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I. Generalities



Self-avoiding walks (SAW)

What is c(n), the number of n-step SAW?
c(1) = 4
c(2) = c(1)× 3 = 12
c(3) = c(2)× 3 = 36
c(4) = c(3)× 3− 8 = 100Not so easy! c(n) is only known up to n = 71 [Jensen 04℄Problem: a highly non-markovian model



Some (old) 
onje
tures/predi
tions

• The number of n-step SAW behaves asymptoti
ally as follows:

c(n) ∼ (κ)µn nγ
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Some (old) 
onje
tures/predi
tions

• The number of n-step SAW behaves asymptoti
ally as follows:

c(n) ∼ (κ)µn nγwhere- γ = 11/32 for all 2D latti
es (square, triangular, honey
omb) [Nienhuis 82℄

- µ =
√

2 +
√
2 on the honey
omb latti
e [Nienhuis 82℄(proved this summer [Duminil-Copin & Smirnov℄)



Some (old) 
onje
tures/predi
tions

• The number of n-step SAW behaves asymptoti
ally as follows:

c(n) ∼ (κ)µn nγ

⇒ The probability that two n-step SAW starting from the same point do notinterse
t is

c(2n)

c(n)2
∼ n−γ



Some (old) 
onje
tures/predi
tions

• The end-to-end distan
e is on average

E(Dn) ∼ n3/4 (vs. n1/2 for a simple random walk)[Flory 49, Nienhuis 82℄
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Some (re
ent) 
onje
tures/predi
tions

• Limit pro
ess: The s
aling limit of SAW is SLE8/3.(proved if the s
aling limit of SAW exists and is 
onformally invariant[Lawler, S
hramm, Werner 02℄)This would imply
c(n) ∼ µnn11/32 and E(Dn) ∼ n3/4



In 5 dimensions and above

• The 
riti
al exponents are those of the simple random walk:

c(n) ∼ µnn0, E(Dn) ∼ n1/2.

• The s
aling limit exists and is the d-dimensional brownian motion[Hara-Slade 92℄Proof: a mixture of 
ombinatori
s (the la
e expansion) and analysis



II. Exa
tly solvable models

⇒ Design simpler 
lasses of SAW, that should be natural, as general aspossible... but still tra
table
• solve better and better approximations of real SAW
• develop new te
hniques in exa
t enumeration



II.0. A toy model: Partially dire
ted walks

De�nition: A walk is partially dire
ted if it avoids (at least) one of the 4 stepsN, S, E, W.Example: A NEW-walk is partially dire
ted
"Markovian with memory 1"

The self-avoidan
e 
ondition is lo
al.Let a(n) be the number of n-step NEW-walks.



A toy model: Partially dire
ted walks

• Re
ursive des
ription of NEW-walks:
4 5 6

2 31

a(0) = 1

a(n) = 2+ a(n− 1) + 2
∑n−2

k=0 a(k) for n ≥ 1
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A toy model: Partially dire
ted walks

• Re
ursive des
ription of NEW-walks:
4 5 6

2 31

a(0) = 1

a(n) = 2+ a(n− 1) + 2
∑n−2

k=0 a(k) for n ≥ 1

• Generating fun
tion:

A(t) :=
∑

n≥0

a(n)tn = 1+ 2
t

1− t
+ tA(t) + 2A(t)

t2

1− t

A(t) =
1+ t

1− 2t− t2
⇒ a(n) ∼ (1 +

√
2)n ∼ (2.41...)n



Generating fun
tionsLet A be a set of dis
rete obje
ts equipped with a size:

size : A → N

a 7→ |a|Assume that for all n,
An := {a ∈ A : |a| = n} is �nite.Let a(n) = |An|.The generating fun
tion of the obje
ts of A, 
ounted by their size, is

A(t) :=
∑

n≥0

a(n)tn

=
∑

a∈A
t|a|.

