptotics (from random walk results) [Denisov & Wachtel 15] $g_{\mathfrak{m}}(\mathfrak{n}) \sim \kappa \mu^{\mathfrak{n}} \mathfrak{n}^{\alpha},$

where
$$\mu = \frac{m\sqrt{m^2+4}+m^2+2}{2} \cdot \left(\frac{2+\sqrt{m^2+4}}{m}\right)^m$$

m-Dyck paths: delete the final large peak U^mD^m → quadrant walks.

• Asymptotics (from random walk results) [Denisov & Wachtel 15] $g_{\mathfrak{m}}(\mathfrak{n}) \sim \kappa \mu^{\mathfrak{n}} \mathfrak{n}^{\alpha},$

where
$$\mu = \frac{m\sqrt{m^2+4}+m^2+2}{2} \cdot \left(\frac{2+\sqrt{m^2+4}}{m}\right)^m$$

m-Dyck paths: delete the final large peak U^mD^m → quadrant walks.

For m>1, the exponent α is irrational, and hence the GF of intervals cannot be D-finite.

[Bostan, Raschel, Salvy 14]

• Asymptotics (from random walk results) [Denisov & Wachtel 15] $g_m(n) \sim \kappa \mu^n n^{\alpha},$

where
$$\mu = \frac{m\sqrt{m^2+4}+m^2+2}{2} \cdot \left(\frac{2+\sqrt{m^2+4}}{m}\right)^m$$

Mirrored m-Dyck paths: delete the first large peak U^mD^m → quadrant walks.

Mirrored m-Dyck paths: delete the first large peak U^mD^m → quadrant walks.

• The GF of ascent intervals is $t\overline{\mathbb{Q}}(1,1)$, where $\overline{\mathbb{Q}}(x,y)=\overline{\mathbb{Q}}(t;x,y)$ satisfies:

$$\begin{split} \overline{Q}(x,y) &= 1 + tx^m \frac{y\overline{Q}(x,y) - \overline{Q}(x,1)}{y-1} \\ &+ ty^2 \frac{x^m \overline{Q}(x,y) - \overline{Q}(1,y)}{(x-1)(y-1)} - t \frac{x^m \overline{Q}(x,1) - \overline{Q}(1,1)}{(x-1)(y-1)} \end{split}$$

What about ascent intervals?

Mirrored m-Dyck paths: delete the first large peak U^mD^m → quadrant walks.

• The GF of ascent intervals is $t\overline{\mathbb{Q}}(1,1)$, where $\overline{\mathbb{Q}}(x,y)=\overline{\mathbb{Q}}(t;x,y)$ satisfies:

$$\overline{Q}(x,y) = 1 + tx^{m} \frac{y\overline{Q}(x,y) - \overline{Q}(x,1)}{y-1} + ty^{2} \frac{x^{m}\overline{Q}(x,y) - \overline{Q}(1,y)}{(x-1)(y-1)} - t \frac{x^{m}\overline{Q}(x,1) - \overline{Q}(1,1)}{(x-1)(y-1)}$$

• Asymptotics (from random walk results) [Denisov & Wachtel 15] $\bar{g}_m(n) \sim \kappa \mu^n n^\alpha,$

What about ascent intervals?

Mirrored m-Dyck paths: delete the first large peak U^mD^m → quadrant walks.

• The GF of ascent intervals is $t\overline{\mathbb{Q}}(1,1)$, where $\overline{\mathbb{Q}}(x,y)=\overline{\mathbb{Q}}(t;x,y)$ satisfies:

$$\overline{Q}(x,y) = 1 + tx^{m} \frac{y\overline{Q}(x,y) - \overline{Q}(x,1)}{y-1} + ty^{2} \frac{x^{m}\overline{Q}(x,y) - \overline{Q}(1,y)}{(x-1)(y-1)} - t \frac{x^{m}\overline{Q}(x,1) - \overline{Q}(1,1)}{(x-1)(y-1)}$$

• Asymptotics (from random walk results) [Denisov & Wachtel 15] $\bar{g}_m(n) \sim \kappa \mu^n n^\alpha,$

where
$$\mu = \frac{m\sqrt{m^2+4}+m^2+2}{2} \cdot \left(\frac{2+\sqrt{m^2+4}}{m}\right)^m$$
 and

$$\alpha = -1 - \pi/\arccos(c)$$
 with $c = \sqrt{\frac{1 + 2m^2 - m\sqrt{1 + 4m^2}}{2(3m^2 + 1)}}$.

