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In this talk

I. Enumerative combinatorics and classes of generating functions

Main question:
How does one prove that a generating function

is D-finite/algebraic/rational?

II.  Proving D-finiteness, algebraicity, etc. : direct solutions
[interlude] “Positive” functional equations

III. Proving D-finiteness, algebraicity, etc. : undirect solutions 
 

IV. Disproving D-finiteness, algebraicity, etc. 2 / 45



I. Enumerative 
combinatorics and 

generating functions



Enumerative combinatorics
● Let 𝒜 be a set of discrete objects, equipped with an integer size:

| . | : 𝒜  → ℕ
          o → | o |

and assume that the number of objects of size n is finite for any n. 
Denote this number by a(n).
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Enumerative combinatorics
● Let 𝒜 be a set of discrete objects, equipped with an integer size:

| . | : 𝒜  → ℕ
          o → | o |

and assume that the number of objects of size n is finite for any n. 
Denote this number by a(n).

Multivariate enumeration: record additional (integer) statistics with 
additional variables x1, …, xd.

Def. The ordinary generating function (GF) of the objects of𝒜, 
counted by their size, is

It is a formal power series with integer coefficients. 
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Examples
● A permutation of {1, 2, …, n} is a permutation of size n.
Then a(n)=n! and the associated generating function is:
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Examples
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Examples
● A permutation of {1, 2, …, n} is a permutation of size n.
Then a(n)=n! and the associated generating function is:

● Walks of length (size) n on the square lattice, starting at (0,0):

Refinement: record the coordinates (i,j) of the endpoint

                                                      with x=1/x and y=1/y. 5 / 45
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Examples
● A permutation of {1, 2, …, n} is a permutation of size n.
Then a(n)=n! and the associated generating function is:

D-finite

● Walks of length (size) n on the square lattice, starting at (0,0):

Refinement: record the coordinates (i,j) of the endpoint

                                                      with x=1/x and y=1/y. 5 / 45
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Inside the D-finite class (in one variable)

• G-functions: D-finite GFs with a positive radius of convergence

• Diagonals (of rational series): for R a rational series in d variables,

the diagonal of R is 

Algebraic

Diagonals

G-functions

D-finite

Recall: our GFs have 
integer coefficients.
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Main question
How to prove that a GF is D-finite/algebraic/rational?
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Two types of solutions:
● direct: the recurrence relation translates into a 
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Main question

When a GF is a G-function, is it a diagonal?

Two types of solutions:
● direct: the recurrence relation translates into a 

differential/algebraic/rational equation for the GF
● undirect: the recurrence relation translates into another type of 

functional equation for the GF

How to prove that a GF is D-finite/algebraic/rational?

It takes some combinatorial understanding of the objects, e.g.:
● a recursive description of the objects, 
● that translates into a recurrence relation for the numbers a(n).
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II. Direct solutions



A basic rational example
Number of tilings of a 2 by n board with dominoes (here, n=12):
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A basic rational example
Number of tilings of a 2 by n board with dominoes (here, n=12):

n-1 n-2

Objects with a linear structure

Recursive description: 

Hence for n>0,
a(n)=a(n-1)+a(n-2)

with a(-1)=0 and a(0)=1.

Equivalently,
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A basic algebraic example
Binary trees with n internal nodes (here n=6)
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A basic algebraic example
Binary trees with n internal nodes (here n=6)

Objects with a 
branching structure 

k n-k-1

Recursive description: 

Hence for n>0,
a(n)= a(0) a(n-1)+ a(1) a(n-2)+ … + a(n-1)a(0)

with a(0)=1.

