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Let S be a finite subset of Z? (set of steps) and py € N? (starting point).

What is the number a(n) of n-step walks starting at pp and
contained in the non-negative quadrant N2?

For (i,j) € N2, what is the number a(i, j; n) of such walks that end
at (i,/)?

Example. S = {10,10, 11,11}, po = (0, 0).




Take S = {10,10,11,11} and po = (0,0)

l?

!




Take S = {10,10,11,11} and po = (0,0)

A?

If n=2m+ 4, with § € {0,1},

!

nl'(n+1)!

) = i+ Di(m + 0)(m + 6 1

Moreover, if n =2m 4+ i,

DG+ D)+ +2)( 42+ 3)n!(n+ 2)!
o (m= )Y m+ D (m+i+2)(m+i+j+3)




Adan, Banderier, Bernardi, Bostan, Cori, Denisov, Duchon, Dulucq,
Fayolle, Gessel, Fisher, Flajolet, Gouyou-Beauchamps, Guttmann, Guy,
Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler,
Kurkova, Kreweras, van Leeuwarden, MacMahon, Melczer, Mishna,
Niederhausen, Petkovsek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy,
Viennot, Wachtel, Wilf, Yeats, Zeilberger...

etc.



e Our original question:

a(n) =7 a(i,j;n)="7



e Our original question:
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e Generating functions and their nature
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Generating functions

e Our original question:
a(n)=7 a(i,j;n)="7
e Generating functions and their nature

A(t) = Z a(n)t", Alx,y; t) = Z a(i,j; n)x'yit"

n>0 ij,n

Remarks
e A(1,1;t) = A(t)
e A(0,0; t) counts walks ending at (0, 0)

e A(x,0;t) counts walks ending on the x-axis



Generating functions

e Our original question:
a(n)=7 a(i,j;n)="7
e Generating functions and their nature

A(t) = Z a(n)t", Alx,y; t) = Z a(i,j; n)x'yit"

n>0 ij,n
Can one express these series? Are they rational? algebraic? D-finite?

Remarks
o A(1,1;t) = A(t)
e A(0,0; t) counts walks ending at (0, 0)

e A(x,0; t) counts walks ending on the x-axis



A hierarchy of formal power series

e The formal power series A(t) is rational if it can be written
A(t) = P(t)/Q(t)

where P(t) and Q(t) are polynomials in t.

e The formal power series A(t) is algebraic (over Q(t)) if it satisfies a
(non-trivial) polynomial equation:

P(t,A(t)) =0.

e The formal power series A(t) is D-finite (holonomic) if it satisfies a
(non-trivial) linear differential equation with polynomial coefficients:

Pe(t)AR(t) + - + Po(t)A(t) = 0.

o Nice closure properties + asymptotics of the coefficients
o Extension to several variables (D-finite: one DE per variable)



A rational generating function:

a(n) = |S|"

More generally:




The associated generating function is algebraic, given by an explicit
system of polynomial equations.

[Gessel 80], [Duchon 00], [mbm-Petkovsek 00]...




e Start from py = (0, 0)

A(x,y; t) = Z a(i, j;n)x'y/t" =7
ij,n>0
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e Start from py = (0, 0)
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e Start from py = (0, 0)

A(x,y; t) = Z a(i, j;n)x'y/t" =7
ij,n>0

D—finite D—finite D—finite Algebraic Non-D—finite

Non-D-finite D—finite



e S C{1,0,1}\ {00} = 28 = 256 step sets (or: models)



Quadrant walks with small steps: classification

e SC{1,0,1}\ {00} = 28 = 256 step sets (or: models)

e However, some models are equivalent:

— to a model of walks in the full or half-plane (= algebraic)

M

— to another model in the collection (diagonal symmetry)

e One is left with 79 interesting distinct models.

[mbm-Mishna 10]
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The series A(x, y; t) is D-finite iff the is finite.
It is algebraic iff, in addition, the is zero.