What about ascent intervals?

Mirrored m-Dyck paths: delete the first large peak U^mD^m → quadrant walks.

For m>1, the exponent α is irrational, and hence the GF of intervals cannot be D-finite.

[Bostan, Raschel, Salvy 14]

• Asymptotics (from random walk results) [Denisov & Wachtel 15] $\bar{g}_m(n) \sim \kappa \mu^n n^\alpha,$

where
$$\mu = \frac{m\sqrt{m^2+4}+m^2+2}{2}\cdot\left(\frac{2+\sqrt{m^2+4}}{m}\right)^m$$
 and
$$\alpha = -1-\pi/\arccos(c) \qquad \text{with} \qquad c = \sqrt{\frac{1+2m^2-m\sqrt{1+4m^2}}{2(3m^2+1)}}.$$

V. Connection with the sylvester congruence

[Hivert, Novelli, Thibon 05]

Observation: for m=1, 2, ..., 5, the sequence $\overline{g}_m(n)$ that counts intervals of mirrored m-Dyck paths appears in the OEIS.

Observation: for m=1, 2, ..., 5, the sequence $\overline{g}_m(n)$ that counts intervals of mirrored m-Dyck paths appears in the OEIS.

• m=1: number of sylvester classes of 1-multiparking functions

```
Search: seq:1,3,13,69,417,2759 id:243688
```

Displaying 1-1 of 1 result found.

Sort: relevance | references | number | modified | created | Format: long | short | data

A243688 Number of Sylvester classes of 1-multiparking functions of length n.

```
1, 3, 13, 69, 417, 2759
```

```
(list; graph; refs; listen; history; text; internal format)
```

OFFSET 1,2

COMMENTS See Novelli-Thibon (2014) for precise definition.

LINKS Table of n, a(n) for n=1..6.

J.-C. Novelli, J.-Y. Thibon, <u>Hopf Algebras of m-permutations</u>, (m+1)-ary trees, and m-parking functions,

arXiv preprint arXiv:1403.5962, 2014. See Fig. 26.

KEYWORD nonn, more

AUTHOR N. J. A. Sloane, Jun 14 2014

STATUS approved

Observation: for m=1, 2, ..., 5, the sequence $\overline{g}_m(n)$ that counts intervals of mirrored m-Dyck paths appears in the OEIS.

- m=1: number of sylvester classes of 1-multiparking functions
- m=2: number of sylvester classes of 2-multiparking functions

Search: seq:1,5,40,407,4797 id:243671

Displaying 1-1 of 1 result found.

Sort: relevance | references | number | modified | created | Format: long | short | data

A243671 Number of Sylvester classes of 2-parking functions of length n.

```
1, 5, 40, 407, 4797
```

```
(list; graph; refs; listen; history; text; internal format)

OFFSET 1,2

COMMENTS See Novelli-Thibon (2014) for precise definition.

LINKS Table of n, a(n) for n=1..5.

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions, preprint arXiv:1403.5962, 2014. See Fig. 21.

KEYWORD nonn,more

AUTHOR N. J. A. Sloane, Jun 14 2014
```

STATUS approved

Observation: for m=1, 2, ..., 5, the sequence $\overline{g}_m(n)$ that counts intervals of mirrored m-Dyck paths appears in the OEIS.

- m=1: number of sylvester classes of 1-multiparking functions
- m=2: number of sylvester classes of 2-multiparking functions and so on.

Search: seq:1,5,40,407,4797 id:243671

Displaying 1-1 of 1 result found.

Sort: relevance | references | number | modified | created Format: long | short | data

A243671 Number of Sylvester classes of 2-parking functions of length n.

N. J. A. Sloane, Jun 14 2014

1, 5, 40, 407, 4797

```
(list; graph; refs; listen; history; text; internal format)
OFFSET
              1,2
COMMENTS
              See Novelli-Thibon (2014) for precise definition.
LINKS
              Table of n, a(n) for n=1...5.
              J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions,
                preprint arXiv:1403.5962, 2014. See Fig. 21.
KEYWORD
              nonn, more
AUTHOR
```

STATUS approved

Observation: for m=1, 2, ..., 5, the sequence $\overline{g}_m(n)$ that counts intervals of mirrored m-Dyck paths appears in the OEIS.

