D-finite power series and diagonals

In enumerative combinatorics

:
9 ® '
3 @
7 ®
6 ®
5 H®
4 -
3 O
2
JEEEPENER,

1 234567289

Mireille Bousquet-Mélou

CNRS, LaBRI, Université de Bordeaux, France




In this talk

. Enumerative combinatorics and classes of generating functions

Main question:
How does one prove that a generating function

is D-finite/algebraic/rational?

l. Proving D-finiteness, algebraicity, etc. : direct solutions

lIl. Proving D-finiteness, algebraicity, etc. : undirect solutions

V. Disproving D-finiteness, algebraicity, etc.



. Enumerative

combinatorics and

generating functions




Enumerative combinatorics

« Let A be a set of discrete objects, equipped with an integer size:
.1 A >N
o-|ol

and assume that the number of objects of size n is finite for any n.
Denote this number by a(n).
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Enumerative combinatorics

« Let A be a set of discrete objects, equipped with an integer size:
.1 A >N
o-|ol

and assume that the number of objects of size n is finite for any n.
Denote this number by a(n).

Def. The (GF) of the objects of A,
counted by their size, is

A = Z a(n)t™ = Z tlo

n>0 ocA
It is a formal power series

Multivariate enumeration: record additional (integer) statistics with

additional variables x,, .., x_.



« A permutation of {), 2, .., n} is a permutation of size n.

Then a(n)=n! and the associated generating function is:

A = Zn!tTL

n>0
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Then a(n)=n! and the associated generating function is:
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« Walks of length (size) n on the square lattice, starting at (0,0):




« A permutation of {), 2, .., n} is a permutation of size n.

Then a(n)=n! and the associated generating function is:

A = Zn!t“

n>0
« Walks of length (size) n on the square lattice, starting at (0,0):
|
A= 4™ =
24 =g

n>0

Refinement: record the coordinates (i, j) of the endpoint,

A — Z Xiyjtlength |
walk |
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« A permutation of {), 2, .., n} is a permutation of size n.

Then a(n)=n! and the associated generating function is:
Az}ZnW‘
n>0
« Walks of length (size) n on the square lattice, starting at (0,0):
|
A = 47" =
2 =T

n>0

Refinement: record the coordinates (i, j) of the endpoint,

A — Z Xiyjtlength Dsf/\bl,fe |
walk :
] 1 N ”T _____ B
=) (x+-+y+-] t .
X y '
n>0 :
1 with X=1/x and G=l/y. £(i,j)

Tl —tx+x+y+7)



A hierarchy of formal power series

» Algebraic
1—A(t) +tA(t)2 =0
« D-finite
t(1—16t)A" (1) + (1 —=32t)A’(t) —4A(t) =0
» D-algebraic

(2t +5A(t) — 3tA'(1))A”(t) =48t

Several variables: one DE per variable
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Inside the D-finite class (in one variable)

» G-functions: D-finite GFs with a positive radius of convergence

* Diagonals (of rational series): for R a rational series in d variables,

R = Z a(myy...,ng)x]" - xg* € Qx1,...,%4q)

ni,...,q>0

the diagonal of R is ﬂ)-ﬂnﬂe \
AR := Z aln,n,...,n)t". / G-functions \

n>0 y X
Diagonals
Recall: our GFs have Algebraic
integer coefficients. | |

R _
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Main question

How to prove that a GF is D-finite/algebraic/rational?

't takes some combinatorial understanding of the objects, e.g.:
« a recursive description of the objects,

 that translates into a recurrence relation for the numbers a(n).

Two types of solutions:

« direct: the recurrence relation translates into a
differential/algebraic/rational equation for the GF

« undirect: the recurrence relation translates into another type of
functional equation for the GF

When a GF is a G-function, is it a diagonal?




