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Enumeration and generating functions

Let A be a set of discrete objects equipped with a size:
size: A — N

a +— |aj
Assume that for all n,
Apn :={a € A:|a| =n} is finite.
Let a(n) = |Ap|.

The generating function of the objects of A, counted by their size, is

A(t) = ) a(n)t"

n>0
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Applications: probability, algebra, computer science (analysis of algorithms),
statistical physics... and curiosity



Rational and algebraic formal power series

e The formal power series A(t) is algebraic (over Q(t)) if it satisfies a (non-
trivial) polynomial equation:

P(t, A(t)) = O.

e The formal power series A(t) is rational if it can be written
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where P(t) and Q(t) are polynomials in t.



Rational and algebraic formal power series

e The formal power series A(t) is algebraic (over Q(¢)) if it satisfies a (non-
trivial) polynomial equation:

e The formal power series A(t) is rational if it can be written

where P(t) and Q(t) are polynomials in t.

e A class of objects having a rational [algebraic] generating function will be
said to be rational [algebraic].



Some charms of rational and algebraic series

e Closure properties (4, x, /, derivatives, composition...)

e “Easy” to handle (partial fraction decomposition, Puiseux expansions, elimi-
nation, resultants, Grobner bases...)

e Algebraicity can be guessed from the first coefficients (GFUN)
e [ he coefficients can be computed in a linear number of operations.

e (Almost) automatic asymptotics of the coefficients: in general,

where k and p are algebraic over Q and d € Q\ {-1,-2,...}.



What does it mean for a class of objects to have

a rational [algebraic] generating function?



Combinatorial constructions and operations on series: A dictionary

Construction Numbers Generating function
Union A=BWC | aln) =b(n)+ c(n) A(t) = B@) + C(t)
Product A=BxC | a(n) =b(0)c(n) +--- A() = B(@) - C(1t)

+b(n — 1)c(1) + b(n)c(0)
(B, V)] = 18] + ]

“Symbolic Combinatorics” [Flajolet-Sedgewick]



A rational example: integer compositions

o Let n € N. A composition of size n with k parts is a k-tuple ¢ = (n1,...,ny)
with n; € {1,2,...} for all i and ny + - +n, = n.
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A rational example: integer compositions

o Let n € N. A composition of size n with k parts is a k-tuple ¢ = (n1,...,ny)
with n; € {1,2,...} for all i and ny + - +n, = n.

e Let C(t) be the generating function of compositions, counted by their size.
Then

C(t) = t + tC(t) + tC(2).
B
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An algebraic example: binary trees

e Let B(t) be the generating function of binary trees, counted by the number
of (inner) nodes. Then

B(t) = 1+ tB(t)?

Catalan number.




Rational and algebraic series: a combinatorial intuition

e ‘“Linear” structure of rational objects

-
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e ‘"Tree-like” structure of algebraic objects

= {O} U



Rational and algebraic series: a combinatorial intuition

e ‘“Linear” structure of rational objects

-
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e ‘"Tree-like” structure of algebraic objects

= {o} U
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1. Formalize this intuition: tree-like structures, N-algebraic series
2. Are all algebraic objects tree-like?
3. How does one prove algebraicity?

Similar questions for rational objects and linear structures



Part 1: Tree-like structures and N-algebraic series

[Formal languages — Regular and context-free languages]



Tree-like constructions

Building blocks: a finite collection of initial objects (atoms)

Take (disjoint) unions: (A,B) — A+ B

Take cartesian products: (A,B) — A-B

The construction may involve k different classes of objects A4,..., A

1+2t + 4tA; + (12t +t2)Ay + t2A1A3
14tA; + 8tA- + 3tA3

Example: A4
Ao



Tree-like constructions

Building blocks: a finite collection of initial objects (atoms)

Take (disjoint) unions: (A,B) — A+ B

Take cartesian products: (A,B) — A-B

The construction may involve k different classes of objects A4,..., A

1+2t + 4tA; + (12t +t2)Ay + t2A1A3
14tA; + 8tA- + 3tA3

Example: A4
Ao

Definition: A series A is N-algebraic if there exists a k-tuple of formal power
series A = (Aq,...,A;) such that A= A; and for 1 <j; <k

where
e each P; is a polynomial with coefficients in N
e the map B — ®™(B) is a contraction for some m.



Tree-like constructions

Building blocks: a finite collection of initial objects (atoms)

Take (disjoint) unions: (A,B) — A+ B

Take cartesian products: (A,B) — A-B

The construction may involve k different classes of objects A4,..., A

Example: A4
Ao

1+2t + 4tA; + (12t +t2)Ay + t2A1A3
14tA; + 8tA5 + 3tA3

Definition: A series A is N-algebraic if there exists a k-tuple of formal power
series A = (Aq,...,A;) such that A= A; and for 1 <j; <k

where
e each P; is a polynomial with coefficients in N
e the map B — ®™(B) is a contraction for some m.

Property: The series A; are uniquely defined by this system, have coefficients
in N and are algebraic.