- m=1: number of sylvester classes of 1-multiparking functions
- m=2: number of sylvester classes of 2-multiparking functions and so on.

Link with the NT-lattice

Search: seq:1,5,40,407,4797 id:243671

Displaying 1-1 of 1 result found.

Sort: relevance | references | number | modified | created | Format: long | short | data

A243671 Number of Sylvester classes of 2-parking functions of length n.

1, 5, 40, 407, 4797

```
(list; graph; refs; listen; history; text; internal format)
```

OFFSET 1,2

COMMENTS See Novelli-Thibon (2014) for precise definition.

LINKS Table of n, a(n) for n=1...5.

J.-C. Novelli, J.-Y. Thibon, <u>Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions</u>,

preprint arXiv:1403.5962, 2014. See Fig. 21.

KEYWORD nonn, more

AUTHOR N. J. A. Sloane, Jun 14 2014

STATUS approved

- ullet Defined on words on the alphabet ${\mathbb Z}$
- Generated by commutation relations:

$$ac \cdots b \equiv ca \cdots b$$
, $a \leq b < c$.

• Class representatives: words avoiding aba and acb (as subwords), called sylvester words.

- ullet Defined on words on the alphabet ${\mathbb Z}$
- Generated by commutation relations:

$$ac \cdots b \equiv ca \cdots b$$
, $a \leq b < c$.

• Class representatives: words avoiding aba and acb (as subwords), called sylvester words.

Example:

 $2 + 353 \rightarrow 2 + 533$

- ullet Defined on words on the alphabet ${\mathbb Z}$
- Generated by commutation relations:

$$ac \cdots b \equiv ca \cdots b$$
, $a \leq b < c$.

• Class representatives: words avoiding aba and acb (as subwords), called sylvester words.

Example:

$$2 + 353 \rightarrow 2 + 533$$

 $2 + 533 \rightarrow + 2533$

- ullet Defined on words on the alphabet ${\mathbb Z}$
- Generated by commutation relations:

$$ac \cdots b \equiv ca \cdots b$$
, $a \leq b < c$.

• Class representatives: words avoiding aba and acb (as subwords), called sylvester words.

Example:

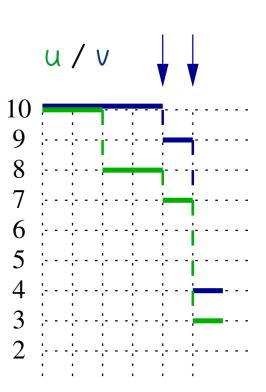
$$2 + 353 \rightarrow 2 + 533$$

 $2 + 533 \rightarrow + 2533$
 $42533 \rightarrow + 5233$, sylvester word

Def. Let $u=(u_1, ..., u_n)$ and $v=(v_1, ..., v_n)$ be two nonincreasing sequences of integers. Then $u \le v$ for the NT order if

- u lies below $v(u_i \le v_i)$
- every descent of v is a descent of u.

$$u = (10, 10, 8, 8, 7, 3)$$



Example. Fix n=6 and a sylvester word w on the alphabet $\{1, 2, ..., n\}$, containing the letter 1, say w = 322251115.

Example. Fix n=6 and a sylvester word w on the alphabet $\{1, 2, ..., n\}$, containing the letter 1, say w = 322251115.

Let $w_1 = N \ln c(w) = 553222111$ be its nonincreasing reordering.

Example. Fix n=6 and a sylvester word w on the alphabet $\{1, 2, ..., n\}$, containing the letter 1, say w = 322251115.

Let $w_1 = N \ln c(w) = 553222111$ be its nonincreasing reordering.

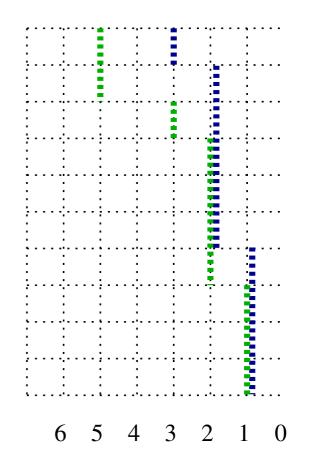
Let $w_2 = LRMin(w) = 3 2 2 2 2 2 1111$ be the largest nonincreasing word that is smaller than w, componentwise.