[mbm-Mishna 10], [Bostan-Kauers 10]
[Kurkova-Raschel 12]
[Mishna-Rechnitzer 07], [Melczer-Mishna 13]

quadrant models: 79
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quadrant models: 79
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When the orbitsum is zeo: the four algebric models
S L

Kreweras reverse Kreweras  double Kreweras Gessel

o Kreweras walks

» expression for a(i,0; n) [Kreweras 65], simplified by [Niederhausen 83]
> A(x,y;t) is algebraic [Gessel 86, mbm 02/05]

e Unified approach for the Kreweras trilogy [mbm-Mishna 10]



When the orbit sum is zero: the four algebraic models

S L

Kreweras reverse Kreweras  double Kreweras Gessel

o Kreweras walks

» expression for a(i,0; n) [Kreweras 65], simplified by [Niederhausen 83]
» A(x,y;t) is algebraic [Gessel 86, mbm 02/05]

e Unified approach for the Kreweras trilogy [mbm-Mishna 10]

o Gessel walks:

» conjecture for a(0,0; n) [Gessel ~ 00]
proof of this conjecture [Kauers, Koutschan & Zeilberger 08]
A(t) and A(x, y; t) are algebraic! [Bostan & Kauers 093]
new proof via complex analysis [Bostan, Kurkova & Raschel 13]
an elementary and constructive proof [mbm 15]

vV vy vy



e The number of walks of length n = 3m + 2/ ending at (/,0) is

oi,0:) = 4m(2i +1) (2;) <3m + 2i>

(m+i+1)2m+2i+1)\ i m

[Kreweras 65]
e The generating function A(x, y; t) is algebraic [Gessel 86].

For instance, the series Q(t) := A(0, 0; t*/3) has degree 3:

54t — 1+ (1 — 72t)Q(t) + 16tQ(t)* + 64t2Q(t)* = 0




e The number of walks of length n = 2m ending at (0,0) is
m (5/6)m(1/2)m
a(0,0;n) = 16" ~————————,
(5/3)m(2)m

where (a), = a(a+1)---(a+ m— 1) is the ascending factorial.
[Kauers, Koutschan, Zeilberger 08]

e The generating function A(x, y; t) is algebraic.
[Bostan, Kauers 09]

For instance, the series Q(t) := A(0,0; \/t) has degree 8:

27" Q% +108t° Q"7 + 189t°Q° + 189t*Q® — 9t3(32t2 + 28t — 13)Q*
— 9t%(64t% 4 56t — 5) Q> — 2t(256t> — 312t + 156t — 5)Q°
— (32t — 1)(16t> — 28t 4 1)Q — 256t> — 576t° — 48t +1 = 0.







[mbm 02]




[mbm 02]

ARSI

functional equation for A(x, y; t)
canceling the kernel: the roots Yy and Y;
the group of the walk

symmetric functions of Y and Y
Brown's quadratic method (1969)

{




Set step: S = {11,10,01}. Denote x = 1/x and y = 1/y.

Alx,y;t) = Alx,y) =1+ t(xy + x + y)A(x,y) — txA(0,y) — tyA(x,0)




Set step: S = {11,10,01}. Denote x = 1/x and y = 1/y.
Alx,yit) = Alx,y) = 1+ tlxy + X + y)A(x,y) — tXA(0, y) — tyA(x,0)

(1—tlxy + x4 7))A(x,y) = 1 — txA(0,y) — tyA(x,0),



1. A functional equation -

Set step: S = {11,10,01}. Denote x = 1/x and y = 1/y.
Alx,yit) = Alx,y) = 1+ t(xy + X + §)A(x, y) — tXA(0, y) — tyA(x,0)

(1—txy +Xx+7))A(x,y) =1 — txA(0,y) — tyA(x,0),

or

(1 —t(xy +x + y))xyA(x,y) = xy — tyA(0,y) — txA(x, 0)

e The polynomial 1 — t(xy + X + ¥) is the kernel of this equation

e The equation is linear, with two catalytic variables x and y (tautological
at x=0o0ry=0)



e The equation:

(1 —t(xy + X+ y))xyA(x, y) = xy — tyA(0,y) — txA(x,0)



e The equation:
(1— t(xy +x+ 7)) xyA(x,y) = xy — tyA(0, y) — txA(x,0)

e The kernel (1 — t(xy + X+ ¥)), as a polynomial in y, has two roots:

1—tx — /(1 — tx)? — 4t2

Yo(x) = : \/(2tx 2 -= t+xt? + 0(t%),
1—tx 1— tx)? — 4¢2 X

Y]_(X): X+\/( X) X:f_)?z —t—)_<t2+0(t3).