Notation: [tn]A(t) := a(n)



Combinatorial 
onstru
tions and operations on series: A di
tionary

Constru
tion Numbers Generating fun
tionUnion A = B ∪ C a(n) = b(n) + c(n) A(t) = B(t) + C(t)

Produ
t A = B × C a(n) = b(0)c(n) + · · ·+ b(n)c(0) A(t) = B(t) · C(t)

|(β, γ)| = |β|+ |γ|

Sequen
e A = S(B) A(t) = 1
1−B(t)

A = {ǫ} ∪ B ∪ B × B ∪ · · ·



Partially dire
ted walks revisited

A(t) = 1+ 2
t

1− t
+ tA(t) + 2A(t)

t2

1− t

4 5 6

2 31



A hierar
hy of formal power series

• The formal power series A(t) is rational if it 
an be written

A(t) =
P(t)

Q(t)where P(t) and Q(t) are polynomials in t.

• The formal power series A(t) is algebrai
 (over Q(t)) if it satis�es a (non-trivial) polynomial equation:
P(t, A(t)) = 0.

• The formal power series A(t) is D-�nite if it satis�es a (non-trivial) lineardi�erential equation with polynomial 
oe�
ients:
P0(t)A

(k)(t) + P1(t)A
(k−1)(t) + · · ·+ Pk(t)A(t) = 0.Rat ⊂ Alg ⊂ D-�nite



Some 
harms of this hierar
hy...

• Closure properties (+,×, derivatives, 
omposition...)

• The series are �easy� to handle (partial fra
tion de
omposition, Puiseux ex-pansions, elimination, resultants, Gröbner bases...)

• A di�erential (resp. algebrai
) equation 
an be guessed from the �rst 
oe�-
ients (GFUN)

• The 
oe�
ients 
an be 
omputed in a linear number of operations.

• (Almost) automati
 asymptoti
s of the 
oe�
ients.
• May give insight on the (hidden) stru
ture of the obje
ts � or prove that theyare inherently 
omplex



What to do with a generating fun
tion?

• Extra
t the nth 
oe�
ient a(n) (when ni
e...)

• The asymptoti
 behaviour of a(n) 
an often be derived from the behaviourof A(t) (seen as a fun
tion of a 
omplex variable) in the neighborhood of itsdominant singularities.Example: lim sup a(n)1/n = µ ⇐⇒ A(t) has radius 1/µTransfer theorems: under 
ertain hypotheses, if A(t) has a unique dominantsingularity at 1/µ,

A(t) ∼ 1

(1− µt)1+α
=⇒ a(n) ∼ 1

Γ(α+1)
µnnαAnalyti
 
ombinatori
s [Flajolet-Sedgewi
k 09℄Example: A(t) = 1+t

1−2t−t2

has a simple pole (α = 0) at tc =
√
2− 1

=⇒ a(n) ∼ κ(
√
2+ 1)nn0



Multivariate generating fun
tions

• Enumeration a

ording to the size (main parameter) and another parameter:

A(t, x) =
∑

a∈A
t|a|xp(a)

• Then

[tn]
∂iA

∂xi
(t, x)

∣

∣

∣

∣

∣

x=1

=
∑

a:|a|=n

p(a)(p(a) − 1) · · · (p(a)− i+1)

⇒
[tn]∂

iA
∂xi

A(t,1)

[tn]A(t,1)
= En(p(p− 1) · · · (p− i+1))is the ith fa
torial moment of p(a), when a is taken uniformly among obje
tsof size n.

• Asymptoti
 behaviour of the 
oe�
ients ⇒ Asymptoti
 behaviour of themomentsAnalyti
 
ombinatori
s [Flajolet-Sedgewi
k 09℄



Multivariate generating fun
tions

• Enumeration a

ording to the size (main parameter) and another parameter:

A(t, x) =
∑

a∈A
t|a|xp(a)

• Then

[tn]A(t, x)

[tn]A(t,1)
=

∑

a:|a|=n x
p(a)

∑

a:|a|=n 1is the probability generating fun
tion of p(a), when a is taken uniformly amongobje
ts of size n.