Example. Fix n=6 and a sylvester word w on the alphabet $\{1, 2, ..., n\}$, containing the letter 1, say w = 322251115.

Let $w_1 = N \ln c(w) = 553222111$ be its nonincreasing reordering.

Let $w_2 = LRMin(w) = 322221111$ be the largest nonincreasing word that is smaller than w, componentwise.

• Write w1 and w2 vertically as follows:

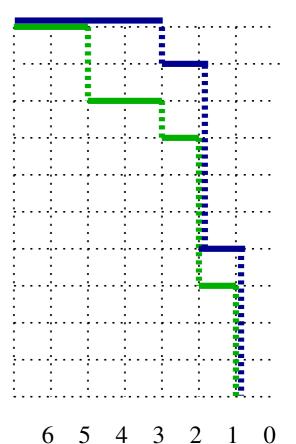


Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, ..., n}, containing the letter 1, say w = 322251115.

Let $w_1 = N \ln c(w) = 553222111$ be its nonincreasing reordering.

Let $w_2 = LRMin(w) = 322221111$ be the largest nonincreasing word that is smaller than w. componentwise.

- Write w₁ and w₂ vertically as follows:
- Complete with n=6 horizontal steps to form two ES paths.

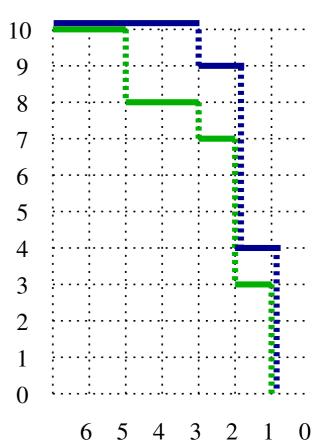


Example. Fix n=6 and a sylvester word w on the alphabet $\{1, 2, ..., n\}$, containing the letter 1, say w = 322251115.

Let $w_1 = N \ln c(w) = 553222111$ be its nonincreasing reordering.

Let $w_2 = LRMin(w) = 322221111$ be the largest nonincreasing word that is smaller than w, componentwise.

- Write w₁ and w₂ vertically as follows:
- Complete with n=6 horizontal steps to form two ES paths.
- The horizontal words u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, of length n=6, form an interval in the Nadeau-Tewari lattice.

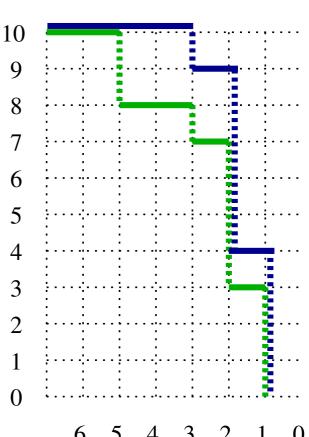


Proposition. For any n, this construction gives a bijection between:

- sylvester words w on the alphabet {1, 2, ..., n} containing the letter 1, and
- intervals [u,v] in the NT lattice, such that u and v have length n,
 positive entries and the same first letter.

Example

For n=6 and w = 3222251115, we have u= 10108873 and v= 1010101094.



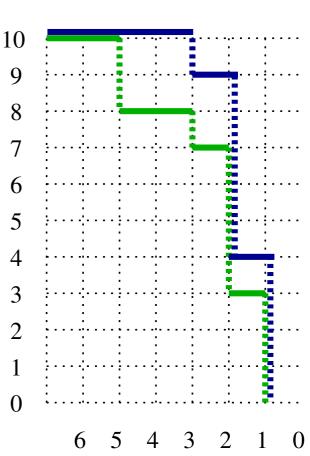
Proposition. For any n, this construction gives a bijection between:

- sylvester words w on the alphabet {1, 2, ..., n} containing the letter 1, and
- intervals [u,v] in the NT lattice, such that u and v have length n,
 positive entries and the same first letter.