2tx t



=

2. Canceling the kernel

e The equation:

(1 —t(xy +x+ y))xyA(x,y) = xy — tyA(0, y) — txA(x, 0)

e The kernel (1 — t(xy 4+ X +¥)), as a polynomial in y, has two roots:

1—tx — /(1 —tx)% —4t?

Yo(x) = X \/(2tx %) X _ t +xt*> 4+ O(t3),
1— tx 1— tx)? — 4¢2 X

Yl(X) _ X + \/(2t X) X _ ; _)-(2 ¢ —)_<t2 + O(t3).

X

e Specializing y to Yp in the equation gives:
R(X) + R(Yo) =xY)

with R(x) = txA(x, 0) = txA(0, x) (symmetry).
This equation characterizes R(x) but... why algebraicity?



The kernel
K(x,y)=1—t(xy + X +7¥)

is left unchanged by the rational transformations

o (x,y)— (Xy,y) and WV :(x,y)— (x,Xy).



The kernel
K(x,y)=1—t(xy + X +7¥)

is left unchanged by the rational transformations
o (x,y)— (Xy,y) and WV :(x,y)— (x,Xy).

They are involutions, and generate a dihedral group G of order 6:

v
"’/ (xy,y) &y x) —
(x,¥) (v, x)
\ /

v — (xxy) T(YJY) v



e Since K(x, Yp) = 0 and the transformations of G preserve the kernel,
any element of the orbit of (x, Yp) cancels the kernel.

\

q)/ (Y1, Yo) (Y1,x) \O
(X, Yo) (Yo,X)

v (6) 5 (v v



e Since K(x, Yp) = 0 and the transformations of G preserve the kernel,
any element of the orbit of (x, Yp) cancels the kernel.

|
@ (Y17Y0) (Y]_,X) $

x. Yo

v (6) PR v




Build more pairs that cancel the kernel

e Since K(x, Yp) = 0 and the transformations of G preserve the kernel,
any element of the orbit of (x, Yy) cancels the kernel.

\
® (Y1, Yo) (Y1, x) b

x. Yo

v (6) — 0% v

Gives two equations for R:

R(X) + R(Yo) == XY()
R(Yo) + R(Yl) =YY =X

with R(x) = txA(x, 0).



e The elementary symmetric functions of the Y; are polynomials in x:

Yo+ Y1 = — %% and YoY1 = X.

~ | XI



e The elementary symmetric functions of the Y; are polynomials in x:

Yo+ Y1 = %—)_(2 and YpY1 =x.
e Rewrite the equations for R as
R(Yo) — xYo = —R(x)
R(Yl) —xY1 = R(X) + 2x — l/t



e The elementary symmetric functions of the Y; are polynomials in x:

Yo+ Vi = %—;(2 and  YoYi =%
e Rewrite the equations for R as
R(Yo) — xYo = —R(x)
R(Y1) — xY1 = R(x) + 2% — 1/t
e The product is symmetric in Yy and Yi:

(R(Y0) — xY0)(R(Y1) — x¥1) = —=R(x) (R(x) + 2x — 1/1)



4. Symmetric functions of Yy and Y}

e The elementary symmetric functions of the Y; are polynomials in x:

Yo+ Y = ?—22 and  YoY; = .

e Rewrite the equations for R as

R(Yo) — xYo = —R(x)

R(Y1) — xY1 = R(x) + 2% — 1/t
e The product is symmetric in Yy and Yi:

(R(Y0) — xY0)(R(Y1) — xY1) = —R(x) (R(x) + 2x — 1/t)
e Extracting the non-negative powers of x gives:
x —2R'(0) = —=R(x)(R(x) + 2x — 1/t).
No more Y; | Equivalently,
xtR(x)? + (2t — x)R(x) + tx* — 2txR'(0) = 0.