• Combined with:� asymptoti
 behaviour of [tn]A(t, x) (for x ∈ R)� 
ontinuity theorems for (Lapla
e or Fourier) transforms,this often yields a limit law for the additional parameter p.Analyti
 
ombinatori
s [Flajolet-Sedgewi
k 09℄



Example: the number of North steps in a partially dire
ted walk

• The bivariate generating fun
tion is

A(t, x) =
∑

ω
t|ω|xN(ω) =

1+ t

1− t− tx(1 + t)

• For x in a neighborhood of 1, there holds uniformly

[tn]A(t, x)

[tn]A(t,1)
∼ κ(x)







1 + x+
√

1 + 6x+ x2

2(1 +
√
2)







n

(1 +O(1/n))

• By the quasi-power Theorem, the number Nn of North steps satis�es

E(Nn) ∼ mn, V(Nn) ∼ s
2 n,for some m, s2 > 0, and the normalized random variable Nn−mn

s
√
n


onverges in lawto a standard normal distribution.+ Similar result for the abs
issa of the endpoint (with mean 0).



Random partially dire
ted walks

• Asymptoti
 properties: 
oordinates of the endpoint

E(Xn) = 0, E(X2
n) ∼ n, E(Yn) ∼ n

• Random NEW-walks:

0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500 0

500

1000

1500

2000

2500

3000

20 40 60 80 100S
aled by n (� and |) S
aled by √
n (�) and n (|)



II.1. Weakly dire
ted walks

(joint work with Axel Ba
her)



Bridges

• A walk with verti
es v0, . . . , vi, . . . , vn is a bridge if the ordinates of its verti
essatisfy y0 ≤ yi < yn for 1 ≤ i ≤ n.
• There are many bridges:

b(n) ∼ µnbridgen
γ′where

µbridge = µSAW



Irredu
ible bridges

Def. A bridge is irredu
ible if it is not the 
on
atenation of two bridges.Observation: A bridge is a sequen
e of irredu
ible bridges



Weakly dire
ted bridges

De�nition: a bridge is weakly dire
ted if ea
h of its irredu
ible bridges avoidsat least one of the steps N, S, E, W.This means that ea
h irredu
ible bridge is a NES- or a NWS-walk.

vn

v0

⇒ Count NES- (irredu
ible) bridges



Enumeration of NES-bridges

Proposition
• The generating fun
tion of NES-bridges of height k+1 is

B(k+1)(t) =
∑

n
b
(k+1)
n tn =

tk+1

Gk(t)
,where G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.



Enumeration of NES-bridges

Proposition
• The generating fun
tion of NES-bridges of height k+1 is

B(k+1)(t) =
∑

n
b
(k+1)
n tn =

tk+1

Gk(t)
,where G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.

• The generating fun
tion of NES-ex
ursions of height at most k is

E(k)(t) =
1

t

(

Gk−1

Gk
− 1

)

.

Ex
ursion: y0 = 0 = yn and yi ≥ 0 for 1 ≤ i ≤ n.



Enumeration of NES-bridges

Last return to height 0

First return to height 0

• Bridges of height k +1:
B(k+1) = tB(k) + E(k)t2B(k)

• Ex
ursions of height at most k

E(k) = 1+ tE(k) + t2
(

E(k−1) − 1
)

+ t3
(

E(k−1) − 1
)

E(k)

• Initial 
onditions: E(−1) = 1, B(1) = t/(1− t).
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Enumeration of weakly dire
ted bridges

• GF of NES-bridges:
B(t) =

∑

k≥0

tk+1

Gk

• GF of irredu
ible NES-bridges:
B(t) =

I(t)

1− I(t)
⇒ I(t) =

B(t)

1 +B(t)