1. Direct solutions
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A basic rational example

Number of tilings of a 2 by n board with dominoes (here, N=12):

Recursive description:

N B =




A basic rational example

Number of tilings of a 2 by n board with dominoes (here, N=12):

Recursive description:

N B =

Hence for n>0,

a(n)=a(n-H+a(n-2)
with a(-1)=0 and a(0)=).



A basic rational example

Number of tilings of a 2 by n board with dominoes (here, N=12):

Recursive description:

N B =

Hence for n>0,

a(n)=a(n-H+a(n-2)
with a(-1)=0 and a(0)=).

Equivalently,

1
1 —t—1t2

A=) amth =1+tA+ t?A =
n>0



A basic rational example

Number of tilings of a 2 by n board with dominoes (here, N=12):

Recursive description:

N B =

Hence for n>0,

a(n)=a(n-1)+a(n-2) Op;
with a(-)=0 and a(0)=). qline

Equivalently,

A=) amth =1+tA+ t?A =
n>0
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A basic algebraic example

Binary trees with n internal nodes (here n=6)

Recursive description:

Hence for n>0,

a(n)=a(0) ain-D+ a(l) ain-2)+ ... + a(n-1)a(0)
with a(0)=I.

Equivalently,

n—I
A= Z an)t™ =1+ Zt” (Z a(k)a(nk])) =1+ tA?
k=0

n>0 n>1
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A basic D-finite example

Involutions on {), 2, ..., N} (here n=") 1 .

Recursive description: for n>0, S 03 6
a(n) = a(n-1)+ (n-1) a(n-2) 7Q ‘C} 4

with a(-1)=0 and a(0)=). /

N is a fixed point

N is sent to somei in {], .., N-1}
Equivalently,

A=) amt"=1+tA+t?A.
n>0

Rem. This series is NOT a G-function, because a(n) grows too

1 1
a(n) ~ ﬁexp (—% +v/n — Zl) n"/?
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1
t tlength
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hence D-finite.



Symmetric functions and D-finiteness

Closure property: the (partial) diagonals of a multivariate D-finite
series are always D-finite.

Application: some classes of objects can be counted by extracting
coefficients in series A(x), Xoy o) that are D-finite in the power sums

PkZZX]f

Examples:

- d-reqular graphs on vertices |, 2, .., n, for d fixed

- square matrices of size n with non-negative coefficients
summing to d on every row/column

- permutations of {], 2, .., N} with no ascending sub-sequence
of length d

[Gessel 90, Goulden & Jackson ~90 ; Chyzak, Mishna & Salvy 05]



Symmetric functions and D-finiteness: example

Let a(n) be the number of 3-reqular graphs on vertices ), 2, .., n
Then

a(n) =bix3-xi] ] (T 4+xix) = kx5 ---x3]G

1<i<j

1 +xix;) = exp Z(_])k—H pi — P2k
e 2k

k> 1

where

I/\:

is D-finite is the pk’s, with

P =) X{
A=) ant

n>0
follows from closure properties.

The D-finiteness of




[Interlude]

Some rational/algebraic/
D-finite series

are more combinatorial
than others




Reverse engineering

So far: a class of objects gives a generating function.

Here: some formal power series have a natural combinatorial
interpretation as generating functions of certain objects.

Two “historical” families:

N-rational series

N-algebraic series

-More recently:

. “natural” combinatorial families of D-finite series



N-algebraic series

Example:
Ay = 142t + 4tA;7 + (12t+t2)A; + t?°A A3
A, = 14tA; 4+ 8tA; + 3tA3

Definition: a series A is N-algebraic if it is the first component of a
k-tuple (A, .., A ) satisfying a polynomial system of the form
A1 P1(t>A1>-°'>Ak)

Ak Pk(taAh“')Ak)
where

. Pj(t,x], .y X, ) is a polynomial with coefficients in N, for each j

« the map ®" is a contraction for some m.