5. Finish: the quadratic method

The series R(x) = txA(x, 0) satisfies
xtR(x)? + (2t — x)R(x) + tx* — 2txR'(0) = 0.
or
t2x%A(x,0)% + (2t — x)A(x,0) — 2tA(0,0) + x = 0.

Tautological at x = 0: a quadratic equation with one catalytic variable x,
and one additional unknown one-variable series A(0,0)
= Brown's quadratic method [Brown 69]



The series R(x) = txA(x, 0) satisfies
xtR(x)? + (2t — x)R(x) + tx* — 2txR'(0) = 0.

2x%A(x, 0)2 + (2t — x)A(x,0) — 2tA(0,0) + x = 0.
Tautological at x = 0: a quadratic equation with one catalytic variable x,

and one additional unknown one-variable series A(0,0)
= Brown'’s quadratic method [Brown 69]

Let X = X(t) be the unique series in t defined by
X =t(2+ X3).

Then the generating function of Kreweras' walks ending on the x-axis is




[mbm 15]



[mbm 15]

functional equation for A(x, y)

canceling the kernel: the roots Yy and Y;

°
°

@ the group of the walk

@ symmetric functions of Yy and Y}
°
°

the generalized quadratic method [mbm-Jehanne 06]

74




Set step: S = {11,10,11,01}

A(x,y) =1+ t(xy + x + Xy + X)A(x,y)
— tx(1+ ¥)A(0,y) — txy (A(x,0) — A(0,0))

SARYEERISN

/




Set step: S = {11,10,11,01}

A(x,y) =1+ t(xy + x + Xy + X)A(x,y)
— tx(1+ ¥)A(0,y) — txy (A(x,0) — A(0,0))

or

(1 —t(xy +x+ xy + )'())xyA(x,y) =xy — S(y) — R(x)

with
S(y) =t(1+y)AQ0,y) and R(x)=t(A(x,0)— A(0,0)).

e Main difference with K’ walks: no x/y symmetry, two bivariate
unknown series R(x) and S(y)



e The equation:

(1 — t(xy + x + Xy +)'<))xyA(x,y) =xy — S(y) — R(x)



e The equation:
(1 tlxy +x + X7 + X)) xvA(x, ¥) = xy — S(y) = R(x)

e The kernel, as a polynomial in y, has two roots
— 4t _

Yo(x): t(x +Xx) — \/(21tx—tx+x))

Vi(x) = —t(x+)'<)+\/(21tx— t(x +x))2 — 4¢2 :>‘?<_(1+)_(2) g

Observe that xYj(x) is symmetric in x and X



A

2. Canceling the kernel

e The equation:
(1—tlxy +x+xy + X)) xyA(x,y) = xy — S(y)

e The kernel, as a polynomial in y, has two roots

Yolx) = 1—t(x+Xx)— \/(21tx—tx—|—x))—4t2:
Vi) = 1—t(x+X)+ \/(21tx— t(x +%))2 — 412 :§

Observe that xYj(x) is symmetric in x and X
e Specializing y to Yp in the equation gives:
R(x) + S(Yo) = xYo

— R(x)



The kernel
K(x,y) =1—t(xy + x + Xy + X)

is left unchanged by the rational transformations

o:(x,y)— (xy,y) and WV:(x,y)— (x, )'(2)7) .



The kernel
K(x,y) =1—t(xy + x + Xy + X)

is left unchanged by the rational transformations
o:(x,y)— (xy,y) and WV:(x,y)— (x, )?2)7) .

They are involutions, and generate a dihedral group of order 8:

v ®
q’/(5077)/) — xyy) T (%xX%) "’\
(x.y) (x.%)
v (6®y) (xy, %%7) v vy Ty



Build more pairs that cancel the kernel

Since K(x, Yp) = 0 and the transformations of G preserve the kernel, any
element of the orbit of (x, Yp) cancels the kernel.

v
d)/ (Xyla YO) —(XY17X2Y0) ()_(,X2Y0) \U\
(Xa YO) ()_(,X2 Y]_)
v () (xYo, V1) (xYo,x*Y1) —
) \; )



Build more pairs that cancel the kernel

Since K(x, Yp) = 0 and the transformations of G preserve the kernel, any
element of the orbit of (x, Yp) cancels the kernel.