Enumeration of weakly dire
ted bridges

• GF of NES-bridges:
B(t) =

∑

k≥0

tk+1

Gk

• GF of irredu
ible NES-bridges:
B(t) =

I(t)

1− I(t)
⇒ I(t) =

B(t)

1 +B(t)

• GF of weakly dire
ted bridges (sequen
es of irredu
ible NES- or NWS-bridges):

W (t) =
1

1− (2I(t)− t)
=

1

1−
(

2B(t)
1+B(t)

− t
)

with G−1 = 1, G0 = 1− t, and for k ≥ 0,
Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.[Ba
her-mbm 10℄



Asymptoti
 results and nature of the generating fun
tions

B(t) =
∑

k≥0

tk+1

Gk
, W (t) =

1

1−
(

2B(t)
1+B(t)

− t
)with G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.

The zeroes of Gk (here, k = 20):
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Asymptoti
 results and nature of the generating fun
tions

B(t) =
∑

k≥0

tk+1

Gk
, W (t) =

1

1−
(

2B(t)
1+B(t)

− t
)

• The series B(t) and W (t) are meromorphi
 in C \ E, where E 
onsists of thetwo real intervals [−
√
2− 1,−1] and [

√
2− 1,1], and of the 
urve

E0 =

{

x+ iy : x ≥ 0, y2 =
1− x2 − 2x3

1+ 2 x

}

.This 
urve is a natural boundary of B and W . These series thus have in�nitelymany singularities.
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Asymptoti
 results and nature of the generating fun
tion

B(t) =
∑

k≥0

tk+1

Gk
, W (t) =

1

1−
(

2B(t)
1+B(t)

− t
)

• The series B(t) and W (t) are meromorphi
 in C \ E where E 
onsists of thetwo real intervals [−
√
2− 1,−1] and [

√
2− 1,1], and of the 
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E0 =

{

x+ iy : x ≥ 0, y2 =
1− x2 − 2x3

1+ 2 x

}

.This 
urve is a natural boundary of B and W . These series thus have in�nitelymany singularities.

• The series B(t) has radius √
2− 1, while W (t) has a simple pole ρ of smallermodulus (for whi
h 1 = 2B(ρ)

1+B(ρ)
− ρ).

• The number w(n) of weakly dire
ted bridges of length n satis�es

w(n) ∼ µn,with µ ≃ 2.54 (the 
urrent re
ord).



The number of irredu
ible bridges

• The generating fun
tion of xeakly dire
ted bridges, 
ounted by the lengthand the number of irredu
ible bridges, is

W (t, x) =
1

1− x
(

2B(t)
1+B(t)

− t
)

• Let Nn denote the number Nn of irredu
ible bridges in a random weaklydire
ted bridge of length n. Then
E(Nn) ∼ mn, V(Nn) ∼ s

2 n,where

m ≃ 0.318 and s
2 ≃ 0.7,and the random variable Nn−mn

s
√
n


onverges in law to a standard normal distribu-tion. In parti
ular, the average end-to-end distan
e, being bounded from belowby E(Nn), grows linearly with n.



A random weakly dire
ted bridge



II. 2. Prudent self-avoiding walks

Self-dire
ted walks [Turban-Debierre 86℄Exterior walks [Préa 97℄Outwardly dire
ted SAW [Santra-Seitz-Klein 01℄Prudent walks [Du
hi 05℄, [Dethridge, Guttmann, Jensen 07℄, [mbm 08℄
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Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Remark: Partially dire
ted walks are prudent
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The box of a prudent walk
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More parameters

i

h

j

If one knows:

• the dire
tion of the last step,
• whether it is in�ating or not,
• the distan
es i, j and h,then one 
an de
ide whi
h steps 
an be appended to the walk, and the newvalues of these parameters.