N-rational series

Example:
A = 142t + 4tA; + (12t+tHA,
A, = 14tA7 + 8t?A,

Definition: a series A is N-rational if it is the first component A of a
k-tuple (A, .., A ) satisfying a polynomial system of the form
A1 P1(t>A1>°°'>Ak)

Ak Pk(taAh“')Ak)
where

. P (tx, ., %) is a polynomial with coefficients in N, for each j,
of degree at most 1in each X;

+ the map ®™ is a contraction for some m.
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Let A] be an N-rational series. Then A, - a(0) counts walks on a graph.

Each series A; will count walks from vertex 0 to vertex i on a directed
finite graph.
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Combinatorial interpretations: N-rational series

Let A] be an N-rational series. Then A, - a(0) counts walks on a graph.

Each series A; will count walks from vertex 0 to vertex i on a directed
finite graph.

E le:
xampie A1 = 2tA; + t3A;

Ay = -
-
-

)

Walks on finite graphs have a linear structure.

In fact, all objects known to have a rational GF have an N-rational G=.
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Combinatorial interpretations: N-algebraic series

Let A] be an N-algebraic series. Then A) - a,(0) counts by the number

of nodes certain coloured trees.
Example: Ay =2t +1t2A A, + tA3

Ay Aj

Ay Ay Ay

O or O or or

Trees of all kinds have a branching structure.

However, many objects have an algebraic, but NOT N-algebraic, G=,
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Thm. Let A be a rational series with coefficients in N. It is N-rational
if and only if all its poles of minimal modulus are of the form pe'®
where e is a root of unity. [Berstel N, Soittola 6]
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Some criteria

Thm. Let A be a rational series with coefficients in N. It is N-rational
if and only if all its poles of minimal modulus are of the form pe*®
where e is a root of unity. [Berstel N, Soittola 6]

No counterpart for N-algebraic series...

A necessary asymptotic condition for N-algebraicity: if
a(n) ~ kW™ nY !

then u is algebraic and

] m

NB. The algebraicity itself only implies that v € Q \ {0, —1,—-2,.. J.

[Banderier-Drmota 15]



N-algebraic series vs. N-rational series

Remark. N-rationality and N-algebraicity can be defined (via positive
systems) for multivariate series.

Example:
A7 = 1+2x + 4yA; + (12x+y?Ax + y?A A3
Ar = 14yA, + 8xA; + 3XA?
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N-algebraic series vs. N-rational series

Remark. N-rationality and N-algebraicity can be defined (via positive
systems) for multivariate series.

Known: algebraic series in one variable are the diagonals of bivariate
rational series [Furstenberg 6711,

Questions:
- If R(x,y) is N-rational, is its diagonal N-algebraic’?
. If R(x), oy X, ) 1S N-rational with an algebraic diagonal, is this
diagonal N-algebraic?

- If Ais N-algebraic in one variable, is it the diagonal of an
N-rational series?

Conjecture [Garrabrant-Pak 14-(a)] Not true for A=1+tA%,



Combinatorial D-finite series?

Several attempts:

- [Kotek-Makowsky 12 ]: an interpretation in terms of square
lattice paths for some D-finite series

[Garrabrant-Pak 14-(a)]1: a combinatorial interpretation for all
diagonals of N-rational series R(x, .., X, ) in terms of tilings

of a strip with tiles of irrational sizes

- [Koechlin et al. 20+1: a combinatorial interpretation of the
same class in terms of constrained walks on a graph

« [Koechlin et al. 20+1: a related combinatorial interpretation for
diagonals of N-algebraic series



l1l. Undirect solutions

A recursive description of the objects yields a recurrence relation
for a(n), and a functional equation for the series A, that is not of
rational/polynomial/differential type.



Additional variables

Instead of A=A(t), one considers a multivariate series A(tix,, ..., X ),

and proves that it satisfies some functional equation.

Examples:

e Integer partitions: a g-equation (or t-equation...)

