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The question
Let S C Z3 be a finite set of steps in the 3D space.
Example: S = {001,010,100,111}

Consider walks that start from (0,0,0), take their steps in S, and are confined
to the positive octant {(i,5,k) : i > 0,5 > 0,k > O}.

Questions
— Determine o(n), the number of such walks that have length n

— or o(%,4,k;n), the number of such walks that have length n and end at
position (1, 7, k)

— or the associated 4-variable generating function:

O(z,y,z;t) = > o(i,j, k;n)a'yl 25"
i7j7k7n20

— or the nature of this generating function.



A hierarchy of formal power series

e The formal power series A(t) is rational if it can be written

_P®)
A0 =50

where P(t) and Q(t¢) are polynomials in t.

e The formal power series A(t) is algebraic (over Q(t)) if it satisfies a (non-
trivial) polynomial equation:

P(t, A(t)) = 0.

e The formal power series A(t) is D-finite if it satisfies a (non-trivial) linear
differential equation:

Po() AR (£) + - 4 Po(1) A(t) = 0.

+ extension to several variables -+ closure properties
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Lattice paths confined to convex cones

e Dimension 1: walks confined to a half-line
The generating function H(x;t) is always algebraic

[Gessel 80], [Labelle-Yeh 90], [mbm-Petkovsek 00],
[Duchon 00], [Banderier-Flajolet 02]

time

e Dimension 2: walks confined to the positive quadrant

The generating function Q(z,y;t) is sometimes algebraic,
sometimes D-finite, sometimes non-D-finite.
Complete classification for walks with *“small”’ steps:

Sc{i,o,1}?

Bernardi, Bostan, MBM, Cori, Denisov, Dulucqg, Fayolle, Gessel, Gouyou-
Beauchamps, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Kratten-
thaler, Kurkova, Kreweras, Melczer, Mishna, Niederhausen, Petkovsek, Prell-
berg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeil-
berger...



Why just positive cones?

In 2D, a convex rational cone is either:

e a half-plane

=

equivalent to a

(weighted) model of
walks on a half-line
= algebraic

e Or a linear deformation of the quadrant

A

/

li

= equivalent to a quadrant model



3D walks in an octant — Small steps
Let S {1,0,1}3\ {(0,0,0)} be a set of small steps in the 3D space.

Questions
— Determine o(n), or o(i, 7, k;n) (number of walks)

— or the associated generating function:

O(z,y,z;t) = Y o(i, g, k; n)aly? 2F".
i7j7k7n20

There are “only” 22% such problems!

IAC question )
) Systematic approach
solution



The number of interesting distinct models

Remove

e models in which all steps are non-negative (rational GF)

e models in which one positivity condition implies the other two
(~ walks in a half-space = algebraic GF)

e models in which one step is never used

and declare equivalent models that only differ by a permutation of the coordi-
nates.
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The number of interesting distinct models

Remove
e models in which all steps are non-negative (rational GF)

e models in which one positivity condition implies the other two
(~ walks in a half-space = algebraic GF)

e models in which one step is never used

and declare equivalent models that only differ by a permutation of the coordi-
nates.

Proposition: one is left with 11074 225 ~ 223-4... distinct models.

With at most 6 steps:

73u3 4+ 979 u* 4+ 6425 4> 4+ 28071 u® 4+ O(u")
We focus on the 35 548 models with at most 6 steps.



I. Some useful tools

I.1. A step-by-step construction,
and the associated functional equation



A functional equation: example in 2D

Example: & = {N, W, SE} )

Generating function:

Qlz,y;t) = Y q(i,§;n)x'y’t"

2,5,n=>0

Functional equation:

Q(Cﬁ,y) o Q(O7y) _|_ tr Q(CB,’y) o Q($7 O)
T Y

Q(z,y,t) =Q(z,y) = 1 +tyQ(x,y) +1t

4

i N

\j
\j

A linear discrete partial differential equation



A functional equation: example in 2D

Example: & = {N, W, SE}

Generating function:

Qlz,y;t) = Y q(i,§;n)x'y’t"

2,5,n=>0

Functional equation:

Q(Cﬁ,y) o Q(O7y) _|_ tr Q(iB,y) o Q($7 O)

Q(z,y,t) =Q(z,y) = 1 +tyQ(x,y) +t " y

or, with x =1/ and y = 1/y,
(1—tly+ 7 +29))Qz,y) = 1 - t2Q(0,y) — tzjQ(x,0),

or

((1 =ty + 7+ 27) )2yQ(z,y) = 3y — tyQ(0,y) — tzQ(x,0)
We call K(x,y) = (1 —t(y + x + zy) the kernel of the equation.




