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Rooted planar maps
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Triangulations

Every face has degree 3.
Loops and multiple edges are allowed.



Colourings

Proper

Non-proper (general)

Monochromatic edge



Map enumeration

Let M be a set of planar maps, and let m(n) be the number of maps of M of
size (= edge number) n.

e Objective: determine the sequence m(n)

m(n)=--- or M@ =Y m@i"= > WM =...
n>0 MeM

where M (t) is the generating function of M.

e Multi-parameter enumeration:

m(n; k) =--- or M(t,x):= Z m(n;k)tnxk —_ ...
n>0



Examples

e [ he generating function of planar maps, counted by edges, is

M) =Y ¢ = Y

Y; n>0 n(n—+1)

2. 3" (Qn) o (1 12¢t)3/2 — 1 4 18¢
n o 54¢2

[Tutte 60’s]
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e T he generating function of planar triangulations, counted by vertices, is

T@)=> V) =Y

T n>2
with k' = k(k —2)(k —4)---, and satisfies the cubic equation

2. 472 (3p — 6)l! o
nl(n — 2)!

64T ()3 4+ (1 —968)T(t)° —t(1—30t)T(t) +t3(1 —27t) =0
[Mullin, Nemeth, Schellenberg 70]



Maps equipped with an additional structure

In combinatorics, but mostly in statistical physics

How many maps equipped with... | What is the expected
partition function of...

— a spanning tree? — the Ising model?

[Mullin 67] [Boulatov, Kazakov, MBM, Schaeffer,
Bouttier et al.]
— a spanning forest?

[Bouttier et al., Sportiello et al.] — the hard-particle model?
[IMBM, Schaeffer, Jehanne,
— a self-avoiding walk? Bouttier et al. 02, 07]

[Duplantier-Kostov 88]
— the Potts model?
— a proper g-colouring? [Eynard-Bonnet 99, Baxter 01,

[Tutte 74, Bouttier et al. 02] MBM-Bernardi 09, Guionnet et al. 1C




The Potts model on planar maps

e Count all g-colourings of some family M of planar maps, keeping track of the
number m(M) of monochromatic edges:

M(q,v,t) := Z 1e(M) ;m(M)
M g—coloured
The Potts generating function of maps.

e In other words,
M(q,v,t) = Zpr(q,v)teM)
M

where

Zy(q,v) = > )
c:V(M)—{1,2,....q}

IS the Potts partition function of M.

Example: When M has one edge and two vertices, Zy;(q,v) = qv+q(¢g— 1)

1 L, b 1 JjFE
—* —* proper



The Potts model on planar maps

e Count all g-colourings of some family M of planar maps, keeping track of the
number m(M) of monochromatic edges:

M(q,v,t) .= > (M) m(M)
M qg—coloured
The Potts generating function of maps.

e In particular,

M(q,0,t) 1= > ) = Sy (@)t
M q—prop. coloured M

counts properly coloured maps.



The Potts model on planar maps

e Count all g-colourings of some family M of planar maps, keeping track of the
number m(M) of monochromatic edges:

M(q,v,t) .= > (M) m(M)
M qg—coloured

The Potts generating function of maps.

e Equivalently, find

S Ta(a,y) (M) — .

MeM
where Ty;(x,y) is the Tutte polynomial of M. Connection:
(z — Dy — DMy (2,y) = > y M)

g—colourings of M
withg=(x—1)(y—1) and v =y — 1.



Three approaches for counting maps

e [Tutte 60’'s]: recursive description of maps
= functional equations for the GF

e [Schaeffer 97]: bijections with trees

e [Brézin-Itzykson-Parisi-Zuber 78]: matrix integrals

H?  H3
Ntr (__H_)
lim —Iog/dHe - 3 :

N—oco N

H: hermitian N x N matrix



I.1. Uncoloured enumeration:

the recursive approach



Planar maps (tend to) have algebraic generating functions

M(tq1,...,tr) map GF: there exists a polynomial @) such that

Q(t1,. sty M(t1,...,t)) = 0.

