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Let S ⊂ Z3 be a finite set of steps in the 3D space.
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The question

Let S ⊂ Z3 be a finite set of steps in the 3D space.

Example: S = {001̄,01̄0, 1̄00,111}

Consider walks that start from (0,0,0), take their steps in S, and are confined

to the positive octant {(i, j, k) : i ≥ 0, j ≥ 0, k ≥ 0}.

Questions

– Determine o(n), the number of such walks that have length n

– or o(i, j, k;n), the number of such walks that have length n and end at

position (i, j, k)

– or the associated 4-variable generating function:

O(x, y, z; t) =
∑

i,j,k,n≥0

o(i, j, k;n)xiyjzktn

– or the nature of this generating function.



A hierarchy of formal power series

• The formal power series A(t) is rational if it can be written

A(t) =
P(t)

Q(t)

where P(t) and Q(t) are polynomials in t.

• The formal power series A(t) is algebraic (over Q(t)) if it satisfies a (non-

trivial) polynomial equation:

P(t, A(t)) = 0.

• The formal power series A(t) is D-finite if it satisfies a (non-trivial) linear

differential equation:

Pk(t)A
(k)(t) + · · ·+ P0(t)A(t) = 0.

+ extension to several variables + closure properties
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Let S ⊂ Z3 be a finite set of steps in the 3D space.

Example: S = {001̄,01̄0, 1̄00,111}

Consider walks that start from (0,0,0), take their steps in S, and are confined

to the positive octant {(i, j, k) : i ≥ 0, j ≥ 0, k ≥ 0}.

Questions

– Determine o(n), the number of such walks that have length n

– or o(i, j, k;n), the number of such walks that have length n and end at

position (i, j, k)

– or the associated 4-variable generating function:

O(x, y, z; t) =
∑

i,j,k,n≥0

o(i, j, k;n)xiyjzktn

– or the nature of this generating function.



Lattice paths confined to convex cones

• Dimension 1: walks confined to a half-line

The generating function H(x; t) is always algebraic

[Gessel 80], [Labelle-Yeh 90], [mbm-Petkovšek 00],

[Duchon 00], [Banderier-Flajolet 02] time

i

• Dimension 2: walks confined to the positive quadrant

The generating function Q(x, y; t) is sometimes algebraic,

sometimes D-finite, sometimes non-D-finite.

Complete classification for walks with “small” steps:

S ⊂ {1̄,0,1}2
i

j

Bernardi, Bostan, MBM, Cori, Denisov, Dulucq, Fayolle, Gessel, Gouyou-

Beauchamps, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Kratten-

thaler, Kurkova, Kreweras, Melczer, Mishna, Niederhausen, Petkovšek, Prell-

berg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeil-

berger...



Why just positive cones?

In 2D, a convex rational cone is either:

• a half-plane

⇒ equivalent to a

(weighted) model of

walks on a half-line

⇒ algebraic

• or a linear deformation of the quadrant

⇒ equivalent to a quadrant model



3D walks in an octant — Small steps

Let S ⊂ {1̄,0,1}3 \ {(0,0,0)} be a set of small steps in the 3D space.

Questions

– Determine o(n), or o(i, j, k;n) (number of walks)

– or the associated generating function:

O(x, y, z; t) =
∑

i,j,k,n≥0

o(i, j, k;n)xiyjzktn.

There are “only” 226 such problems!

Specific question

Ad hoc solution
Systematic approach



The number of interesting distinct models

Remove

• models in which all steps are non-negative (rational GF)

• models in which one positivity condition implies the other two

(∼ walks in a half-space ⇒ algebraic GF)

• models in which one step is never used

and declare equivalent models that only differ by a permutation of the coordi-

nates.
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Proposition: one is left with 11074225 ≃ 223.4... distinct models.



The number of interesting distinct models

Remove

• models in which all steps are non-negative (rational GF)

• models in which one positivity condition implies the other two

(∼ walks in a half-space ⇒ algebraic GF)

• models in which one step is never used

and declare equivalent models that only differ by a permutation of the coordi-

nates.

Proposition: one is left with 11074225 ≃ 223.4... distinct models.

With at most 6 steps:

73u3 +979u4 +6425u5 +28071u6 +O(u7)

We focus on the 35 548 models with at most 6 steps.