A(t;x) =tx + A(t;xt)

1 —tx

e Set partitions (one variable only!): a difference equation

e Woalks on a half-line: a discrete differential equation

A(t;x) — A(t;0)
X

Altix) =1+ txA(t)x) +t

The variable x is “catalytic”.



A basic example: walks on a half-line

Let a(nik) be the number of n-step walks with steps +1 and -, that
start at O, remain non-negative, and end at height k. Then

ank) =an—Tk—1)+an—T;k+ 1)
with the boundary condition a(n; k)=0 for k<O. This translates into

Alt:x) —A(t;
Alt;x) =T+ txA(t;x) +t (’X)X (’O),

for the bi-variate generating function

A(t;x) = Z a(m; k)t™xk.

n,k>0

~
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A basic example: walks on a half-line

Let a(nik) be the number of n-step walks with steps +1 and -, that
start at O, remain non-negative, and end at height k. Then

ank) =an—Tk—1)+an—T;k+ 1)
with the boundary condition a(n; k)=0 for k<O. This translates into

Alt:x) —A(t;
Alt;x) =T+ txA(t;x) +t (’X)X (’O),

for the bi-variate generating function

A(t;x) = Z a(m; k)t™xk.

n,k>0

In short,

Alx) =1+ txA(x) -t ;A(O). /\/\/




A basic example: walks on a half-line

Remark. In the equation

Alt:x) —A(t;
Alt;x) =T+ txA(t;x) +t (’X)X (’O),

we can replace the series A(1;0) by a series B(t):

At x) =1+ txA(tx) + tA(t;X)X_ Blt)

Taking the limit x — 0 shows that B(t) must be A(1i0) as soon as
A(tix) belongs to CLLt,x11.



A basic example: walks on a half-line

Remark. In the equation

Alt:x) — At
A(t;x) =1+ txA(t;x) +t (’X)X (’O),

we can replace the series A(1;0) by a series B(t):

A(tx) = T+ txA(t;x) + tA(t;X)X— B(t).

Taking the limit x — 0 shows that B(t) must be A(1i0) as soon as
A(tix) belongs to CLLt,x11.

A single equation may define several formal power series.



More examples in one catalytic variable

« Walks with steps +1 and -2 on a half-line:

A(x)—A(0) —xA’(0)

Alx) =T+ txA(x)+t >
X

« Planar maps [Tutte 681: non-linear, one catalytic variable

xA(x) —A(1)
X — 1

A(x) =1+ tx?A(x)?% + tx




One catalytic variable: algebraicity

Theorem [MBM-Jehanne 06]
Let P(A(Xx), B, B, ..., B,,t,x) be a polynomial equation in one catalytic
variable x. Under natural (combinatorial) assumptions, the series

A(x)=A(tix) and the B=B(1)'s are algebraic.

Example: planar maps Algebraic series

A(x) —A(T)
X — 1

Alx) =1+ tx2A(x)? + tx >
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One catalytic variable: algebraicity

Theorem [MBM-Jehanne 06]
Let P(A(Xx), B, B, ..., B,,t,x) be a polynomial equation in one catalytic
variable x. Under natural (combinatorial) assumptions, the series

A(x)=A(tix) and the B=B(1)'s are algebraic.
[Popescu 85, Swan 98]

Extension [Notarantonio-Yurkevich 22(a)]
The same holds for systems of such

equations, defining series A|(X), ..., An(X) E
e
and B, B, .., B, fféc?‘/'l/e |

Example: planar maps Algebraic series

A(x) —A(T)
X — 1

Alx) =1+ tx2A(x)? + tx >

= 7A(M2 2+ (1= 18)A(1)+16t—1=0




Popescu's theorem (in d+1 variables)

Here d=2, hence 3 variables t, x, u.

Thm. If a system of equations of the form
Pol (A1,...,An,B1,..., B, Cq1,...,Cy,t,x,y) =0
has a such that the following

Ai S C[[t) Xy UH) Bi < C[[t) X]]) Ci < C[[t]])

then each of these series is

hold

Example:
At x,y), A(tx,0), A(t;0,0) A(LA07Y)




Popescu's theorem (in d+1 variables)

Here d=2, hence 3 variables t, x, u.