Linear constructions

Building blocks: a finite collection of initial objects (atoms)
Take (disjoint) unions: (A,B) — A+ B

Take cartesian products with atoms only: A — td A

The construction may involve k different types of objects

142t + 4tA] + (12t +tD)A,
14tA1 + 8tA>

Example: A4
Ao

Definition: A series A is N-rational if there exists a k-tuple of formal power
series A = (Aq,...,A;) such that A= A; and for 1 <j; <k

where

e cach P;(t,x1,...,x) is a polynomial with coefficients in N of total degree at
most 1 (in the x;),

e the map B — ®™(B) is contractant for some m.

Property: The series A; are uniquely defined by this system, have coefficients
in N and are rational.



Combinatorial models for N-rational and N-algebraic series

e Let A(t) be an N-rational series. There exists a directed graph G, and two
vertices v and vy in G such that A(t) — A(0) counts walks going from vq to vs
in the graph (by their length).

e Let A(t) be an N-algebraic series. There exists a family of coloured trees
that has generating function A(t) — A(0).



Part 2: Are all algebraic objects tree-like?



Are all algebraic objects tree-like?

Let A be a class of objects with an algebraic generating function A(t).

1. N-algebraicity
Is the series A(t) N-algebraic?

2. Tree-like structure
Is a tree-like structure visible directly on the objects?
How easy is it to detect that A has an algebraic generating function?

Similar questions for rational GFs and linear structures.



Are all algebraic objects tree-like?

Let A be a class of objects with a rational [algebraic] generating function A(t).

1. N-rationality/N-algebraicity
Is the series A(t) N-rational [ N-algebraic]?

Rational GF Algebraic GF
~ YES
I have never met a counting problem I do not know how to detect
with a rational, N-algebraicity
but not N-rational
solution



A criterion for N-rationality [Soittola]

A rational series A(t) = Y1 a(k)tF with coefficients in N is N-rational iff
e cither Y1 a(k)tF has a unique pole of minimal modulus (a dominant pole),

e or each of the series Y1 a(2k)tF and Y, a(2k + 1)t* have a unique dominant
pole,

e or each of the series Y1 a(3k)tF, Y a(3k + 1)t* and Y, a(3k 4+ 2)tF have a
unigue dominant pole,

e ctcC.



A criterion for N-rationality [Soittola]

A rational series A(t) = Y1 a(k)t® with coefficients in N is N-rational iff
e cither Y, a(k)t® has a unique pole of minimal modulus (a dominant pole),

e or each of the series Y1 a(2k)tF and Y, a(2k + 1)t have a unique dominant
pole,

e or each of the series Y1 a(3k)tF, Y a(3k + 1)tk and Y a(3k 4+ 2)tk have a
uniqgue dominant pole,

e ctcC.

Application: The series

1 — 2t + 225¢2
(1 —25t)(625t2 + 14t + 1)
has non-negative integer coefficients, but is NOT N-rational.

A(t) =




A criterion for N-algebraicity?

Question: Given an algebraic series A(t), how can we decide whether it is N-
algebraic?
At least, can we state a necessary condition for an algebraic series to be N-
algebraic?

Suggestion: look at the singularities of A(t)

What are the possible singular behaviours
of an N-algebraic series?



Singular behaviour of algebraic series

T heorem

Let A(t) =3, a(n)t™ be an algebraic series with coefficients in N.

Let p be its radius of convergence. Then A(t) is singular at p, with a singular
expansion of the form

Asing(t) = C(1 —t/p)" +o((1 —t/p)7)
where + ¢ ()\ N

[Newton-Puiseux]



Singular behaviour of N-algebraic series

(Future) theorem

Let A(t) =3, a(n)t™ be an N-algebraic series.

Let p be its radius of convergence. Then A(t) is singular at p, with a singular
expansion of the form

Asing(t) = C(1 —t/p)’ +o((1L —t/p)7)
where
k
?7
for ke {1} u{-1,-2,-3,...} and de {1,2,3,...}

’y:

[mbm-Schaeffer, in preparation]



Rooted planar maps: a candidate for non-N-algebraicity

Proper embedding of a connected planar graph in the plane.
One edge is oriented, with the infinite face on its right.

n edges

m(n)

Enumeration of planar maps by edges [Tutte 63]

M=A—tA3, with A=1+4 3tA%

Remark. Aging(t) ~ C(1—-12t)/? = A good candidate for non-N-algebraicity



Are all algebraic objects tree-like?

2. Tree-like structure
How easy is it to detect that A has a rational [algebraic] generating function?
Is a linear [tree-like] structure visible directly on the objects?

Rational GF Algebraic GF
~ VYV e S
Detecting rational GFs Many mysterious algebraic objects
and a linear structure
iIs (usually) easy



Part 3: A gallery of “hard’ algebraic objects



Algebraic objects with no obvious tree-like structure

1. Brute force approach

Describe any recursive construction of the objects. Convert it into any func-
tional equation for the generating function. Prove that the solution of this
equation is algebraic.