A functional equation: example in 3D

O(z,y,z) =1+ t(zyz + zyz + 2y + 2)O(x,y, 2)
—tx(y+ yz+yz)O(0,y,2) —txy(z + 2)O(x, 0, z) — txyzO(x,y, 0)
4 t75(z + 2)0(0,0, 2) + t75z0(0,y, 0) + tz5zO(z, 0, 0)
_ t75z0(0, 0, 0).
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e Equivalently,
K(x,y,z)xyz0(z,y, z) = zyz — tyz(y + yz + yz)O(0,y, z) — tz(z + 2)O(x, 0, 2)
—tO(x,y,0) +tz(z+ 2)0O(0,0, 2z) + tO(0,y,0) + tO(x,0,0) — tO(0,0,0)

where the kernel is

K(z,y,z) =1 - t(zyz + zyz + 2y + z).



A functional equation: example in 3D

O(z,y,z) =1+ t(zyz + zyz + 2y + 2)O(x,y, 2)
—tx(y+ yz+yz)O(0,y,2) —txy(z + 2)O(x, 0, z) — txyzO(x,y, 0)
4 t75(z + 2)0(0,0, 2) + t75z0(0,y, 0) + tz5zO(z, 0, 0)
_ t75z0(0, 0, 0).

e Equivalently,
K(z,y,2)zyz0(z,y,2) = zyz — tyz(y + yz + yz)0(0,y, z) — tz(2 + 2)O(x, 0, 2)
—tO(zx,y,0) + tz(z + 2)0O(0, 0, z) + tO(0,y,0) + tO(x,0,0) — tO(0,0,0)

where the kernel is

K(z,y,z) =1 - t(zyz + zyz + 2y + z).

= Determine O(xz,y,z;t) up to a large order (in t) and try to guess if it is
algebraic or D-finite (order ~ 50 and degree ~ 3000 is not unusual).



I. Some useful tools

I.2. The group of the walk

[Fayolle et al. 99]
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What is this group? A 2D example

When & = {N,W,SE}, the kernel reads

K(x,y) =1—-tS(x,y) with S(z,y) =2+ vy + zv.

Observation: S(x,vy) (and thus K(x,vy)) is left unchanged by the rational trans-
formations

b (x,y) — (xy,y) and WV :(z,y)— (z,zy).

They are involutions, and generate a finite group G-

Y

c"/ (Zy,y) (Zy,7) —P
(z,y) (y,7)

v (@20 — @) Ty



T he group is not always finite

o If S = {S,W,SW,NE}:

d:(zr,y) — (zy(1+79y),y) and WV : (x,y)+— (x,zy(1+x))

seem to generate an infinite group

¢/(5g(1+g),y)i... .

(z,y)
W\(x,fg(1+5))_ S
D



What is the group? A 3D example

K(x,y,z) =1 —t(xyz + zyz + zy + x).

e [ he group is generated by

z,y,2] S [F(y + 72 4+ 72), 0, 2], (w0, 2] = (2,52 + 2), 2], [29,2] D [z, 9, 2]

[z, y, 2]
b A
)
[Z(y + ¥z + ¥Z), y, 2] [z,y(z + 2), 2] [z, y, 2]

: D i : N i
W W
[Z(y + vz +92),5(z +2),2] [2(y+yz+02),9,2] [z,5(z+2),7]

W
A b

[2(y + vz + y2),y(z + 2), Z]



Relevance of the group size:
Classification of quadrant walks with small steps

2D quadrant models: 79

|G|<o0: 23 |G|=00: 56

D-finite not D-finite




I. Some useful tools

I.3. Models with a finite group:
T he orbit equation



The orbit equation: when § = {N, W, SE}

e [ he equation reads

K(x,y) zyQ(x,y) = vy —txQ(x,0) —tyQ(0,y)  with K(z,y) =1 —-t(y +7+ 7).

e The orbit of (x,y) under G is

(2, )< (Ty, y) s (By, T) s (5, B) s (7, ) s (2, ) s (22, ).

e All transformations of G leave K(z,y) invariant. Hence

K(z,y) zyQ(z,y) ry — tzQ(x,0) — tyQ(0,y)
K(z,y) 7y°Q(Zy, y) Ty° — tzyQ(Ty,0) — tyQ(0,y)



The orbit equation: when § = {N, W, SE}

e [ he equation reads

K(z,y) z2yQ(x,y) = vy —txQ(x,0) —tyQ(0,y)  with K(z,y) = 1—-t(y+z+2y).

e The orbit of (x,y) under G is

(2, )< (Ty, y) s (By, T) s (5, B) s (7, ) s (2, ) s (22, ).

e All transformations of G leave K(z,y) invariant. Hence

K(z,y) zyQ(x,y) = =zy — tzQ(x,0) — tyQ(0,y)
K(z,y) 7y°Q(Zy,y) = zy? — tzyQ(Fy,0) — tyQ(0,y)
K(z,y) 2°yQ(Zy,z) = %y — tiyQ(Ty,0) — t2Q(0,T)
K(z,y) 22yQ(z,2y) = 2y — t2Q(z,0) — tayQ(0,xzy).