" ®
O (xYy, Vo) — (xY,x2Y,) — (X, x*Yp) LW

X, YO ()_(,Xzyl)

T (V) [ (xYo, V1) }w—{ (Xymxzyl)‘q)/




Build more pairs that cancel the kernel

Since K(x, Yp) = 0 and the transformations of G preserve the kernel, any
element of the orbit of (x, Yp) cancels the kernel.

" ®
O (xYy, Vo) — (xY,x2Y,) — (X, x*Yp) LW

X, YO ()_<7X2Y1)

lll\ (x, Y1) ’ (xYo, Y1) }w—{ (xYo, X Yl)‘(b/

Gives four equations for R and S:
R(x) + S(Yo)

R(Yo) + S(Y1)

R(X) + S(x*Yo)

R(xYo) + S(x*Y1)

Y
xY(
x3

0Y1—X



e The elementary symmetric functions of the Y; are polynomials in x:

Y0+Y1:—1+%—>'<2 and  YoYi = X2



4. Symmetric functions of Yy and Y}
e The elementary symmetric functions of the Y; are polynomials in x:
Yo+ V1= —1+§—>‘<2 and  YoYi = X2

e From the four equations:

R(x) + S(Yo) = x¥o
R(xYo) + S(Y1) = YoY1 = %
R(x) + S(x*Y0) = xYo
R(xY0) + S(x*Y1) = x3Yo Y1 = x,

one constructs two symmetric functions of Yy and Y7, and extracts
non-negative powers of x.
This gives an equation without any Yj... but with R(x) and R(x).



This gives:

R(x)? + R(x)R(X) + R(X)? + (2% — 1/t + x + S(0))R(x)
+(2x — 1/t + X + S(0))R(X) = 2R'(0) — (X + x — 1/£)S(0) — 1

while for Kreweras' walks:

xtR(x)? + (2t — x)R(x) + tx? — 2txR'(0) = 0.

e Main difference: the terms R(x)

e Main difficulty: the hybrid term R(x)R(x)



The equation reads:

R(x)? + R(x)R(X) + R(x)? + (2% — 1/t + x + S(0))R(x)
+ (2x — 1/t + x + S(0))R(x) = 2R'(0) — (x + x — 1/t)S(0) — 1.

But but but...
(8> +ab+ b*)(a—b)=2a°- b



The equation reads:

R(x)? + R(x)R(X) + R(x)? + (2% — 1/t + x + S(0))R(x)
+ (2x — 1/t + x + S(0))R(x) = 2R'(0) — (x + x — 1/t)S(0) — 1.

But but but...
(8> +ab+ b*)(a—b)=2a°- b

= Multiply by R(x) — R(X) + x — x !



5. Les identités remarquables & notre secours

The equation reads:

R(x)* + R(x)R(X) + R(X)* + (2x — 1/t + x + S(0))R(x)
+(2x =1/t +x + S(0))R(x) = 2R'(0) — (x + x — 1/t)S(0) — 1.
But but but...
(8> +ab+ b*)(a—b)=2a°- b
= Multiply by R(x) — R(x) + X — x ! This gives P(x) = P(x), with

P(x) = R(x)*> 4+ (5(0) 4+ 3x — 1/t)R(x)?
+ (2% — %/t + x/t — x> — 2R'(0) + (2% — 1/£)S(0)) R(x)
—x?S(0) + x (2R'(0) + S(0)/t — 1) .



5. Les identités remarquables & notre secours

We have obtained P(x) = P(X), with
P(x) = R(x)* 4 (S(0) + 3% — 1/t)R(x)?
+ (2% — %/t + x/t — x> — 2R'(0) + (2% — 1/£)5(0)) R(x)
—x*S(0) + x (2R'(0) + S(0)/t — 1) .