Thm. If a system of equations of the form
Pol (A1,...,An,B1,..., B, Cq1,...,Cy,t,x,y) =0
has a such that the following

Ai S C[[t) Xy UH) Bi < C[[t) X]]) Ci < C[[t]])

then each of these series is

hold

Example:
At x,y), A(tx,0), A(t;0,0) A(LA07Y)

Alas... such equations do not occur much in combinatorics!
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Q(X>U) = 1 +t(X+U)Q(X)U)
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Two discrete derivatives: some examples

« Square lattice walks confined to a quadrant: linear equation

_|_tQ(X>y) ; Q(X>O) —I—tQ(X)y) ; Q(O>y)

Q(X>U) = 1 +t(X+U)Q(X)U)

« g-Coloured planar triangulations [ Tutte, 1973-19841: non-linear
Tooy) =x(q =1) +txyT(1,y)T(x,y)

+ tx

T _
(o) = T30 o
y X — 1

« Three-stack sortable permutations [Defant, Elvey Price, Guttmann
21]

P(x,y) = t(x+ 1)*(y + 1)* + ty(1 +x)P(x,y)

+t(1 —|—X) P(X>U)_P(O>U)

H&y%—ﬂ&0)01+yy+y

Y X

T(X>y) o T“)U) .

)



Arbitrarily many discrete derivatives

 Permutations with no ascending sub-sequence of length (d+2)

o
[Guibert 9571 [mbm ] ' [ ®
| RN

1234567389



A natural question

Solutions of discrete differential equations (with derivatives with
respect to one variable only) are algebraic.

A(t;x) —A(t;0)
X

A(t;x) =T+ txA(t;x) +t

s it always true for solutions of discrete PDEs (with derivatives with
respect to several variables)?

_|_tQ(X>U) o Q(X>O) _|_tQ(X>y) T Q(Ovy)

Qlx,y) =1+ t(x+y)Q(x,y) ¥ ”
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A natural question

Solutions of discrete differential equations (with derivatives with
respect to one variable only) are algebraic.

A(t;x) —A(t;0)
X

A(t;x) =T+ txA(t;x) +t

s it always true for solutions of discrete PDEs (with derivatives with
respect to several variables)?

_|_tQ(X>U) o Q(X>O) _|_tQ(X>y) T Q(Ovy)

Qlx,y) =1+ t(x+y)Q(x,y) ¥ ”

NoO

Well, sometimes



The story of walks confined to the quadrant

About twenty years ago...

« Systematic study of quadrant walks

Set of steps ("model”) in %

« Some models are trivial, or equivalent to a half plane problem

= 719 readlly interesting and distinct small step models [mbm-Mishnal0]
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The story of walks confined to the quadrant

About twenty years ago...

« Systematic study of quadrant walks

Set of steps ("model”) in %

« Some models are trivial, or equivalent to a half plane problem

= 719 readlly interesting and distinct small step models [mbm-Mishnal0]

« Systematic approach via a functional equation, e.g.

Qx,y) =T+ tx+y)Q(x,y)
Equivalently,

Y

QY —Qx0)

JT

tQ(X>H) o Q(())y)

X

(1T —tlx +x+y+y))xyQ(x,y) =xy — txQ(x,0) — tyQ(0,y)



Four examples

% Algebraic [Kreweras 65, Gessel 86]

(T—t(x+y +xy))xyQ(x,y) =xy — tyQ(0,y) — txQ(x, 0)

K D-finite transcendental [Gessel 90]

(1T—tly + % +x9))xyQ(x,y) = xy — tyQ(0,y) — tx*Q(x, 0)

“% D-algebraic, but not D-finite  [Bernardi, mbm, Raschel 1"/(a)]