Example

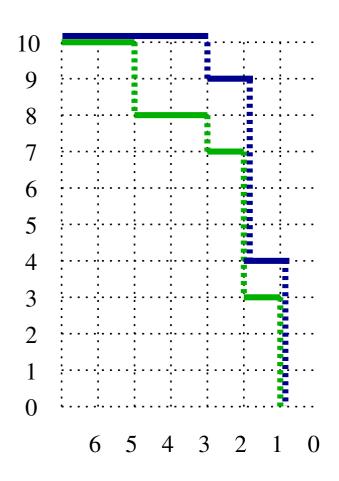
For n=6 and w = 3222251115, we have u= 10 10 8873 and v= 10 10 10 10 94.

Conversely?



Conversely?

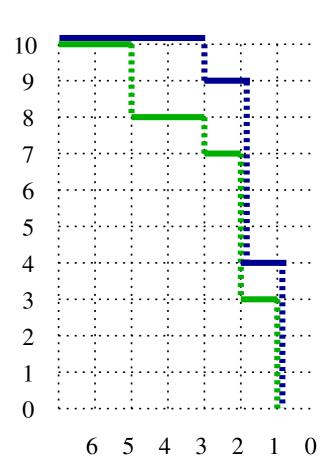
• Starting from $u = 10\ 10\ 8\ 8\ 7\ 3$ and $v = 10\ 10\ 10\ 10\ 9\ 4$, recover the vertical words $w_1 = 5\ 5\ 3\ 2\ 2\ 2\ 1111$ and $w_2 = 3\ 2\ 2\ 2\ 2\ 11111$:



Conversely?

• Starting from $u = 10\ 10\ 8\ 8\ 7\ 3$ and $v = 10\ 10\ 10\ 10\ 9\ 4$, recover the vertical words $w_1 = 5\ 5\ 3\ 2\ 2\ 2\ 1111$ and $w_2 = 3\ 2\ 2\ 2\ 2\ 11111$:

```
same length (10),
contain 1,
\mathbf{w_2} is less than \mathbf{w_1} (componentwise)
alph(\mathbf{w_2}) \subset alph(\mathbf{w_1}).
```



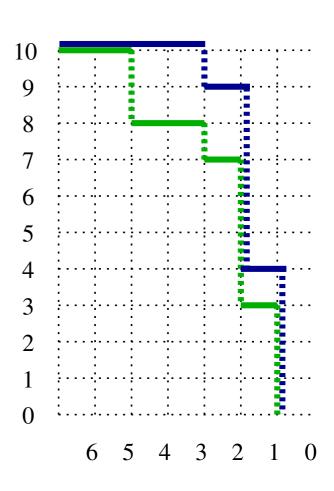
Conversely?

• Starting from $u = 10\ 10\ 8\ 8\ 7\ 3$ and $v = 10\ 10\ 10\ 10\ 9\ 4$, recover the vertical words $w_1 = 5\ 5\ 3\ 2\ 2\ 2\ 1111$ and $w_2 = 3\ 2\ 2\ 2\ 2\ 11111$:

```
same length (10), contain 1, \mathbf{w_2} is less than \mathbf{w_1} (componentwise) alph(\mathbf{w_2}) \subset alph(\mathbf{w_1}).
```

• Recover w from \mathbf{w}_1 = NInc(w) and \mathbf{w}_2 = LRMin(w)?

```
w = _ _ _ _ _ _ _ _
```



Conversely?

• Starting from $u = 10\ 10\ 8\ 8\ 7\ 3$ and $v = 10\ 10\ 10\ 9\ 4$, recover the vertical words $w_1 = 5\ 5\ 3\ 2\ 2\ 2\ 1111$ and $w_2 = 3\ 2\ 2\ 2\ 2\ 11111$: same length (10), contain 1, w_2 is less than w_1 (componentwise) alph(w_2) \subset alph(w_1).

• Recover w from w_1 = Nlnc(w) lett(w)={553222111} and w_2 = LRMin(w)?

w = _ _ _ _ _ _ _

Conversely?

• Starting from $u = 10\ 10\ 8\ 8\ 7\ 3$ and $v = 10\ 10\ 10\ 9\ 4$, recover the vertical words $w_1 = 5\ 5\ 3\ 2\ 2\ 2\ 1111$ and $w_2 = 3\ 2\ 2\ 2\ 2\ 11111$: same length (10), contain 1, w_2 is less than w_1 (componentwise) alph(w_2) \subset alph(w_1).

```
• Recover w from w_1 = Nlnc(w) lett(w)={553222111} and w_2 = LRMin(w)?
```

```
w = 32 _ _ 1 _ _
```

Conversely?