Equivalently,
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A basic D-finite example
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A basic D-finite example
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n is a fixed point
n is sent to some i  in {1, …, n-1}

Recursive description: for n>0,
a(n) = a(n-1)+ (n-1) a(n-2)

with a(-1)=0 and a(0)=1.
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n is a fixed point
n is sent to some i  in {1, …, n-1}

Equivalently,
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A basic D-finite example
Involutions on {1, 2, … , n} (here n=7)

n is a fixed point
n is sent to some i  in {1, …, n-1}

Rem. This series is NOT a G-function, because a(n) grows too 

Equivalently,

Recursive description: for n>0,
a(n) = a(n-1)+ (n-1) a(n-2)

with a(-1)=0 and a(0)=1.
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Another basic D-finite example
All walks on the square lattice, counted by length (var. t) and final 
coordinates (vars. x,y):
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Here A is the diagonal of a rational series, hence a G-function, 
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Another basic D-finite example
All walks on the square lattice, counted by length (var. t) and final 
coordinates (vars. x,y):

Closed walks (i.e., ending at (i,j)=(0,0)):

Here A is the diagonal of a rational series, hence a G-function, 
hence D-finite.

Intuition?
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Symmetric functions and D-finiteness
Closure property: the (partial) diagonals of a multivariate D-finite 
series are always D-finite.
Application: some classes of objects can be counted by extracting 
coefficients in series A(x1, x2, …) that are D-finite in the power sums

 Examples:
• d-regular graphs on vertices 1, 2, … , n, for d fixed
• square matrices of size n with non-negative coefficients 

summing to d on every row/column
• permutations of {1, 2, … , n} with no ascending sub-sequence 

of length d
[Gessel 90, Goulden & Jackson ~90 ; Chyzak, Mishna & Salvy 05] 14 / 

45



Symmetric functions and D-finiteness: example
Let a(n) be the number of 3-regular graphs on vertices 1, 2, … , n. 
Then

where

is D-finite is the pk’s, with

 The D-finiteness of 

follows from closure properties.

1

4

2 3
15 / 
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[Interlude]

Some rational/algebraic/
D-finite series

...
 are more combinatorial 

than others



Reverse engineering
So far: a class of objects gives a generating function.

Here: some formal power series have a natural combinatorial 
interpretation as generating functions of certain objects.

Two “historical” families:
• ℕ-rational series
• ℕ-algebraic series

•More recently: 
• “natural” combinatorial families of D-finite series

17 / 
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ℕ-algebraic series
Example:

Definition: a series A1 is ℕ-algebraic if it is the first component of a 
k-tuple (A1, … , Ak) satisfying a polynomial system of the form

where 

• Pj(t,x1, … , xk) is a polynomial with coefficients in ℕ, for each j

• the map Φm is a contraction for some m. 18 / 
45



ℕ-rational series
Example:

Definition: a series A1 is ℕ-rational if it is the first component A1 of a 
k-tuple (A1, … , Ak) satisfying a polynomial system of the form

where 
• Pj(t,x1, … , xk) is a polynomial with coefficients in ℕ, for each j, 

of degree at most 1 in each xi

• the map Φm is a contraction for some m.
19 / 
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Combinatorial interpretations: ℕ-rational series
Let A1 be an -ℕ rational series. Then A1 - a1(0)  counts walks on a graph. 

Each series Ai wil l count walks from vertex 0 to vertex i on a directed 
finite graph.
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Combinatorial interpretations: ℕ-rational series
Let A1 be an -ℕ rational series. Then A1 - a1(0)  counts walks on a graph. 

Each series Ai wil l count walks from vertex 0 to vertex i on a directed 
finite graph.
Example:

1 2

Walks on finite graphs have a linear structure.

In fact, all objects known to have a rational GF have an ℕ-rational GF.20 / 
45



Combinatorial interpretations: ℕ-algebraic series

Let A1 be an ℕ-algebraic series. Then A1 – a1(0) counts by the number 
of nodes certain coloured trees.
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Combinatorial interpretations: ℕ-algebraic series

Let A1 be an ℕ-algebraic series. Then A1 – a1(0) counts by the number 
of nodes certain coloured trees.

A2 A2 A2

A1 A2

or oror

Example:

Trees of all kinds have a branching structure.