(1 —t(x+X +y+x7))xyQ(x,y) = xy — tyQ(0,y) — tx*Q(x,0)

Lﬁ Not D-algebraic [Dreyfus, Hardouin, Roques, Singer 171

(T—thxy +x+y +y)hxyQ(x,y) =xy —tyQ(0,y) — tx(1 +x)Q(x, O;



Twenty years later: classification of quadrant walks

quadrant models: 19

/\

G ﬂni’(e 23 G infinite: 56
|
D- f‘mte not D-finite
9 47
algebraic DF transc. D-alg. not D-alg.

Bernardi, Bostan, mbm, Budd, Chyzak, Dreyfus, Elvey Price, Gessel,
Hardouin, Kauers, Koutschan, Kurkova, Melczer, Mishna, Pech,
Raschel, Rechnitzer, Roques, Salvy, Singer, van Hoeij, Zeilberger...
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Walks on the square lattice confined to the first quadrant:
(T—tlx +x+y+y)xyQx,y) =xy —txQ(x,0) —tyQ(0,y).

By playing with the symmetries x = 1/x and y = 1/y, one obtains

JT

XYy — Xy + Xy — xy

XUQ(X>U) _in(;C)y) +729Q(72>g) _XQQ(X>Q) — 1 —t(X—|—7_(—|—y

so that

_ 1.>0,.>0 Xy — Xy + Xy — Xy
XUQ(X>U)—[X Yy ]1—t(x+i+y+g)°

+Y)




Linear discrete PDEs and diagonals

Walks on the square lattice confined to the first quadrant:
(T—tlx +x+y+y)xyQx,y) =xy —txQ(x,0) —tyQ(0,y).

By playing with the symmetries x = 1/x and y = 1/y, one obtains

JT

XYy — Xy + Xy — xy

xyQ(x,y) —xyQ(x,y) + xyQ(x,y) —xyQ(x,y) =

1l —tx+Xx+ y
so that S
Qb Y) = 0yl TR
Equivalently,
Q(u,v) = Kxy°] | -7+ X7y %

(1—ux)(1T—vy) 1 —t(x+x+y+1y)’

and Q(u,v) can also be written as a diagonal.

+Y)




Twenty years later: classification of quadrant walks

quadrant models: 19

/\

G ﬂni’(e 23 G infinite: 56
|
D- f‘mte not D-finite
9 47
algebraic DF transc. D-alg. not D-alg.
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In fact, all linear equaﬂons* in two or more catalytic variables whose
solution has been proved D-finite (franscendental) have been solved
in terms of diagonals of rational functions.




Linear discrete PDEs and diagonals

In fact, all linear equaﬂons* in two or more catalytic variables whose
solution has been proved D-finite (franscendental) have been solved
in terms of diagonals of rational functions.

o 2D walks confined to the non-negative quadrant, with steps in
£0,0), (-1,0), (0,-1), (-2,)}: [Bostan, mbm, Melczer 21]

0(x.y) — [>Oy>o](x2+1)(x+y)(y x) (x*y —2x—y) (x> —x —2y)

x’y3 (1 —t(x +x + %2y + 1))

3D walks confined to the non-negative orthant, with steps in {(-1,-1,-
D, ¢-1,-1,D, (-1),0),(),0,0)1: [Bostan, mbm, Kauers, Melczer

) a1~ - _— —
]6O(xy 2) = [x20y>0,>0 (X — XY — XYz — XyZ)(y — Yz — §2)(z — 2)

t x2y222 (1 — t(xyz + Xyz + Xy + X))




Linear discrete PDEs and diagonals

In fact, all linear equa’(ions* in two or more catalytic variables whose
solution has been proved D-finite (transcendental) have been solved
in terms of diagonals of rational functions.