• Starting from $u = 10\ 10\ 8\ 8\ 7\ 3$ and $v = 10\ 10\ 10\ 10\ 9\ 4$, recover the vertical words $w_1 = 5\ 5\ 3\ 2\ 2\ 2\ 1111$ and $w_2 = 3\ 2\ 2\ 2\ 2\ 11111$: same length (10), contain 1, w_2 is less than w_1 (componentwise) alph(w_2) \subset alph(w_1).

```
+ Recover w from w_1 = Nlnc(w) lett(w)={553222111} and w_2 = LRMin(w)?
```

```
w = 32 _ _ 1 _ _
```

Conversely?

+ Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the vertical words $\mathbf{w}_1 = 553222111$ and $\mathbf{w}_2 = 322221111$: same length (10), contain 1. $\mathbf{w_2}$ is less than $\mathbf{w_1}$ (componentwise) $alph(w_2) \subset alph(w_1)$.

```
• Recover w from w1 = NInc(w)
                                      lett(w)={553222111}
and \mathbf{w_2} = LRMin(\mathbf{w})?
w = 32 _ _ 1 _ _
       non-dec.
```

Conversely?

```
+ Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the
vertical words \mathbf{w}_1 = 553222111 and \mathbf{w}_2 = 322221111:
       same length (10),
       contain 1.
       \mathbf{w_2} is less than \mathbf{w_1} (componentwise)
       alph(w_2) \subset alph(w_1).
• Recover w from w1 = NInc(w)
                                            lett(w)=\{553222111\}
and \mathbf{w_2} = LRMin(\mathbf{w})?
```

```
w = 322251
    non-dec.
```

Conversely?

+ Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the vertical words $\mathbf{w}_1 = 553222111$ and $\mathbf{w}_2 = 3222211111$: same length (10), contain 1. $\mathbf{w_2}$ is less than $\mathbf{w_1}$ (componentwise) $alph(w_2) \subset alph(w_1)$. Recover w from w₁ = Nlnc(w) $lett(w) = \{553222111\}$

```
and \mathbf{w_2} = LRMin(\mathbf{w})?
w = 322251
        non-dec.
```

Conversely?

Starting from $u = 10\ 10\ 8\ 8\ 7\ 3$ and $v = 10\ 10\ 10\ 10\ 9\ 4$, recover the vertical words $w_1 = 5\ 5\ 3\ 2\ 2\ 2\ 2\ 1111$ and $w_2 = 3\ 2\ 2\ 2\ 2\ 11111$: same length (10), contain 1, w_2 is less than w_1 (componentwise) alph(w_2) \subset alph(w_1).

```
• Recover w from w_1 = Nlnc(w) lett(w)={5 5 3 2 2 2 2 111} and w_2 = LRMin(w)?
```

w = **32**2225**1**115 non-dec.

Proposition. For any n, this construction gives a bijection between:

- sylvester words w on the alphabet {1, 2, ..., n} containing the letter 1, and
- intervals [u,v] in the NT lattice, such that u and v have length n,
 positive entries and the same first letter.

Proposition. For any n, this construction gives a bijection between:

- sylvester words w on the alphabet {1, 2, ..., n} containing the letter 1, and
- intervals [u,v] in the NT lattice, such that u and v have length n,
 positive entries and the same first letter.

Specializations: bijections between

- positive sylvester words w of length mn such that $N(m) \le n^m (n-1)^m \dots 2^m 1^m$ and ascent intervals of m-Dyck paths of length mn
- positive sylvester words w of length n such that Nlnc(w) ≤ ((n-1)m+1) ... (2m+1) (m+1) 1 and ascent intervals of mirrored m-Dyck paths of length mn.