Extract nonnegative powers of x:

R(x)® + (5(0) + 3% — 1/t)R(x)?
+ (2%% — %/t + x/t — x* = 2R'(0) + (2% — 1/t)S(0)) R(x)
= R"(0) + R'(0)(25(0) + 2x — 1/t) + xS(0)(x — 1/t) + x.

A cubic equation in one catalytic variable x, with three additional
unknown one-variable series 5(0), R'(0) and R”(0).



R(x)® 4+ (S(0) + 3x — 1/t)R(x)?
+ (2%% — %/t + x/t — x* = 2R'(0) + (2% — 1/t)S(0)) R(x)
= R"(0) + R'(0)(25(0) + 2x — 1/t) + xS(0)(x — 1/t) + x.

Every series R(x; t) = R(x) solution of a (proper) polynomial equation
with one catalytic variable x is algebraic. That is, if

:D(t',X7 R(X),Al,...,Ak) =00

for some polynomial P with coefficients in Q, then R(x) is algebraic over
Q(t, x), and each A; is algebraic over Q(t).

[mbm-Jehanne 2006] (after [Knuth 72] and [Brown 65])




The generating function A(x, y; t) is algebraic of degree 72
(explicit equations and rational parametrizations for A(x,0) and A(0, y))

e In particular, the series Q(t) := A(0,0;/t) has degree 8:

27t Q% 4 108t° Q7 + 189t°Q° + 189t* Q° — 9t3(32t2 + 28t — 13)Q*
— 9t?(64t2 + 56t — 5)@> — 2t(256t> — 312t + 156t — 5)Q?
— (32t — 1)(16t> — 28t + 1)Q — 256t> — 576t° — 48t +1 = 0.

e The number of walks of length n = 2m ending at (0,0) is

o (5/6)m(1/2)m
/3 m(@m

where (a), = a(a+1)---(a+ m — 1) is the ascending factorial.

a(0,0;2m) =



@ other elementary proofs will come for sure

@ 3D Kreweras' walks remain mysterious

@ works for other algebraic models with repeated steps, proved so far
by computer algebra [Kauers, Yatchak 14(a)]



@ other elementary proofs will come for sure

@ 3D Kreweras' walks remain mysterious

@ works for other algebraic models with repeated steps, proved so far
by computer algebra [Kauers, Yatchak 14(a)]

A
@ Open: Find elementary proofs for
A
Algebraic D-finite
Conj. [Kauers, Yatchak 14(a)] Proof via computer algebra
Proof via complex analysis [R. et al.] | [Kauers, Yatchak 14(a)]




e Assume
P(F(X),Al, ey Ak t,X) =0

where P(xg, X1, ..., Xk, t, x) is a polynomial with coefficients in K,
F(x) = F(x; t) € K[x][[t]], and A; € K[[¢]] for all /.



Polynomial equations with one catalytic variable

e Assume

where P(xg, X1, ..., Xk, t, x) is a polynomial with coefficients in K,
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Polynomial equations with one catalytic variable

e Assume

where P(xg, X1, ..., Xk, t, x) is a polynomial with coefficients in K,
F(x) = F(x; t) € K[x][[t]], and A; € K[[¢t]] for all i.
e For any series X = X(t) such that

@ the series F(X) = F(X; t) is well-defined

o SE(F(X),AL,..., Ak t,X) =0,

one has

oP
a(F(X),Al, ey Ak, t,X) =0.
Proof: differentiate (1) with respect to x
FI00) G (FO A A £.) + 5 (F (), A A £.X) = 0.



Polynomial equations with one catalytic variable

e Assume there exist k series Xy, ..., X) such that

oP

—(F(X;),Aq,..., Ak, t, X;) =0.
Gxo( ( 1)7 1, s My Ly /)

In this case, for each X;,

oP
—(F(X), AL, - .., Ak, £, Xi) =
8X( ( ) 1 P ) 0
and
P(F(X;), A1, ..., A t, X;) =0.
e This system of 3k polynomial equations in 3k unknowns As, ..., A,

Xty Xk, F(X1),..., F(Xx) may imply (together with the fact that the
X; are distinct) the algebraicity of the A;.

