An introduction to

asymptotic enumeration

Part 1. Why are asymptotic results interesting?

Part 2. Asymptotics of sequences a(n)

Part 3. Limit laws



The study of additional statistics
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When objects are taken uniformly in Ay, the statistic s becomes a random
variable Sy:
a(n, k)

a(n)
where a(n, k) is the number of objects of size n for which the additional statistic
s equals k.

P(S, = k) =



Examples of additional statistics

e the final height of a 1D walk with n steps,

e the maximal height of such a walk,

e the width/height of a directed animal with n cells,

e the area enclosed by a SAP of perimeter 2n,

e the area enclosed by a staircase polygon of perimeter 2n...




Convergence in law (or: in distribution)

Definition. The random variables S,, converge in law to the random variable S,
having distribution function F(x), if for all x [where F is continuous],

P(Sn < z) = Fp(x) — F(z) = P(S < x).




A discrete Iimit law: contacts in a Dyck path

Convergence of the distribution function of Sy:

Lok
P(Sp, <f+1) = Y
k=1

2k+1




A continuous limit law: The final height of a random walk

As E(S2) = n, we consider the random variable S, /\/n.
Its distribution function satisfies

Sn —12/2
P <\/ﬁ < a:) / dt

= Convergence to a Gaussian law




How to prove convergence in law

From the distribution function
Pumping moments

Discrete limit laws: pointwise convergence of the probability generating
function

Continuous limit laws: pointwise convergence of the Laplace or Fourier
transform



1. Convergence of the moments and convergence in law
Theorem. For S, to converge in law to S, it suffices that
e all moments converge : E(S,7) — E(S7) for all j

e the Laplace transform

E(e") = 3 E(S7)=-

J
j>0 J?
has a positive radius of cv.



Where do we find the moments of the statistic s?

Bivariate generating function:

A(t,u) = > tlalysa) — > ot (Z a(n, k)uk>

acA k
Specialization uw = 1:

A(t, 1) = > tlal = > a(n)t"

acA n

e Average value of S;:

uiA(t,u) =) " (Z ka(n, k)uk> = uiA(t,u)
ou o k ou

) =) t"a(n)E(Sy)
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Where do we find the moments of the statistic s?

Bivariate generating function:

A(t,u) = ) tlalysa) — > a(n, k)t u”
acA n,k

Specialization u = 1:

A(t,1) = ) tlal = > a(n)t"

ac A n

e Average value of S;:
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e Further moments:

0
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Where do we find the moments of the statistic s?

Bivariate generating function:

A(t,u) = ) tlalysa) — > a(n, k)t P
acA n,k

Specialization uw = 1:

A(t,1) = ) tlal = > a(n)t"

acA n
e Average value of Sy:
0 n k 0 n
u—A(t,u) =) "> ka(n,k)u” | = u—A(t, u) =) t"a(n)E(Sy)
ou poy k ou u=1 -

e Further moments:

(u%) A(t,u) = %:tn (z]{: k'a(n, k)uk> = (u%) A(t,u)
e [ he exponential moments:
J'A
ou’

=Y t"a(n)E(Sn")

u=1

(t,1) = Ztna(n) E(Sn(Sn —1)---(Sn—i+ 1))



Contacts in bilateral Dyck paths

e GF of paths counted by their half-length (¢t) and number of visits at 0 (u):

. U . 1 -v1-4¢
A(t,u) = I~ 2uP(0) with  P(t) = 5
1 2ny ., n
= A(t,1) = =3 ()= aln)t

v1—4t n>0 M poy



Contacts in bilateral Dyck paths

e GF of paths counted by their half-length (¢t) and number of visits at 0 (u):

. U . 1 -v1-4¢
A(t,u) = 1~ 2uP () with  P(t) = 5
1 2ny ., n
= A(t,1) = =3 ()= aln)t

v1—4t n>0 M poy
e [ake derivatives w.r.t. u
' A 1 (2P(t))?
Ly = 2PM)
ou’ (1— 4t)(2+1)/2

=Y "t"a(n) E(Sn(Sn—1)...(Sn —i+ 1))



Contacts in bilateral Dyck paths

e GF of paths counted by their half-length (¢t) and number of visits at 0 (u):