⇒ Count prudent walks by looking for in�ating steps, keeping tra
k of thedistan
es i, j, h



Re
ursive 
onstru
tion of prudent walks

i

h

j
• Three more parameters(
atalyti
 parameters)
• Generating fun
tion of prudent walks ending on the top of their box:

(

1− uvwt(1− t2)

(u− tv)(v − tu)

)

T(t; u, v, w) =

1+ T (t;w, u) + T (t;w, v)− tv
T (t; v,w)

u− tv
− tu

T (t;u,w)

v − tuwith T (t;u, v) = tvT(t; u, tu, v).

• Generating fun
tion of all prudent walks, 
ounted by the length and thehalf-perimeter of the box:

P(t; u) = 1+ 4T(t; u, u, u)− 4T(t; 0, u, u)



Simpler families of prudent walks [Préa 97℄

ij i

3-sided 2-sided 1-sided

• The endpoint of a 3-sided walk lies always on the top, right or left side ofthe box

• The endpoint of a 2-sided walk lies always on the top or right side of the box

• The endpoint of a 1-sided walk lies always on the top side of the box (=partially dire
ted!)



Fun
tional equations for prudent walks:The more general the 
lass, the more additional variables(Walks ending on the top of the box)

• General prudent walks: three 
atalyti
 variables

(

1− uvwt(1− t2)

(u− tv)(v − tu)

)

T(t; u, v, w) = 1+T (w, u)+T (w, v)−tv
T (v, w)

u− tv
−tu

T (u,w)

v − tuwith T (u, v) = tvT(t; u, tu, v).
• Three-sided walks: two 
atalyti
 variables
(

1− uvt(1− t2)

(u− tv)(v − tu)

)

T(t; u, v) = 1 + · · · − t2v

u− tv
T(t; tv, v) − t2u

v − tu
T(t; u, tu)

• Two-sided walks: one 
atalyti
 variable
(

1− tu(1− t2)

(1− tu)(u− t)

)

T(t; u) =
1

1− tu
+ t

u− 2t

u− t
T(t; t)



Where do these equations 
ome from? Two-sided walks

i

Generating fun
tion:
P(t; u) =

∑

n;i

p(n; i)tnui =
∑

i

Pi(t)u
i ≡ P(u)

• For walks ending on the top of their box: series T(t; u) ≡ T(u)



Two-sided walksTake a walk ending on the top of its box: where is the last step that has movedthe top or right side of the box?

• Either there was no su
h step:
1

1− tu

• ... or an East step moved the right side:
i

t
∑

i

Ti(t)t
i = tT(t; t)



Two-sided walks... or a North step moved the top side:

(at least one West step)
k

i

t2u

1− tu
T(t; u) + t

∑

i≥0

Ti(t)
i
∑

k=0

tkui−k =
t2u

1− tu
T(t; u) +

t

u− t
(uT(t;u)− tT(t; t)) .



Two-sided walks

• The generating fun
tionT(t; u) ≡ T(u) of two-sided walks ending on the topof their box satis�es:
(

1− tu(1− t2)

(1− tu)(u− t)

)

T(u) =
1

1− tu
+ t

u− 2t

u− t
T(t)

• The length generating fun
tion P(t) of all two-sided walks is

P(t) = 2T(t; 1)− T(t; 0)(in
lusion-ex
lusion)



Two-sided walks: the kernel method

(

(1− tu)(u− t)− tu(1− t2)
)

T(t; u) = u− t+ t(u− 2t)(1− tu)T(t; t).

• If u = U(t) 
an
els (1− tu)(u− t)− tu(1− t2), then

0 = U(t)− t+ t(U(t)− 2t)(1− tU(t))T(t; t),that is,

T(t; t) =
t− U(t)

t(U(t)− 2t)(1− tU(t))

• We know su
h a series U(t) :
U(t) =

1− t+ t2 + t3 −
√

(1− t4)(1− 2t− t2)

2t[Knuth 72℄, [mbm-Petkov²ek 2000℄



Two-sided walks

• The length generating fun
tion of 2-sided walks is

P(t) =
1

1− 2t− 2t2 +2t3





1+ t− t3 + t(1− t)

√

√

√

√

1− t4

1− 2t− t2







• Dominant singularity: a simple pole for 1 − 2t − 2t2 + 2t3 = 0, that is,

tc = 0.40303.... Asymptoti
ally,
p(n) ∼ κ (2.48...)nCompare with 2.41... for partially dire
ted walks.