I. Some useful tools

I.1. A step-by-step construction,

and the associated functional equation



A functional equation: example in 2D

Example: S = {N,W, SE}

Generating function:

Q(x, y; t) =
∑

i,j,n≥0

q(i, j;n)xiyjtn

Functional equation:

Q(x, y; t) ≡ Q(x, y) = 1+ tyQ(x, y) + t
Q(x, y)−Q(0, y)

x
+ tx

Q(x, y)−Q(x,0)

y

A linear discrete partial differential equation



A functional equation: example in 2D

Example: S = {N,W, SE}

Generating function:

Q(x, y; t) =
∑

i,j,n≥0

q(i, j;n)xiyjtn

Functional equation:

Q(x, y; t) ≡ Q(x, y) = 1+ tyQ(x, y) + t
Q(x, y)−Q(0, y)

x
+ tx

Q(x, y)−Q(x,0)

y

or, with x̄ = 1/x and ȳ = 1/y,
(

1− t(y + x̄+ xȳ)
)

Q(x, y) = 1− tx̄Q(0, y)− txȳQ(x,0),

or
(

(1− t(y + x̄+ xȳ)
)

xyQ(x, y) = xy − tyQ(0, y)− txQ(x,0)

We call K(x, y) = (1− t(y + x̄+ xȳ) the kernel of the equation.



A functional equation: example in 3D

• Take S = {1̄1̄1̄, 1̄1̄1, 1̄10,100}. The functional equation reads

O(x, y, z) =1+ t(x̄ȳz̄ + x̄ȳz + x̄y + x)O(x, y, z)

− tx̄(y + ȳz + ȳz̄)O(0, y, z)− tx̄ȳ(z + z̄)O(x,0, z)− tx̄ȳz̄O(x, y,0)

+ tx̄ȳ(z + z̄)O(0,0, z) + tx̄ȳz̄O(0, y,0) + tx̄ȳz̄O(x,0,0)

− tx̄ȳz̄O(0,0,0).



A functional equation: example in 3D

• Take S = {1̄1̄1̄, 1̄1̄1, 1̄10,100}. The functional equation reads

O(x, y, z) =1+ t(x̄ȳz̄ + x̄ȳz + x̄y + x)O(x, y, z)

− tx̄(y + ȳz + ȳz̄)O(0, y, z)− tx̄ȳ(z + z̄)O(x,0, z)− tx̄ȳz̄O(x, y,0)

+ tx̄ȳ(z + z̄)O(0,0, z) + tx̄ȳz̄O(0, y,0) + tx̄ȳz̄O(x,0,0)

− tx̄ȳz̄O(0,0,0).

• Equivalently,

K(x, y, z)xyzO(x, y, z) = xyz − tyz(y + ȳz + ȳz̄)O(0, y, z)− tz(z + z̄)O(x,0, z)

− tO(x, y,0) + tz(z + z̄)O(0, 0, z) + tO(0, y,0) + tO(x,0,0)− tO(0, 0,0)

where the kernel is

K(x, y, z) = 1− t(x̄ȳz̄ + x̄ȳz + x̄y + x).



A functional equation: example in 3D

• Take S = {1̄1̄1̄, 1̄1̄1, 1̄10,100}. The functional equation reads

O(x, y, z) =1+ t(x̄ȳz̄ + x̄ȳz + x̄y + x)O(x, y, z)

− tx̄(y + ȳz + ȳz̄)O(0, y, z)− tx̄ȳ(z + z̄)O(x,0, z)− tx̄ȳz̄O(x, y,0)

+ tx̄ȳ(z + z̄)O(0,0, z) + tx̄ȳz̄O(0, y,0) + tx̄ȳz̄O(x,0,0)

− tx̄ȳz̄O(0,0,0).

• Equivalently,

K(x, y, z)xyzO(x, y, z) = xyz − tyz(y + ȳz + ȳz̄)O(0, y, z)− tz(z + z̄)O(x,0, z)

− tO(x, y,0) + tz(z + z̄)O(0, 0, z) + tO(0, y,0) + tO(x,0,0)− tO(0, 0,0)

where the kernel is

K(x, y, z) = 1− t(x̄ȳz̄ + x̄ȳz + x̄y + x).

⇒ Determine O(x, y, z; t) up to a large order (in t) and try to guess if it is

algebraic or D-finite (order ≃ 50 and degree ≃ 3000 is not unusual).



I. Some useful tools

I.2. The group of the walk

[Fayolle et al. 99]



What is this group? A 2D example

When S = {N,W, SE}, the kernel reads

K(x, y) = 1− tS(x, y) with S(x, y) = x̄+ y + xȳ.