. U _ 1 —-/1-—-4t
Alt,u) = I~ 2uP (@) with  P() = 5
1 2ny ., n
= A(t,1) = =3 ()= aln)t

v1—4t n>0 M poy
e [ake derivatives w.r.t. u

o'A i (2P®@))!

e Singularity analysis:

=Y t"a(n) E(Sn(Sn—1)...(Sn —i+ 1))

ir(1/2) i
(G + 1)/2)

Sn )’ (/2
iE((ﬁ)) (G +1)/2)

These are the moments of the Rayleigh law of density z/2 exp(—$2/4) forz >0
= Convergence in law to a Rayleigh distribution

E(Sn(Sn—1)...(Sn—i4 1)) ~




T he area of staircase polygons

e GF of staircase polygons by half-perimeter (¢t) and area (u):

P(t,u) = t2u + 2tuP(t,u) + P(t, u) P(tu, u)

e Repeated differentiations of the equation

— %iﬁ(t, 1) is always algebraic and
o P  —.n . S
@(t, 1) = %:t a(n) E(5n(Sn—1)...(Sn—7+1)) ~ (1= anGD/?

with

. : —1 .

j(35 —4) ' (7

Co — —1/2, C; — 3 Cj—1 —|— Z (i)cz'cj'_i
1=1

. (( Sy, >9> o T(=1/2)
n3/2 co F((3j—1)/2)

Moments of the Airy distribution = Convergence in law

e Singularity analysis




2. Continuity theorem for discrete limit laws

Theorem. For S,, to converge in law to S, it suffices that the probability
generating function of S,, converges pointwise to that of S:

Gr(u) =Y P(Sn = k)u* — G(u) := Y P(S = k)u”
k k

for u in a set €2 having an accumulation point of modulus < 1.

Example: 2 = [0,1/2]



Where do we find the probability g.f. of the statistic s?

e Probability GF:
1
Grn(u) =Y P(Sp = E)u’ = —— Y a(n, k)u"
k a(n) %

e Bivariate generating function:

A(t,u) =Y " (Za(n, k)uk) =" t"a(n)Gn(u)

k
Specialization v = 1:

A(t, 1) = > tlal = > a(n)t"

acA n

= Estimate the coefficient of t" in A(t,u), where u is a fixed real or complex
number
= Recycle the methods used for the analysis of A(¢,1)!



Contacts in Dyck paths

e Let A(t,u) count Dyck paths by the half-length (¢) and contacts (u):

Abw) =T = A= /2

e Fix w in [0,1]. Then, ast — 1/4:

A(t,u):22 (1_ u \/71—4t)—|—0(1—4t)

— U 2 —u




Contacts in Dyck paths

e Let A(t,u) count Dyck paths by the half-length (¢) and contacts (u):

A(t,u) =

u
1—u(l—I=41)/2
e Fix w in [0,1]. Then, ast — 1/4:

A(t,u):22 (1_ u \/71—4t)—|—0(1—4t)

— U 2 —u

e Singularity analysis:

) B . 2u 4" —3/2
A w) = a(n)Cnlu) ~ =5 551 /2
. k
Gn(u) ~ 202 = > Sk+1 uk = G(w)

k>1
Convergence in law to the distribution given by

k

P(S = k) = S5y




The degree of the root in a Cayley tree

e Exponential GF of labelled rooted trees by vertices (¢t) and degree of the root
(u)
A(t,u) =texp(uT'(t)) with  T(t) = texp(T(t))

e For u > 0, A(t,u) has a unique dominant singularity at ¢t = 1/e, in the vicinity
of which

A(t,u) = e 1 —ue 1W2v1 —te (14 0(1))

e Singularity analysis:

n _a(n) o yeti—1 e’ -3)2
A = 6 ) VA=
k
u—1 __ u _
Gn(u) ~ ue = kél k1) G(u)

Distribution function of a Poisson random variable



3. Continuity theorem for continuous limit laws

Theorem 1. For the sequence S, to converge in law to S, it suffices that the
Fourier transform (or characteristic function) converges pointwise

E(eia:Sn) N E(eixS)

for all z in R.

Theorem 2. For the sequence S, to converge in law to S, it suffices that the
LLaplace transform converges pointwise

E(e™r) — E(e™))

for all x in a real neighborhood of O.



Where do we find the Laplace transform of the statistic s7?