* For m=2£+), the GF of involutions with no ascending sub-sequence
of length m+1is: . _
det(xj —X;)1<i,j<e

¢
}1—u1+m4~~+mp+ﬁ+~~+iw

I (1) = [x1%5 -+ Xy

« The GF of permutations with no ascending sub-sequence of

length m+1is:
ehamm det(z

[XO XO ] Jl ))1<1,)<m Z H
1 Mtz + - 1—x
1=0 j=1 )
with Zi = X3 —Xj—1- [mbm N




Linear discrete PDEs and diagonals

In fact, all linear equa’(ions* in two or more catalytic variables whose
solution has been proved D-finite (transcendental) have been solved
in terms of diagonals of rational functions.

This must be taken with a grain of salt!

« Quadrant walks with steps in {(-1,-1), (-1,)), (-1,0), (-1,0), (1,0), O,1)} are
D-finite transcendental, but this has only been proved by a guess &
check computer approach [Bostan, mbm, Kauers, Melczer 16].

(1T —t(T+y) (x+xy+x))xyQ(x,y)
=xy —tQ(x,0) —t(1 +y)*Q(0,y) +tQ(0,0)



Linear discrete PDEs and diagonals

In fact, all linear equa’(ions* in two or more catalytic variables whose
solution has been proved D-finite (transcendental) have been solved
in terms of diagonals of rational functions.

This must be taken with a grain of salt!

« Quadrant walks with steps in {(-1,-1), (-1,)), (-1,0), (-1,0), (1,0), O,1)} are
D-finite transcendental, but this has only been proved by a guess &
check computer approach [Bostan, mbm, Kauers, Melczer 16].

(1T —t(T+y) (x+xy+x))xyQ(x,y)
=xy —tQ(x,0) —t(1 +y)*Q(0,y) +tQ(0,0)

« Some quadrant walks are conjectured D-finite, with no proof at all.
E.g. with steps in {(1,0), (O,), (-2,-1), (-1,-2)} [Bostan, mbm, Melczer 21]



IV. Disproving
D-finiteness,

algebraicity, etc.

Not really a combinatorial question!



Some tools

Asymptotics. Assume that the (integer) sequence a(n) satisfies
an) ~ku™nY, n — oo.

If the associated series A(1) is /algebraic/D-finite then

e 11 is algebraic

« y belongs to IN, Q\{-], -2, ..}, Q.

G-functions
[Katz 70, Chudnovsky” 85, André 84.. Bostan, Raschel, Salvy 14-]
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Singularities. A D-finite series A(1) of positive radius of convergence
has finitely many singularities.



Some tools

Asymptotics. Assume that the (integer) sequence a(n) satisfies
an) ~ku™nY, n — oo.

If the associated series A(1) is /algebraic/D-finite then

e 11 is algebraic

« y belongs to IN, Q\{-], -2, ..}, Q.

G-functions
[Katz 70, Chudnovsky” 85, André 84.. Bostan, Raschel, Salvy 14-]

Singularities. A D-finite series A(t) of positive radius of convergence
has finitely many singularities.

Functional equations. Start from a difference/differential/etc.
equation --- Galois theory

Quadrant walks [Dreyfus, Hardouin, Roques, Singer 17]



Final comments

e [t sometimes takes along time to find a “direct” solution once an
“undirect” one has been found.

Planar maps: algebraicity proved in the 60’s using a catalytic variable
[Tutte]; first direct proof in 81 [Cori-Vauquelin], complete
understanding in the 90's [Schaeffer ]

« Many algebraicity/D-finiteness results still wait for a direct proof

e
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Final comments

e [t sometimes takes along time to find a “direct” solution once an
“undirect” one has been found.

Planar maps: algebraicity proved in the 60’s using a catalytic variable
[Tutte]; first direct proof in 81 [Cori-Vauquelin], complete
understanding in the 90's [Schaeffer ]

« Many algebraicity/D-finiteness results still wait for a direct proof

e

o Interesting questions on N-rational and N-algebraic series

« Combinatorialists need specialists of functional equations @