Example:

(1—12¢)3/2 -1 4 18¢
54t2

M(t) = = (54°M(t) + 1 - 18t>2 = (1 —12¢)3

Arques Bauer Bédard Bender Bernardi Bessis Bodirsky Bousquet-Mélou
Boulatov Bouttier Brézin Brown Canfield Chauve Cori Di Francesco
Duplantier Eynard Fusy Gao Goupil Goulden Guitter t'"Hooft Itzykson Jackson
Jacquard Kazakov Kostov Krikun Labelle Lehman Leroux Liskovets Liu Machi
Mehta Mullin Parisi Poulalhon Richmond Robinson
Schaeffer Schellenberg Strehl Tutte Vainshtein Vauquelin Visentin Walsh
Wanless Wormald Zinn-Justin Zuber Zvonkine...



Recursive description of planar maps: deleting the root-edge

Let

F(t;z) = F(z) = 3 t8WM)gdf(M) — 5™ B (1) 24
M d>0

where e(M) is the number of edges and df(M) the degree of the outer face.
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Recursive description of planar maps: deleting the root-edge

Let
F(t;z) = F(z) = 3 t8WM)gdf(M) — 5™ B (1) 24
M d>0
where e(M) is the number of edges and df(M) the degree of the outer face.

. y ”

F(x) = 1 -+ te2F(2)? + t Y Fy(t) (:cd+1 + 2.+ :13)
d>0
N xF(x) — F(1)

r—1
[Tutte 68] A quadratic equation with one catalytic variable, x

= 1 + te?F ()2 +




Recursive description of planar maps: contracting the root-edge

Let

F(t;y) = Fy) =Y My VM) — 5™ B (1)y4
M d>0

where e(M) is the number of edges and dv(M) the degree of the root vertex.

®
Fiy) = 1 4+  #2F@y)? + tY" Fa(t) (v 4yt +y)
d>0
— 1 + tyQF(y)Q i ty yF(y) — F(1)

y—1

The same equation... (duality)



Polynomial equations with one catalytic variable

Examples:
F(z) = 1+ ta?F(z)° 4tz wF(a;)_—lFu)
F(z) = 14 tzF(2)3 +tz(2F(z) + F(1)) F(:c; : 11:(1)
pipF@ - FQ) = @@= DF'(1)

(z —1)2

Solution:
e Guess and check [Tutte 60's]
e Brown’s quadratic method [Brown 65]

e A generalization to all polynomial equations with one catalytic variable
[mbm-Jehanne 06]



Polynomial equations with one catalytic variable

e General framework: A polynomial equation:
P(F(m),F]_,...,Fm,t,fC):O (1)

where F(x) = F(t;x) is a series in t with polynomial coefficients in x, and
F; = F;(t) does not depend on =z.

e Results

1. The solution of every proper equation of this type is algebraic: There exists
@ such that Q(¢t,z, F(t;x)) = 0.

2. A practical (but heavy) strategy allows to solve specific examples (that is,
to derive from (1) an algebraic equation for F(x), or Fi,...,Fm).

[MBM-Jehanne 06]



Example

F(t;z) = F(z) = 1+ t2°F(2)? + tx zF () —1F(1)
-
U
v (1 —12t)3/2 1418t
Fii1) = 5412

with two lines of Maple.
Equivalently,

F(t;1) = A(t) —tA(t)3  where A(t) =1+ 3tA(t)?

= Many map families have an algebraic generating function



I.2. Uncoloured enumeration:

bijections

The algebraicity of planar maps generating functions can be explained via bi-
jections with plane trees



Algebraic series count plane trees

Algebraic series usually arise from tree enumeration:

n nodes

a(n) +

[
™

A(t)

|

+ tA(t)?

Are there correspondences between maps and trees?



Four-valent maps: a proof from The Book?

e Bijection between 4-valent planar maps (n vertices) and balanced blossoming
trees (n nodes) [Schaeffer 97]

e

A planar map (GF M) A blossoming tree (GF A =1 + 3tA?)

e An unbalanced blossoming tree is, in essence,
a 3-tuple of blossoming subtrees [Bouttier et al.
02]:

— M = A —tA3.