However, many objects have an algebraic, but NOT ℕ-algebraic, GF.21 / 
45



Some criteria
Thm.  Let A be a rational series with coefficients in ℕ. It is ℕ-rational 
if and only if all its poles of minimal modulus are of the form         , 
where        is a root of unity.                        [Berstel 71, Soittola 76]
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Some criteria
Thm.  Let A be a rational series with coefficients in ℕ. It is ℕ-rational 
if and only if all its poles of minimal modulus are of the form         , 
where        is a root of unity.                        [Berstel 71, Soittola 76]

A necessary asymptotic condition for ℕ-algebraicity: if

then μ is algebraic and

NB. The algebraicity itself only implies that                                      
[Banderier-Drmota 15] 

No counterpart for ℕ-algebraic series...
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ℕ-algebraic series vs. ℕ-rational series
Remark. -rationality and –algebraicity can be defined (via positive ℕ ℕ
systems) for multivariate series.

Example:
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• If R(x1, …, xk) is ℕ-rational with an algebraic diagonal, is this 
diagonal ℕ-algebraic?

• If A is ℕ-algebraic in one variable, is it the diagonal of an 
ℕ-rational series?

ℕ-algebraic series vs. ℕ-rational series
Remark. -rationality and –algebraicity can be defined (via positive ℕ ℕ
systems) for multivariate series.
Known: algebraic series in one variable are the diagonals of bivariate 
rational series [Furstenberg 67].

23 / 
45



Questions:
• If R(x,y) is ℕ-rational, is its diagonal ℕ-algebraic?   

• If R(x1, …, xk) is ℕ-rational with an algebraic diagonal, is this 
diagonal ℕ-algebraic?

• If A is ℕ-algebraic in one variable, is it the diagonal of an 
ℕ-rational series?
Conjecture [Garrabrant-Pak 14(a)] Not true for A=1+tA2.

ℕ-algebraic series vs. ℕ-rational series
Remark. -rationality and –algebraicity can be defined (via positive ℕ ℕ
systems) for multivariate series.
Known: algebraic series in one variable are the diagonals of bivariate 
rational series [Furstenberg 67].
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Combinatorial D-finite series?

Several attempts:
• [Kotek-Makowsky 12]: an interpretation in terms of square 

lattice paths for some D-finite series
• [Garrabrant-Pak 14(a)]: a combinatorial interpretation for all 

diagonals of ℕ-rational series R(x1, …, xk) in terms of tilings 
of a strip with tiles of irrational sizes

• [Koechlin et al. 20+]: a combinatorial interpretation of the 
same class in terms of constrained walks on a graph

• [Koechlin et al. 20+]: a related combinatorial interpretation for 
diagonals of ℕ-algebraic series 

24 / 
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III. Undirect solutions

A recursive description of the objects yields a recurrence relation 
for a(n), and a functional equation for the series A, that is not of 
rational/polynomial/differential type.



Additional variables
Instead of A=A(t), one considers a multivariate series A(t;x1, … , xd), 
and proves that it satisfies some functional equation.

Examples:
● Integer partitions: a q-equation (or t-equation…)

● Set partitions (one variable only!): a difference equation

● Walks on a half-line: a discrete differential equation

The variable x is “catalytic”.
26 / 
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A basic example: walks on a half-line
Let a(n;k) be the number of n-step walks with steps +1 and -1, that 
start at 0, remain non-negative, and end at height k. Then

with the boundary condition a(n; k)=0 for k<0. This translates into

for the bi-variate generating function
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Let a(n;k) be the number of n-step walks with steps +1 and -1, that 
start at 0, remain non-negative, and end at height k. Then

with the boundary condition a(n; k)=0 for k<0. This translates into

for the bi-variate generating function

In short,
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A basic example: walks on a half-line
Remark. In the equation 

we can replace the series A(t;0) by a series B(t):

Taking the limit x → 0 shows that B(t) must be A(t;0) as soon as 
A(t;x) belongs to ℂ[[t,x]].
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A basic example: walks on a half-line
Remark. In the equation 

we can replace the series A(t;0) by a series B(t):

Taking the limit x → 0 shows that B(t) must be A(t;0) as soon as 
A(t;x) belongs to ℂ[[t,x]].

A single equation may define several formal power series.