Observation: S(x, y) (and thus K(x, y)) is left unchanged by the rational trans-

formations

Φ : (x, y) 7→ (x̄y, y) and Ψ : (x, y) 7→ (x, xȳ) .

They are involutions, and generate a finite group G:

(x̄y, y)

(x, xȳ)

(x̄y, x̄)

(ȳ, xȳ)

Ψ

ΦΨ

Φ

(x, y)

Ψ

Φ

(ȳ, x̄)



The group is not always finite

• If S = {S,W, SW,NE}:

Φ : (x, y) 7→ (x̄ȳ(1 + ȳ), y) and Ψ : (x, y) 7→ (x, x̄ȳ(1 + x̄))

seem to generate an infinite group

Ψ

Φ

(x, y)

· · ·

· · ·(x, x̄ȳ(1 + x̄))

(x̄ȳ(1 + ȳ), y)
Ψ

Φ

· · ·

· · ·

· · ·

· · ·

Φ

Ψ

Ψ

Φ



What is the group? A 3D example

• Take S = {1̄1̄1̄, 1̄1̄1, 1̄10,100}. The kernel is

K(x, y, z) = 1− t(x̄ȳz̄ + x̄ȳz + x̄y + x).

• The group is generated by

[x, y, z]
Φ
7→ [x̄(y + ȳz + ȳz̄), y, z] , [x, y, z]

Ψ
7→ [x, ȳ(z + z̄), z] , [x, y, z]

Λ
7→ [x, y, z̄] .

[x̄(y + ȳz + ȳz̄), ȳ(z + z̄), z̄]

[x, y, z̄][x, ȳ(z + z̄), z][x̄(y + ȳz + ȳz̄), y, z]

[x̄(y + ȳz + ȳz̄), ȳ(z + z̄), z] [x̄(y + ȳz + ȳz̄), y, z̄]

[x, y, z]

Ψ

Φ Λ

ΦΛ

Φ Λ

[x, ȳ(z + z̄), z̄]

Ψ

Ψ

Ψ



Relevance of the group size:

Classification of quadrant walks with small steps

2D quadrant models: 79

|G|<∞: 23

D-finite

|G|=∞: 56

not D-finite



I. Some useful tools

I.3. Models with a finite group:

The orbit equation



The orbit equation: when S = {N,W, SE}

• The equation reads

K(x, y) xyQ(x, y) = xy− txQ(x,0)− tyQ(0, y) with K(x, y) = 1− t(y+ x̄+xȳ).

• The orbit of (x, y) under G is

(x, y)
Φ
←→(x̄y, y)

Ψ
←→(x̄y, x̄)

Φ
←→(ȳ, x̄)

Ψ
←→(ȳ, xȳ)

Φ
←→(x, xȳ)

Ψ
←→(x, y).

• All transformations of G leave K(x, y) invariant. Hence

K(x, y) xyQ(x, y) = xy − txQ(x,0) − tyQ(0, y)

K(x, y) x̄y2Q(x̄y, y) = x̄y2 − tx̄yQ(x̄y,0) − tyQ(0, y)



The orbit equation: when S = {N,W, SE}

• The equation reads

K(x, y) xyQ(x, y) = xy− txQ(x,0)− tyQ(0, y) with K(x, y) = 1− t(y+ x̄+xȳ).

• The orbit of (x, y) under G is

(x, y)
Φ
←→(x̄y, y)

Ψ
←→(x̄y, x̄)

Φ
←→(ȳ, x̄)

Ψ
←→(ȳ, xȳ)

Φ
←→(x, xȳ)

Ψ
←→(x, y).

• All transformations of G leave K(x, y) invariant. Hence

K(x, y) xyQ(x, y) = xy − txQ(x,0) − tyQ(0, y)

K(x, y) x̄y2Q(x̄y, y) = x̄y2 − tx̄yQ(x̄y,0) − tyQ(0, y)

K(x, y) x̄2yQ(x̄y, x̄) = x̄2y − tx̄yQ(x̄y,0) − tx̄Q(0, x̄)
· · · = · · ·

K(x, y) x2ȳQ(x, xȳ) = x2ȳ − txQ(x,0) − txȳQ(0, xȳ).