VI. Final remarks

• Combinatorial proof for the number/GF of ascent intervals? (m=1)

$$(n+4)(2n+7)g(n+2) = 2(11n^2 + 44n + 42)g(n+1) + n(2n+1)g(n)$$

• Combinatorial proof for the number/GF of ascent intervals? (m=1)

$$(n+4)(2n+7)g(n+2) = 2(11n^2 + 44n + 42)g(n+1) + n(2n+1)g(n)$$

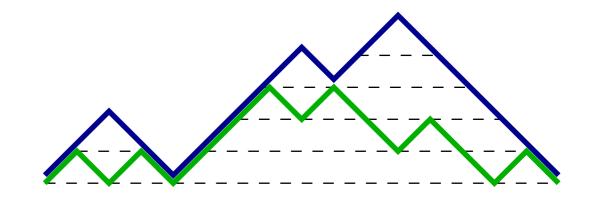
• A symmetric joint distribution on ascent intervals [P,Q] (m=1):

a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=1, r(P,Q)=2

(Non-recursive) bijection?



• Combinatorial proof for the number/GF of ascent intervals? (m=1)

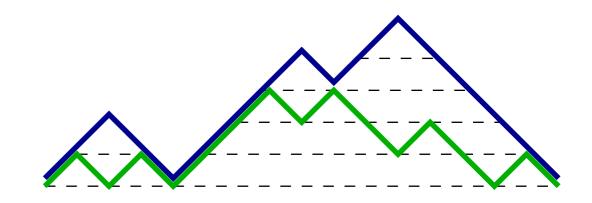
$$(n+4)(2n+7)g(n+2) = 2(11n^2 + 44n + 42)g(n+1) + n(2n+1)g(n)$$

• A symmetric joint distribution on ascent intervals [P,Q] (m=1):

a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=1, r(P,Q)=2 (Non-recursive) bijection?



• Study mirrored m-Dyck paths in other Dyck lattices: intervals?

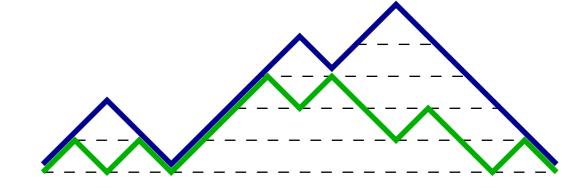
• Combinatorial proof for the number/GF of ascent intervals? (m=1)

$$(n+4)(2n+7)g(n+2) = 2(11n^2 + 44n + 42)g(n+1) + n(2n+1)g(n)$$

• A symmetric joint distribution on ascent intervals [P,Q] (m=1):

r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=1, r(P,Q)=2 (Non-recursive) bijection?



- Study mirrored m-Dyck paths in other Dyck lattices: intervals?
- Poset properties? (shellability, geometric realizations...)

• Combinatorial proof for the number/GF of ascent intervals? (m=1)

$$(n+4)(2n+7)g(n+2) = 2(11n^2 + 44n + 42)g(n+1) + n(2n+1)g(n)$$

• A symmetric joint distribution on ascent intervals [P,Q] (m=1):

a(P) = length of the first ascent of P

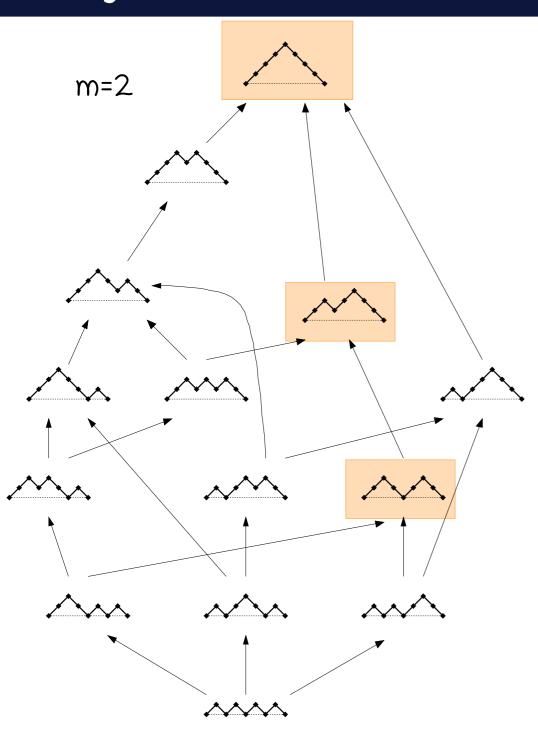
r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=1, r(P,Q)=2

(Non-recursive) bijection?

- Study mirrored m-Dyck paths in other Dyck lattices: intervals?
- Poset properties? (shellability, geometric realizations...)

m-Dyck paths and mirrored m-Dyck paths



m-Dyck paths and mirrored m-Dyck paths