28 / 
45



● Walks with steps +1 and -2 on a half-line:

● Planar maps [Tutte 68]: non-linear, one catalytic variable

More examples in one catalytic variable

29 / 
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One catalytic variable: algebraicity

Theorem [MBM-Jehanne 06]
Let P(A(x), B1, B2, …, Bk,t,x) be a polynomial equation in one catalytic 
variable x. Under natural (combinatorial) assumptions, the series 
A(x)=A(t;x) and the Bi=Bi(t)’s are algebraic.

Algebraic seriesExample: planar maps
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Popescu’s theorem (in d+1 variables)
Here d=2, hence 3 variables t, x, y.

Thm. If a system of equations of the form

has a unique solution such that the following diagonal conditions hold

then each of these series is algebraic.

Example:
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Popescu’s theorem (in d+1 variables)
Here d=2, hence 3 variables t, x, y.

Thm. If a system of equations of the form

has a unique solution such that the following diagonal conditions hold

then each of these series is algebraic.

Alas… such equations do not occur much in combinatorics!

Example:
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Two discrete derivatives: some examples
● Square lattice walks confined to a quadrant: linear equation

(i,j)
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● Square lattice walks confined to a quadrant: linear equation

● q-Coloured planar triangulations [Tutte, 1973-1984]: non-linear
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Two discrete derivatives: some examples
● Square lattice walks confined to a quadrant: linear equation

● q-Coloured planar triangulations [Tutte, 1973-1984]: non-linear

● Three-stack sortable permutations [Defant, Elvey Price, Guttmann 
21]
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Arbitrarily many discrete derivatives

● Walks in ℕd with unit steps (0,…, 0, ± 1, 0, …, 0) :

[Guibert 95], [mbm 11]

● Permutations with no ascending sub-sequence of length (d+2)

1
2
3

1 2 3

4
5
6
7
8
9

4 5 6 7 8 9

j

k

i
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A natural question
Solutions of discrete differential equations (with derivatives with 
respect to one variable only) are algebraic.

Is it always true for solutions of discrete PDEs (with derivatives with 
respect to several variables)?

34 / 
45



A natural question
Solutions of discrete differential equations (with derivatives with 
respect to one variable only) are algebraic.

Is it always true for solutions of discrete PDEs (with derivatives with 
respect to several variables)?

no

34 / 
45



A natural question
Solutions of discrete differential equations (with derivatives with 
respect to one variable only) are algebraic.

Is it always true for solutions of discrete PDEs (with derivatives with 
respect to several variables)?

no
Well, sometimes
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The story of walks confined to the quadrant 

● Systematic study of quadrant walks

 Set of steps (“model”) in

●  Some models are trivial, or equivalent to a half plane problem⇒ 79 really interesting and distinct small step models [mbm-Mishna10]

About twenty years ago…
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●  Some models are trivial, or equivalent to a half plane problem⇒ 79 really interesting and distinct small step models [mbm-Mishna10]

● Systematic approach via a functional equation, e.g.
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Four examples

Algebraic                                          [Kreweras 65, Gessel 86]

D-finite transcendental                                        [Gessel 90]

D-algebraic, but not D-finite     [Bernardi, mbm, Raschel 17(a)]

Not D-algebraic            [Dreyfus, Hardouin, Roques, Singer 17]

36 / 
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Twenty years later: classification of quadrant walks

Bernardi, Bostan, mbm, Budd, Chyzak, Dreyfus, Elvey Price, Gessel, 
Hardouin, Kauers, Koutschan, Kurkova, Melczer, Mishna, Pech, 
Raschel, Rechnitzer, Roques, Salvy, Singer, van Hoeij, Zeilberger...

quadrant models: 79

G finite: 23 G infinite: 56

D-finite not D-finite
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Linear discrete PDEs and diagonals
Walks on the square lattice confined to the first quadrant:
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By playing with the symmetries x  1/x and y  1/y, one obtains→ →

so that

Equivalently,

and Q(u,v) can also be written as a diagonal.
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Linear discrete PDEs and diagonals

In fact, all linear equations* in two or more catalytic variables whose 
solution has been proved D-finite (transcendental) have been solved 
in terms of diagonals of rational functions.
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In fact, all linear equations* in two or more catalytic variables whose 
solution has been proved D-finite (transcendental) have been solved 
in terms of diagonals of rational functions.