Blossoming trees and 4-valent maps
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Blossoming trees and 4-valent maps




Blossoming trees and 4-valent maps

o



Bijections between maps and trees...
e Improve our understanding of the nature of planar maps

e Lead to new results, e.g. on the geometry of random planar maps. For
instance, the average diameter of a random map of size n scales like nl/4
[Chassaing-Schaeffer 02]

e These bijections are the starting point of many recent results in probability
theory on the asymptotic properties of large random maps [Le Gall, Miermont,
Marckert, Paulin...]



II.1. Coloured enumeration:

the recursive approach

(joint work with Olivier Bernardi)

M(q,v,t) .= Z (M) ;m(M)
M qg—coloured

e Other approaches: [Eynard-Bonnet 99], [Guionnet et al. 10]



Forget algebraicity!

Theorem [Tutte 73]: For planar triangulations,

S () VT =3 (—1)"(n)t" 2
T

n

where
2(3n)!
b(n) = (3n) ~ 274,
nl(n+ 1) (n+ 2)!
and this asymptotic behaviour prevents the series B(t) := > bnt"™ from being
algebraic.

However, it satisfies a linear differential equation.



Catalytic variables

The Potts generating function of planar maps, being transcendental, cannot
be described with one catalytic variable
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Catalytic variables

The Potts generating function of planar maps, being transcendental, cannot
be described with one catalytic variable

HOWEVER
it can be described with two catalytic variables
WHY IS THAT SO~

e [ he recursive description of the Potts partition function

Zg(q,v) =Zen(q,v) + (v — 1) Zg)(q,v)

calls for a recursive description of maps by contraction and deletion of edges.

e [his is possible if one keeps track of the degree of the outer face, and the
degree of the root-vertex.



Equations with two catalytic variables

o Let
1
M(z,y) = M(q,v,t;2,y) = = > Zpy(q, v)teMgV M) drin),
9 M
where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

e T he Potts generating function of planar maps satisfies:

M(z,y) = 1+zyt((v —1)(y — 1) +qy) M(z,y)M(1,y)
+ayzt(xv — )M (x,y)M(xz, 1)

+azyt(v — 1) — + x —

[Tutte 68]

This equation has been sleeping for 40 years



In the footsteps of W. Tutte

e For the GF T'(q,t;x,y) = T (x,y) of properly g-coloured triangulations:

T(z,y) —y?*To(x) o T(zy) = T(1,y)

/
T(z,y) = waQ(q—l)-l-x—T(l, y)T (x,y)+at
yq Yy r—1

where Th(z) is the coefficient of y2 in T(z,v).

Tutte 73
Tutte 73

[ ] Chromatic sums for rooted planar triangulations: the cases A=1 and A\ =2
[ ] Chromatic sums for rooted planar triangulations, II : the case A=7+41
[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case A = 3

[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case A = oo
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest

[Tutte 82] Chromatic solutions

[Tutte 82] Chromatic solutions II

[Tutte 84] Map-colourings and differential equations

IO D> D

[Tutte 95]: Chromatic sums revisited



In the footsteps of W. Tutte

e For the GF T'(q,t;x,y) = T (x,y) of properly g-coloured triangulations:

T(z,y) — yQTz(x)_xzytT(x,y) —T(1,y)

/
T(z,y) = fvaQ(q—l)-I-x—T(l, y)T (x,y)+at
yq Yy r—1

where Th(z) is the coefficient of y2 in T(z,v).

Theorem [Tutte]

e For g = 2+42cos %T qg = 4, the series T'(1,y) = T'(¢; 1,y) satisfies a polynomial
equation with one catalytic variable y.



In the footsteps of W. Tutte

e For the GF T'(q,t;x,y) = T (x,y) of properly g-coloured triangulations:

T(z,y) — yQTz(:v)_xzytT(x,y) —T(1,y)

t
T(z,y) = 2y2q(q— 1)+ T (1, )T (z, y)+at
yq Yy r—1

where Th(z) is the coefficient of y2 in T(z,v).

Theorem [Tutte]
e For g = 2+42cos QW” qg = 4, the series T'(1,y) = T'(¢; 1,y) satisfies a polynomial
equation with one catalytic variable y.

e \When ¢ is generic, the generating function of properly g-coloured planar
triangulations is differentially algebraic:

2¢%(1 — )t + (gt + 10H — 6tHYH" + q(4 — q)(20H — 18tH' + 9t°H") =0
with H(t) = t*T>(q,vt; 1)/q.