The orbit equation: when S = {N,W, SE}

• All transformations of G leave K(x, y) invariant. Hence

K(x, y) xyQ(x, y) = xy − txQ(x,0) − tyQ(0, y)

K(x, y) x̄y2Q(x̄y, y) = x̄y2 − tx̄yQ(x̄y,0) − tyQ(0, y)

K(x, y) x̄2yQ(x̄y, x̄) = x̄2y − tx̄yQ(x̄y,0) − tx̄Q(0, x̄)
· · · = · · ·

K(x, y) x2ȳQ(x, xȳ) = x2ȳ − txQ(x,0) − txȳQ(0, xȳ).

⇒ Form the alternating sum of the equation over all elements of the orbit:

K(x, y)

(

xyQ(x, y)− x̄y2Q(x̄y, y) + x̄2yQ(x̄y, x̄)

− x̄ȳQ(ȳ, x̄) + xȳ2Q(ȳ, xȳ)− x2ȳQ(x, xȳ)

)

=

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ.



The orbit equation in general

For all models with a finite group,

∑

g∈G

sign(g)g(xyQ(x, y; t)) =
1

K(x, y; t)

∑

g∈G

sign(g)g(xy),

where

g(A(x, y)) := A(g(x, y))

• The right-hand side is a rational series, called the orbit sum.

Example:

xyQ(x, y)− x̄y2Q(x̄y, y) + x̄2yQ(x̄y, x̄)

− x̄ȳQ(ȳ, x̄) + xȳ2Q(ȳ, xȳ)− x2ȳQ(x, xȳ) =

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄+ xȳ)
.



I. Some useful tools

I.4. Models with a finite group: Extracting the

main generating function in the orbit equation



A 2D example: S = {N,W, SE}

xyQ(x, y)− x̄y2Q(x̄y, y) + x̄2yQ(x̄y, x̄)

− x̄ȳQ(ȳ, x̄) + xȳ2Q(ȳ, xȳ)− x2ȳQ(x, xȳ) =

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄+ xȳ)

• Both sides are power series in t, with coefficients in Q[x, x̄, y, ȳ].

• Extract the part with positive powers of x and y:

xyQ(x, y) = [x>0y>0]
xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄+ xȳ)

is a D-finite series.

[Lipshitz 88]



Extraction for quadrant models

• For 23 models, we found a finite group and wrote the orbit equation:

∑

g∈G

sign(g)g(xyQ(x, y; t)) =
1

K(x, y; t)

∑

g∈G

sign(g)g(xy),

• For the 19 models where the orbit sum is non-zero,

xyQ(x, y; t) = [x>0y>0]
1

K(x, y; t)

∑

g∈G

sign(g)g(xy)

is a D-finite series.



Classification of quadrant walks with small steps

2D quadrant models: 79

|G|<∞: 23

OS 6=0: 19

extraction of the GF

D-finite

OS=0: 4

D-finite

|G|=∞: 56

not D-finite

[mbm-Mishna 10]



Classification of quadrant walks with small steps

2D quadrant models: 79

|G|<∞: 23

OS 6=0: 19

extraction of the GF

D-finite

OS=0: 3 + 1

algebraic

|G|=∞: 56

not D-finite

[mbm-Mishna 10], [Bostan-Kauers 10], [Bostan-Kurkova-Raschel 13(a)]



When the orbit sum is zero

In 4 cases, the orbit sum vanishes:

∑

g∈G

sign(g)g(xyQ(x, y; t)) =
1

K(x, y; t)

∑

g∈G

sign(g)g(xy) = 0.

This happens:

• for the Kreweras trilogy, S = {W, S,NE}, {E,N, SW}, {W, S, E,N,NE, SW},

• for Gessel’s walks, S = {E,W,NE, SW}.

In all 4 cases, Q(x, y; t) is algebraic.

[mbm-Mishna 10], [Bostan-Kauers 10], [Bostan-Kurkova-Raschel 13(a)]



Classification of quadrant walks

2D quadrant models: 79

|G|<∞: 23

OS 6=0: 19

D-finite

OS=0: 3+1

algebraic

|G|=∞: 56

not D-finite

• D-finiteness and algebraicity: [mbm-Mishna 10], [Bostan-Kauers 10], [Bostan-

Kurkova-Raschel 13(a)]

• Non-D-finiteness:

– 5 singular cases: Q(1,1; t) is not D-finite [Mishna-Rechnitzer 07], [Melczer-

Mishna 13]

– 51 non-singular cases: Q(0,0; t) is not D-finite [Bostan-Raschel-Salvy

14], and Q(x,0; t) is not D-finite in x [Kurkova-Raschel 12]



II. Application to octant models



The dimension of a model

Definition. A model has dimension (at most) d if d of the positivity conditions

imply the remaining 3− d ones.