The orbit equation: when § = {N, W, SE}

e All transformations of G leave K(x,y) invariant. Hence

K(z,y) zyQ(z,y) = zy — tzQ(z,0) — tyQ(0,y)
K(z,y) 29°Q(Ty,y) = zy° — tryQ(Ty,0) — tyQ(0,y)
K(z,y) 22yQ(zy,z) = 7%y — tzyQ(zy,0) — tzQ(0,7)
K(z,y) 22§Q(z,zy) = 2y — txQ(z,0) — tzyQ(0,zy).

= Form the alternating sum of the equation over all elements of the orbit:
K (o, (25Q(,y) — 52Q @y, ) + 72yQ(Fy, B)
- TR, ) + 27PQF, 27) — 2%7Q(w,77) ) =
2_

vy — TY? + T2y — 7Y + 2y° — 7.



The orbit equation in general

For all models with a finite group,

> sign(9)g(zyQ(z,y; t)) =

geG

> sign(g)g(zy),

K(ZE, y, t) QEG

where
g(A(z,y)) .= A(g9(z,y))

e [ he right-hand side is a rational series, called the orbit sum.

Example:

ryQ(x,y) — 7y°Q(Ty, y) + 72yQ(Ty, T)
— 75Q(Y, 7) + 25°Q(¥, 2y) — 2°yQ(x, xy) =
zy — Ty + 7%y — Ty + 2y° — 2y
1 —t(y + = + zy) '




I. Some useful tools

I.4. Models with a finite group: EXxtracting the
main generating function in the orbit equation



A 2D example: § = {N,W,SE}

ryQ(z,y) — Ty Q(Ty, v) + 72yQ(Ty, T)
— 75Q(Y, T) + 25°Q(¥, 2§) — 22yQ(z, xy) =
xy — Ty? + T2y — Ty + Y2 — 2%y
1 —t(y+z+ xy)

e Both sides are power series in t, with coefficients in Q[x, z, vy, y].

e Extract the part with positive powers of x and y:

>0, >0 7Y — Ty? + 2y — Ty + =72 — 2%y

zyQ(z,y) = [z iy 15+ o)

is a D-finite series.

[Lipshitz 88]



Extraction for quadrant models

e For 23 models, we found a finite group and wrote the orbit equation:

> sign(g)g(zy),

gelG

> sign(9)g(zyQ(z,y; t)) =

geG

K(z,y,t)

e For the 19 models where the orbit sum is non-zero,

1 |
K(z.90) g%;} sign(g)g(zy)

ryQ(z,y; t) = [27%y~°]

is a D-finite series.



Classification of quadrant walks with small steps

2D quadrant models: 79

|Gl<o0: 23 |G|=o00: 56
|
OS#'O: 19 OS=|O: 4 not D-finite
extraction of the GF D-finite
D-finite

[mbm-Mishna 10]



Classification of quadrant walks with small steps

2D quadrant models: 79

|Gl<oco: 23

OS#0: 19

extraction

of the GF

D-finite

|
OS=0: 3 + 1
|

algebraic

|
|G|=00: 56

not D-finite

[mbm-Mishna 10], [Bostan-Kauers 10], [Bostan-Kurkova-Raschel 13(a)]




When the orbit sum is zero

In 4 cases, the orbit sum vanishes:

Z sign(g)g(xyQ(x,y;t)) =

geG
T his happens:

e for the Kreweras trilogy, & = {W,S,NE}, {E,N,SW}, {W,S,E,N,NE,SW},
e for Gessel's walks, S = {E,W,NE, SW}.

] [H H# A

In all 4 cases, Q(x,y;t) is algebraic.

Y sign(g)g(zy) = 0.

K(x7yr t) geG

[mbm-Mishna 10], [Bostan-Kauers 10], [Bostan-Kurkova-Raschel 13(a)]



Classification of quadrant walks

2D quadrant models: 79

|Gl<oco: 23 |G|=o00: 56

OS#0: 19 OS=0: 3+1 not D-finite
| |

D-finite algebraic

e D-finiteness and algebraicity: [mbm-Mishna 10], [Bostan-Kauers 10], [Bostan-
Kurkova-Raschel 13(a)]

e Non-D-finiteness:

— 5 singular cases: Q(1,1;t) is not D-finite [Mishna-Rechnitzer 07], [Melczer-

Mishna 13]
NI Y X

— 51 non-singular cases: Q(0,0;t) is not D-finite [Bostan-Raschel-Salvy
14], and Q(«x,0;t) is not D-finite in z [Kurkova-Raschel 12]




II. Application to octant models



T he dimension of a model

Definition. A model has dimension (at most) d if d of the positivity conditions
imply the remaining 3 — d ones.