Adapt this to other equations!

Tutte 73
Tutte 73

[ | Chromatic sums for rooted planar triangulations: the cases A =1 and A =2
[ ] Chromatic sums for rooted planar triangulations, II : the case A=7+41
[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case A =3

[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case A = oo
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest

[Tutte 82] Chromatic solutions
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[Tutte 84] Map-colourings and differential equations

IO D> D

[Tutte 95]: Chromatic sums revisited



Our results

e Let M(q,v,t;x,y) be the Potts generating function of planar maps:
1
M (z,y) = M(q,v,t;2,9) = = Zy(g, vt VM), df (M)
9 pm

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

Theorem

o For q = 2 + 2COS%T, g = 0,4, the series M(q,v,t;1,y) = M(1,y) satisfies
a polynomial equation with one catalytic variable y, and the complete Potts
generating function M(q,v,t; x,y) is algebraic.

e When ¢ is generic, M(q,v,t;1,1) is differentially algebraic:

(an explicit system of differential equations)

[mbm-Bernardi 09] Counting colored planar maps: algebraicity results. Arxiv:0909:1695
[mbm-Bernardi 11] Counting colored planar maps: differential equations



Example: The Ising model on planar maps (g = 2)

Let A be the series in ¢, with polynomial coefficients in v, defined by
(1 +3vA—-3vA2— V2A3)2
1-2A+ 20243 — 1244
Then the Ising generating function of planar maps is
1 —|—3VA—3VA2 — 1243
(1-2A4+421243 - V2A4>2

A=t

M@2,v,t;1,1) = P(v, A)

where

P(v,A) = 13A% +2.,2(1 —)AS+ v (1 —61)A%
— v (1-5)A3+ (1 +2v)4%2 - 3+ v)A+ 1.

~ Asymptotics: Phase transition at v, = % critical exponents...



Example: properly 3-coloured planar maps (¢ = 3,v = 0)

Let A be the quartic series in t defined by
14 2A4)3
A= (1+2A) |
(1 —2A3)
Then the generating function of properly 3-coloured planar maps is
(1+2A)(1 — 242 — 443 — 44%)
(1 —2A43)2

M(3,0,t;1,1) =

~ Asymptotics: A random loopless planar map with n edges has approximately
(1.42...)™ proper 3-colourings



Our results: when ¢ is generic

e Let M(q,v,t;x,y) be the Potts generating function of planar maps:
1
M(z,y) = M(q, v, t;m,y) = =Y Zyy(q, )t gy dtM),
9 pm

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

Theorem

e For q = 2 + QCOS%, qg = 4, the series M(q,v,t;1,y) = M(1,y) satisfies
a polynomial equation with one catalytic variable y, and the complete Potts
generating function M(q,v,t; x,y) is algebraic.

e When ¢ is generic, M(q,v,t;1,1) is differentially algebraic:

(an explicit system of differential equations)



An explicit system of differential equations

Let D(t,v) = qv+ (v = 1)? —q(v + Do + (¢ + t(v = (@ — D (g +v - 1))v>.

e There exists a unique 8-tuple (P1(t),...,P4(t),Q1(t),Q>(t), R1(t), R>(t)) of
series in t with polynomial coefficients in ¢ and v such that

1 0 (v*R?\ 1 0 [ Q?
v2R v \ PD2 ) Q ot \PD2)’

P(t,v) Pa(t)v* + P3(t)v> + Po(t)v? + Py(t)v + 1,
Q(t,v) Q2()v? + Q1 (t)v + 1,
R(t,v) = Ro(t)v?+ Ri(t)v+q+v—3,

with the initial conditions (at t = 0):

where

P(0,v) =(1—v)2 and Q(0,v)=1—w.



An explicit system of differential equations (cont’d)

e The Potts generating function of planar maps, M(1,1) = M(q,v,t;1,1), sat-
isfies

12¢2 (qu + (v — 1)2) M(q,v,t;1,1) =
8t(q+v—3)Q1(t) —Q1(t)°+ Po(t) —2Qa(t) —4t (2 — 3v — q)— 12t (¢ + v — 3)2.