● 2D walks confined to the non-negative quadrant, with steps in 
{(1,0), (-1,0), (0,-1), (-2,1)}:                              [Bostan, mbm, Melczer 21]

● 3D walks confined to the non-negative orthant, with steps in {(-1,-1,-
1), (-1,-1,1), (-1,1,0),(1,0,0)}:                       [Bostan, mbm, Kauers, Melczer 
16]
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Linear discrete PDEs and diagonals

In fact, all linear equations* in two or more catalytic variables whose 
solution has been proved D-finite (transcendental) have been solved 
in terms of diagonals of rational functions.

● For m=2l+1, the GF of involutions with no ascending sub-sequence 
of length m+1 is: 

● The GF of permutations with no ascending sub-sequence of 
length m+1 is:

with                                                                                           [mbm 11]41 / 
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Linear discrete PDEs and diagonals

In fact, all linear equations* in two or more catalytic variables whose 
solution has been proved D-finite (transcendental) have been solved 
in terms of diagonals of rational functions.

This must be taken with a grain of salt!

● Quadrant walks with steps in {(-1,-1), (-1,1), (-1,0), (-1,0), (1,0), (1,1)} are 
D-finite transcendental, but this has only been proved by a guess & 
check computer approach [Bostan, mbm, Kauers, Melczer 16].
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In fact, all linear equations* in two or more catalytic variables whose 
solution has been proved D-finite (transcendental) have been solved 
in terms of diagonals of rational functions.

This must be taken with a grain of salt!

● Quadrant walks with steps in {(-1,-1), (-1,1), (-1,0), (-1,0), (1,0), (1,1)} are 
D-finite transcendental, but this has only been proved by a guess & 
check computer approach [Bostan, mbm, Kauers, Melczer 16].

● Some quadrant walks are conjectured D-finite, with no proof at all. 
E.g. with steps in {(1,0), (0,1), (-2,-1), (-1,-2)}  [Bostan, mbm, Melczer 21]
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IV. Disproving 
D-finiteness, 

algebraicity, etc.

Not really a combinatorial question!



Some tools
Asymptotics. Assume that the (integer) sequence a(n) satisfies

If the associated series A(t) is rational/algebraic/D-finite then
● 𝜇 is algebraic  
● 𝛾 belongs to  ℕ, ℚ\{-1, -2, …}, ℚ.
G-functions                                                                                    
[Katz 70, Chudnovsky2 85, André 89… Bostan, Raschel, Salvy 14]
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If the associated series A(t) is rational/algebraic/D-finite then
● 𝜇 is algebraic  
● 𝛾 belongs to  ℕ, ℚ\{-1, -2, …}, ℚ.
G-functions                                                                                    
[Katz 70, Chudnovsky2 85, André 89… Bostan, Raschel, Salvy 14]

Singularities. A D-finite series A(t) of positive radius of convergence 
has finitely many singularities.

Functional equations. Start from a difference/differential/etc. 
equation --- Galois theory 
Quadrant walks [Dreyfus, Hardouin, Roques, Singer 17]
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Final comments
● It sometimes takes a long time to find a “direct” solution once an 

“undirect” one has been found.
Planar maps: algebraicity proved in the 60’s using a catalytic variable 
[Tutte]; first direct proof in 81 [Cori-Vauquelin], complete 
understanding in the 90’s [Schaeffer]

● Many algebraicity/D-finiteness results stil l wait for a direct proof
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Planar maps: algebraicity proved in the 60’s using a catalytic variable 
[Tutte]; first direct proof in 81 [Cori-Vauquelin], complete 
understanding in the 90’s [Schaeffer]

● Many algebraicity/D-finiteness results stil l wait for a direct proof

● Interesting questions on ℕ-rational and ℕ-algebraic series
● Combinatorialists need specialists of functional equations
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