[mbm-Jehanne 06]
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Naive route: guess and check!

@ Guess a polynomial equation Pol satisfied by A(x, y; t)
(degrees [18,18,17,12] in x,y, t, A)
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Example. When S = {10,01, 11}, the equation reads

(1—t(x+y+xy))xvA(x,y; t) = xy — tyA(0, y; t) — txA(x, 0; t).

Naive route: guess and check!

@ Guess a polynomial equation Pol satisfied by A(x, y; t)
(degrees [18,18,17,12] in x,y,t, A)

@ Let F(x,y;t) be the solution of Pol that coincides with A(x, y;t) up
to high order (in t)

@ Prove that F(x,y; t) is a formal power series in t with polynomial
coefficients in x and y = F(x,0;t) and F(0,y; t) are well-defined

e By taking resultants, prove that F(x, y; t) satisfies the above
functional equation.
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Example. When S = {10,01, 11}, the equation reads
(1 —t(x +7 +xy))xvA(x, y; t) = xy — tyA(0, y; t) — txA(x, 0; t).

A less naive route

@ Guess a polynomial equation Pol satisfied by A(x,0; t) = A(0, x; t)
(degrees [6,10,6] in x, t, A)

o Let F(x,0;t) be the solution of Pol that coincides with A(x,0; t) up
to high order (in t)

@ Prove that F(x,0;t) is a formal power series in t with polynomial
coefficients in x

@ By taking resultants, prove that F satisfies the equation obtained by
canceling the kernel:

txF(x,0; t) + tYoF(Y0,0; t) = xYo.
@ Then
(1—t(x+y+xy))xyA(x,y; t) = xy — tyF(y,0; t) — txF(x,0; t).



e When S = {10, 10, 11,11}, the series A(x, y; t) is algebraic (degree 72).

e In particular, the series A(0, 0; t), which counts loops, has degree 8, and
the following expansion:

A(0,0; t) 216” (5/6)n 1/2)” 2", (1)

n>0 5/3 )
with ()p = i(i + 1)+ (i + n— 1).

(1): Conjectured around 2001, first proof by [Kauers, Koutschan &
Zeilberger 09] using computer algebra.

The algebraicity of A(x,y; t) has now been re-proved using a complex
analysis approach [Bostan, Kurkova & Raschel 13(a)]




Markov chains with small steps in the quadrant: stationary distribution(s)
[Malyshev 71+

Le petit livre jaune
[Fayolle, lasnogorodski & Malyshev 99]
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= Reduction to a boundary value problem of the Riemann-Carleman type



K(x,0; t)A(x,0; t) — K(0,0; t)A(0,0; t) = xYo(x; t)+

1 e _ . Ouw(u; t) Ouw(u; t)
ulYo(u; t) = Ya(u; t)] w(u; t) — w(x; t) - w(u; t) — w(0; t) ¢

2iT xl(t)

where Yp, Y1, x1 and x» are explicit algebraic series and w is explicit/
very well understood.

[Raschel 12] + Fayolle, Kurkova

+ other formulas that complete the characterization of A(x,y; t)




K(x,0; t)A(x,0; t) — K(0,0; t)A(0,0; t) = xYo(x; t)+

1 e _ . Ouw(u; t) Ouw(u; t)
ulYo(u; t) = Ya(u; t)] w(u; t) — w(x; t) - w(u; t) — w(0; t) ¢

2iT xl(t)

where Yp, Y1, x1 and x» are explicit algebraic series and w is explicit/
very well understood.
In particular, w is D-finite (in fact, algebraic!) iff the group is finite.

[Raschel 12] + Fayolle, Kurkova

+ other formulas that complete the characterization of A(x,y; t)




e If S has an infinite group and is not singular, then A(x,y; t) is not
D-finite in x (= no differential equation with respect to x)

[Kurkova & Raschel 12]

e A new proof of the algebraicity of Gessel's model

[Bostan, Kurkova & Raschel 13(a)]