We have already discarded models of dimension 0 or 1.

Proposition. Among the 35 548 models with at most 6 steps, 14 744 have

dimension two and 20 804 have dimension three.

(integer linear programming)



Our toolbox

• Write a functional equation for O(x, y, z; t) =
∑

i,j,k,n o(i, j, k;n)xiyjzktn

• Determine if the group of the walk is finite

• If it is, form the orbit equation

• and try to extract the generating function O(x, y, z; t)



Our toolbox

• Write a functional equation for O(x, y, z; t) =
∑

i,j,k,n o(i, j, k;n)xiyjzktn

• Determine if the group of the walk is finite

• If it is, form the orbit equation

• and try to extract the generating function O(x, y, z; t)

What happens?



III. Three-dimensional octant models

(with at most 6 steps)



Classification of 3D octant models (with at most 6 steps)

3D octant models with ≤ 6 steps: 20804

|G|<∞: 170

OS 6=0: 108

extraction of the GF

D-finite

OS=0: 62

???

|G|=∞? 20634

not D-finite?

[Bostan-MBM-Kauers-Melczer 14]



When the orbit sum is zero (62 models)

• For 19 models, including 3D Kreweras, we did not guess any DE

Example:

S = {111, 1̄00,01̄0,001̄}

• the remaining 43 models are of Hadamard type and D-finite



Hadamard models: example

Take S(x, y, z) = x+(1+ x+ x̄)(yz + ȳ+ z̄). The group has order 12, and the

orbit sum is zero.

To construct an octant walk of length n with steps in S:

• take a 1D walk h = h1 . . . hn with steps in {1̄,0,1,1} on the x-axis; say it

has ℓ black steps;

• take a quadrant walk q = q1 . . . qℓ with steps in {11, 1̄0,01̄} in the yz-plane;

• in h, replace hi by (hi,0,0) if hi is red, by (hi, qj) if hi is the jth black step

of h.

The D-finiteness of O(x, y, z; t) then follows from the D-finiteness of the GFs

H(x; t) and Q(y, z; t) of the two projected walks.

The argument applies with S(x, y, z) = U(x) + V (x)T(y, z) or

S(x, y, z) = U(x, y) + V (x, y)T(z).



Classification of 3D octant models

3D octant models with ≤ 6 steps: 20804

|G|<∞: 170

OS 6=0: 108

extraction of the GF

D-finite

OS=0: 62

Hadamard: 43

D-finite

not Hadamard: 19

not D-finite?

|G|=∞? 20634

not D-finite?

[Bostan-MBM-Kauers-Melczer 14]



IV. Two-dimensional octant models

(with at most 6 steps)

• One positivity condition (say, in z) holds automatically if the other two hold.

• Study the projection of the walk on the xy-plane: multiset of steps

S1 = {ij : ∃k such that ijk ∈ S} \ {00}

Main series:

Q(x, y; t) := O(x, y,1; t)



Classification of 2D quadrant models with (possibly) repeated steps

2D quadrant models with ≤ 6 steps (possibly repeated): 527

|G|<∞: 118

OS 6=0: 95

kernel method: 94

D-finite

no possible extraction: 1

D-finite

OS=0: 22+1

algebraic

|G|=∞: 409

not D-finite?

[Bostan-MBM-Kauers-Melczer 14]



Two remarkable quadrant models with repeated steps

Proposition

• For the quadrant model S = {1̄1̄, 1̄0,11̄,10,10,11} (with an East repeated

step), the generating function Q(x, y; t) is algebraic. Moreover some coefficients

are nice:

Q(0, y; t) =
∑

n≥j≥0

6(2j +1)!(6n+1)!(2n+ j +1)!

j!2(3n)!(4n+2j +3)!(n− j)!(n+1)
yjt2n.

(Group of order 6, zero orbit sum)

• For the reverse model S = {11,10, 1̄1, 1̄0, 1̄0, 1̄1̄} (with a West repeated step),

the series Q(x, y; t) is D-finite.

In both cases, we only have computer algebra proofs

(in the spirit of [Bostan & Kauers 10])



Questions

• Explore the 19 three-dimensional models with zero orbit sum that are not

Hadamard: are they D-finite?

• Find bare hands proofs for
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• larger steps, arbitrary dimensions...