Questions
1. Use the structure of

1 0 (v*R?\ _ 10 [ Q°
v2ROv \ PD2 ) Qot\PD2)’

to obtain a single differential equation (or an expression?) for M(q,v,t;1,1).

2. Relate this to elliptic functions, and to the papers of [Bonnet & Eynard 99],
and [Guionnet, Jones, Shlyakhtenko & Zinn-Justin 10]



An analogous system for triangulations
Let D(t,v) =2+ (v — 1) (4(v -1 + v+ (v — (g -t + (v — 1)?) 02

e There exists a unique 7-tuple (P1(t),...,P3(t),Q1(t),Q>(t), Ro(t), R1(t)) of
series in t with polynomial coefficients in ¢ and v such that

1 0 (v°R?\ 1 0 [ Q?
v2R v \ PD2 ) Q ot \PD2)’

P(t,v) = P3(t)v>+ Pa(t)v? + Pr(t)v + 1,
Q(t,v) = Qa(t)v?+ Q1()v + 2v,
R(t,v) = Ry1(t)v+ Ro(t),

with the initial conditions (at t = 0):

where

P(O,v) =1+4+v/4 and Q(0,v) =2v+v.

e EXxpression of the Potts GF of triangulations in terms of the P, and @;



. and for properly g-coloured triangulations (v = 0)

Let D(v) =v+4 —q.

e There exists a unique 4-tuple (P, P>, P3,Qq1) of zeries in t with polynomial
coefficients in ¢ such that

4t 0 (v 1 8 (Q?
v v\ P) Q 8t\PD)’

P(t,v) = P3(t)v>+ Po(t) + Pr(t)v + 1,
Q(t,v) = Q1(H)v+1,
with the initial conditions (at t = 0):

where

P(O,v) =1+4+v/4 and Q(0,v)=1.
e From the system, one can derive Tutte's differential equation,
2¢°(1 — @)t + (gt + 10H — 6tH'YH" + q(4 — q)(20H — 18tH' + 9t°H") =0
with H(t) = t°T»(q,V; 1) /q.



I1.2. Coloured enumeration:

bijections?

Some bijections exist in special cases... but most remain to be found



Some existing bijections

e Maps equipped with a spanning tree (T ,,;(1,1))
[Mullin 67], [Bernardi 07]

e Maps equipped with a bipolar orientation ((—1)V(M)y/ (1))
[Felsner-Fusy-Noy-Orden 08],

[Fusy-Poulalhon-Schaeffer 08],

[Bonichon-mbm-Fusy 08]

e The Ising model on planar maps (case ¢ = 2)
[MBM-Schaeffer 02], [Bouttier et al.]




Bijective counting of maps equipped with a spanning tree

AN

n edges, k+ 1 vertices (= k edges in the tree)



Bijective counting of maps equipped with a spanning tree

G

n edges, k+ 1 vertices (= k edges in the tree)



Bijective counting of maps equipped with a spanning tree

n edges, k+ 1 vertices (= k edges in the tree)



Bijective counting of maps equipped with a spanning tree

n edges, k+ 1 vertices (= k edges in the tree)

A shuffle of two plane trees

@:) Crln—k

with C) = (Qkk)/(k + 1) counts rooted trees with k edges.



Many questions are left...

A. More combinatorics
e Understand algebraic series, e.g., for 3-coloured planar maps:

. 2 3 4 A4 3

(14+2A4)(1 —2A 4 A 4A7) with A:t(1+2A)
(1 —2A43)2 (1 —2A43)
e Understand differential equations, e.g., for properly g-coloured triangulations:

M(3,0,t;1,1) =

2¢%(1 — ¢)t + (qt + 10H — 6tH'YH" + q(4 — q)(20H — 18tH' + 9t°H") = 0

B. Equations with two catalytic variables

e Elimination in the systems of differential equations

e Connections with elliptic functions

e Connections with [Eynard-Bonnet 99] and [Guionnet et al. 10]

C. Asymptotics

e Asymptotic number of properly g-coloured maps?

(done for triangulations g € (28/11,4) U [5,00) [Odlyzko-Richmond 83])

e More generally, phase transitions and critical exponents of the Potts model