Bivariate generating function:

A(t, u) _ Ztn (Za(n’ k)uk) — Ztna(n) 1D (uSn)

k

= a(n) E (ewsn) = [t"] A(t, %)

= Estimate the coefficient of t" in A(t,u), for u close to 1



The number of cycles in permutations

e From Gilbert's lectures:

e Moments:
9'A
ou’

(£,1) =S " E(Sn(Sn—1) ... (Sn—i+ 1)) = (logll_t)zll_t

e Singularity analysis:
E(Sn(Sn—1)...(Sn — i+ 1)) ~ (logn)
= E(S,") ~ (logn)’

Snd
logn

> 1

Concentration phenomenon. What are the fluctuations around logn?



The number of cycles in permutations (contd.)

e Normalize S,,. As E(Sp) ~ logn and E((S, — logn)?) ~ logn, define

- Sn —logn
e viogn




The number of cycles in permutations (contd.)

e Normalize S,,. As E(Sp) ~ logn and E((S, — logn)?) ~ logn, define

- Sp — logn
e viogn

e Study the Laplace transform of Sy:
E(e:pS’n) — e—ac\/logn D ((eaz/\/log n>Sn> — e—x\/logn E(u5n>

with u = e?/V109n.



The number of cycles in permutations (contd.)

e Normalize S,,. As E(Sp) ~ logn and E((S, — logn)?) ~ logn, define

- Sn —logn
e viogn

e Study the Laplace transform of Sy:
E(exg’n) — e—:c\/logn D ((eaz/\/log n>Sn> — e—x\/logn E(u5n>

with u = e/VIogn
e Generating function:

Alt ) = 38" B = (1 —1t)’“ = E(u™) = rqi?ri_u,;b)

E(e“”gn) ~ exp(z2/2)

Laplace transform of the gaussian distribution N (0, 1)

Conclusion;

- Sn—1logn 4
Sn 1= N(0,1
" viogn ( )




Patterns and universality in limit laws

“If the position and nature of the singularity do not change when v varies around
1, one expects a discrete limit law”

Sub-critical composition schema for alg-log series
If A(t,u) = C(uB(t)) with B(pg) < pc, the first singularity of A(t,u) occurs at
pp and we have a discrete limit law with probability g.f.:

uB'(Tu)
B'(7)

G(u) =Y P(S = k)u* =

where 7 = B(ppg).

Examples:
e Contacts in Dyck paths

1
1 —u(l—+1I—=4t)/2
e When C is the Sequence species (C(z) = 1/(1—=z)), convergence to a negative

binomial law
e When C is the Set species (C = exp), convergence to a Poisson law

A(t,u) =




Patterns and universality in limit laws

“If the position or nature of the singularity changes smoothly around v = 1,
one expects a gaussian limit law"”

The quasi-power theorem
Assume that, uniformly in v taken in a neighborhood of 1, the probability g.f.
satisfies

1
a(n)
where B, — oo and ¢, — 0, x(u) and p(u) are analytic at 1 (4 variability
condition)

Gn(u) = [ At u) = r(u) ()P (14 O(en))

Let un = E(Sp) and o2 = E((Sn, — E(Sn))?2). Then the normalized variable
Sn—‘Mn

On

converges to a gaussian law N (0, 1)

Example: Number of cycles in a permutation

nu—l

logn
TOREO (exp(u —1))"°9

Gn(u) ~




Patterns and universality in limit laws

The most interesting cases are those such that the position or nature of the
singularity of A(¢,u) changes non-smoothly around v = 1.

Example. The area of staircase polygons

At u) = t2u 4 2tuA(t, w) + AL, u) A(tu, u)

Type of singularity

O<u<l simple pole
u=1 square root
u>1 radius O




Patterns and universality in limit laws

The most interesting cases are those such that the position or nature of the
singularity of A(¢,u) changes non-smoothly around v = 1.

Example. The area of staircase polygons

At u) = t2u 4 2tuA(t, w) + AL, u) A(tu, u)

Type of singularity Average area
in polygons weighted by 4%(®)
O<u<l simple pole KN
u=1 square root 3/ 2
u>1 radius O n? /4

Random staircase polygons of perimeter 2n with probability

1

1 )
Zn(u)

prob(p) =

These cases precisely correspond to phase transitions in statistical mechanics