2. More combinatorics
Describe a recursive construction of the objects based on concatenation that

gives directly a system of algebraic equation(s).

Both approaches may require to describe first a bijection with another class of
objects.



Planar maps: the brute force approach

Let
F(t,u) = F(u) = Zte(M)ud(M)
M

where e(M) is the number of edges of M and d(M) is the degree of the infinite
face. Then

F(u) =

Polynomial equation with one catalytic variable, w.
[Tutte 68]



Polynomial equations with one catalytic variable [MBM-Jehanne 05]

e Example

F(u) =14+ tuF(u)3 + tu (F(u) — F(1)) (2F(u) + F(1)) + tu(F(u) — F(1) — (u—1) F/(l))‘

u—1 (u—l)2

e General framework
Assume a (k+1)-tuple (F(u), Fy,..., F}) of formal power series in t is completely
defined by the equation

P(F(u), Fy,..., Fyt,u) =0 (1)

Typically, F'(u) = F(t,u) has polynomial coefficients in u, and F; = F;(t) is the
coefficient of w'~1 in F(t,u).

e Results
1. The solution of every proper equation of this type is algebraic.

2. A practical strategy allows to solve specific examples (that is, to derive
from (1) an algebraic equation for F(u), or Fy,..., F}).



Hard particles on planar maps

tu (uF(u) — F7)

o F(u) =1+ G)~+ tu’F(u)? +

u—1
o G(u)=tuF(u)+ tuF(u)G(u) + e (GI(LU_) 1_ G1)

t°F(1) = T?°(1—7T+16T°+T—-15T3+4T%) with T(1-2T)(1-3T7T4+3T2) =+t.



Rooted planar maps: a combinatorial explanation

e Bijection between planar maps (n edges) and balanced blossoming trees (n
nodes) [Schaeffer 97]

A planar map (GF M) A blossoming tree A = 1 + 3tA?

e An unbalanced blossoming tree is, in essence,
a 3-tuple of blossoming subtrees [Bouttier et al.
02]:

— M = A —tA3.



Find combinatorial explanations for...



Walks on the slit plane

o o ‘ o *
@ l : l o -
C__ - +
S(’U,,’U,t) ‘= Z’i,j,n CL(’I:,j, n)uivjt” = I *o— & —o—¢
— -9--@---- o -
1 o
- I 1 n steps
o —0—0—0 ..
| a(z,j,n)
e Why is S(u,v;t) algebraic? Let u =1/u and v = 1/v. Then

(1—2t(1+a)+m)1/2 (1+2t(1—ﬁ)+m)

1/2
1—t(ut+ua+v+2) '

S(u,v;t) =

e Why is §; ;(t) := >, a(i, j, n)t" algebraic for all < and ;57

a(1,0;2n+1) = Copy1, a(0,1;2n+1) =4"Ch, a(—1,1;2n) =Chy, ...

[Barcucci et al. 01]

[IMBM-Schaeffer 02] [MBM 01] Cn =

g ) — nth Catalan
n

n



Kreweras’ walks in the quarter plane

V1 *x/
Y = D ol ,_:21 1,
/. l/ n steps
/ P4 a(n)

e Why is Q(t) algebraic? Let W = ¢(2 + W3). Then

@we)y1-w? 1
Q) =2 13t R

e Why is a(7,0;n), the number of walks ending at (¢,0), nice and simple?

a(i,0; 3n + 2i) = (n+i+1)(2n+2i+ 1)

1 n

[Kreweras 65], [Niederhausen 83], [Gessel 86],
[MBM 04],



Embedded binary trees

The generating function of binary trees of right width < j is:

(1 —ZIt2)(1 -2t
(1 —Zi+tH) (1 — Zi+d)’
where A counts binary trees and Z = Z(t) is the unique series in ¢t such that

(1+22)°
(1-2+ 22
[mbm 05] But. . . why?

Wey = 4

Z =t and  Z(0) = 0.




Concluding remarks

e Not all generating functions are algebraic!

Analytic techniques - Asymptotics: . I_I
[Flajolet 87] | |
] o o—Q
Algebraic techniques - Reduction modulo p: | |
O @ O——@—@ O
[Allouche 97] | |
o @ o

e One more step in the hierarchy of generating functions

Type of series | Combinatorial intuition
polynomials finite sets

rational linear structures
algebraic algebraic structures
D-finite felele

D-finite series <~ P-recursive sequences:

Po(n)a(n) + Pi(n)a(n — 1)+ --- 4+ P.(n)a(n — k) = 0.



Reverse endgineering?

For
_ (2n)! _(6n)!(n)! _ (10n)!(n)! .
=" In= (3n)1(2n)!12’ Jn = (5n)1(4n)!(2n)!’ Jn =
the series
F(t) = Z fnt"
n>0

has coefficients in N and is algebraic [Rodriguez-Villegas 05].

Does it count something?

(20n)!(n)!

(10n)!1(7n)!1(4n)!’