We have already discarded models of dimension O or 1.

Proposition. Among the 35 548 models with at most 6 steps, 14 744 have
dimension two and 20 804 have dimension three.
(integer linear programming)



Our toolbox

Write a functional equation for O(z,y, 2z;t) = 32; j k.no(, 7, k; n)xtyl Zken
Determine if the group of the walk is finite
If it is, form the orbit equation

and try to extract the generating function O(x, vy, z;t)



Our toolbox

Write a functional equation for O(z,y, 2z;t) = 32; j k.no(, 7, k; n)xtyl Zken
Determine if the group of the walk is finite
If it is, form the orbit equation

and try to extract the generating function O(x, vy, z;t)

What happens?



III. Three-dimensional octant models
(with at most 6 steps)



Classification of 3D octant models (with at most 6 steps)

3D octant models with < 6 steps: 20804

|G| <oo: 170

|
OS#0: 108

extraction of the GF

D-finite

[Bostan-MBM-Kauers-Melczer 14]

|
OS=0: 62

777

IG|=007 20634

not D-finite?




When the orbit sum is zero (62 models)

e For 19 models, including 3D Kreweras, we did not guess any DE

Example:

S ={111,100,070,001}

e the remaining 43 models are of Hadamard type and D-finite



Hadamard models: example

Take S(z,y,z2) =2+ 1+ 2+ x)(yz+y+2z). The group has order 12, and the
orbit sum is zero.

To construct an octant walk of length n with steps in S:

e take a 1D walk h = hq...hn with steps in {1,0,1,1} on the z-axis; say it
has ¢ black steps;

e take a quadrant walk g =¢q7...qy with steps in {11,10,01} in the yz-plane;

e in h, replace h; by (h;,0,0) if h; is red, by (h;, q;) if h; is the jth black step
of h.

The D-finiteness of O(x,y, z;t) then follows from the D-finiteness of the GFs
H(x;t) and Q(y, z;t) of the two projected walks.

The argument applies with S(z,vy,2) = U(x) + V(2)T(y, z) or
S(x,y,2) =U(z,y) + V(z,y)T(2).



Classification of 3D octant models

3D octant models with < 6 steps: 20804

|G |<oco: 170 |G|=o0? 20634
|
OS+#0: 108 OS:|O: 62 not D-finite?
|
extraction of the GF Hadamard: 43 not Hadamard: 19
D-finite D-finite not D-finite?

[Bostan-MBM-Kauers-Melczer 14]



IV. Two-dimensional octant models
(with at most 6 steps)

e One positivity condition (say, in z) holds automatically if the other two hold.

e Study the projection of the walk on the xy-plane: multiset of steps

S1 = {ij : 3k such that ijk € S} \ {00}
Main series:

Qz,y;t) := O(x,y,1;t)



Classification of 2D quadrant models with (possibly) repeated steps

2D quadrant models with < 6 steps (possibly repeated): 527

|G|<ocl>: 118
OS;élo: 95 OS=0: 22+1
kernel method: 94 Nno possible extraction: 1 algebraic
D-finite D-finite

[Bostan-MBM-Kauers-Melczer 14]

|G|=00: 409
|

not D-finite?




Two remarkable quadrant models with repeated steps

Proposition
e For the quadrant model S = {11,10,11,10,10,11} (with an East repeated

step), the generating function Q(x,y;t) is algebraic. Moreover some coefficients
are nice:
6(25 +1)!(6bn+ !'(2n+j+1)!
QO y;t) = ) —> . . y 2",
' “@Bm)!(4n + 25+ 3)!(n — ) (n+ 1)

n=>j2>0

(Group of order 6, zero orbit sum)

e For the reverse model S = {11,10,11,10,10,11} (with a West repeated step),
the series Q(x,y;t) is D-finite.

In both cases, we only have computer algebra proofs
(in the spirit of [Bostan & Kauers 10])

<X



Questions

e EXxplore the 19 three-dimensional models with zero orbit sum that are not
Hadamard: are they D-finite?

e Find bare hands proofs for

e

Gessel algebraic D—finit




Questions

e EXxplore the 19 three-dimensional models with zero orbit sum that are not
Hadamard: are they D-finite?

e Find bare hands proofs for

A K F

Gessel algebraic D=fini [Kauers, Yatchak 14(a)]

e Find any proof for the (conjecturally algebraic) models
[Kauers, Yatchak 14(a)]

KR o



Questions

e EXxplore the 19 three-dimensional models with zero orbit sum that are not
Hadamard: are they D-finite?

e Find bare hands proofs for

A K F

Gessel algebraic D=fini [Kauers, Yatchak 14(a)]

e Find any proof for the (conjecturally algebraic) models
[Kauers, Yatchak 14(a)]

R NI

e |larger steps, arbitrary dimensions...