• Another approa
h: fa
torization of walks [Du
hi 05℄



Fun
tional equation for 3-sided walks(Walks ending on the top of the box)

• Three-sided walks: two 
atalyti
 variables

(

1− uvt(1− t2)

(u− tv)(v − tu)

)

T(t; u, v) = 1 + · · · − t2v

u− tv
T(t; tv, v) − t2u

v − tu
T(t; u, tu)



Three-sided walks: two 
atalyti
 variables

• Fun
tional equation for T(t; u, v) ≡ T(u, v):

K(u, v)T(u, v) = A(u, v) +B(u, v)Φ(u) +B(v, u)Φ(v)for polynomials K(u, v), A(u, v), B(u, v), with Φ(u) = T(u, tu).



Three-sided walks: two 
atalyti
 variables

• Fun
tional equation for T(t; u, v) ≡ T(u, v):

K(u, v)T(u, v) = A(u, v) +B(u, v)Φ(u) +B(v, u)Φ(v)for polynomials K(u, v), A(u, v), B(u, v), with Φ(u) = T(u, tu).

• Can
ellation of the kernel: K(u, V (u)) = 0 for a series V (u) ≡ V (t; u)

Φ(u) = −A(u, V (u))

B(u, V (u))
− B(V (u), u)

B(u, V (u))
Φ(V (u))



Three-sided walks: two 
atalyti
 variables

• Fun
tional equation for T(t; u, v) ≡ T(u, v):

K(u, v)T(u, v) = A(u, v) +B(u, v)Φ(u) +B(v, u)Φ(v)for polynomials K(u, v), A(u, v), B(u, v), with Φ(u) = T(u, tu).

• Can
ellation of the kernel: K(u, V (u)) = 0 for a series V (u) ≡ V (t; u)

Φ(u) = −A(u, V (u))

B(u, V (u))
− B(V (u), u)

B(u, V (u))
Φ(V (u))

• If it is possible to iterate (...), denote V (k) = V (V (V (· · · (u)))) (k iterations):

Φ(u) =
∑

k≥0

(−1)k−1B(V (1), u)B(V (2), V (1)) · · ·B(V (k), V (k−1))A(V (k), V (k+1))

B(u, V (1))B(V (1), V (2)) · · ·B(V (k−1), V (k))B(V (k), V (k+1))

Sum of algebrai
 series � iteration of algebrai
 fun
tions



Three-sided prudent walks

• Let
U(w) =

1− tw + t2 + t3w −
√

(1− t2)(1 + t− tw + t2w)(1− t− tw − t2w)

2t
,and

q = U(1) =
1− t+ t2 + t3 −

√

(1− t4)(1− 2t− t2)

2t
.

• The length generating fun
tion of three-sided prudent walks is:

P(t; 1) =
1

1− 2t− t2

(

1+ 3t+ tq(1− 3t− 2t2)

1− tq
+2t2q T(t; 1, t)

)

where

T(t; 1, t) =
∑

k≥0

(−1)k
∏k−1
i=0

(

t
1−tq − U(qi+1)

)

∏k
i=0

(

tq
q−t − U(qi)

)

(

1+
U(qk)− t

t(1− tU(qk))
+

U(qk+1)− t

t(1− tU(qk+1))

)



Three-sided prudent walksThe generating fun
tion of three-sided prudent walks is:

P(t; 1) =
1

1− 2t− t2

(

1+ 3t+ tq(1− 3t− 2t2)

1− tq
+2t2q T(t; 1, t)

)

T(t; 1, t) =
∑

k≥0

(−1)k
∏k−1
i=0

(

t
1−tq − U(qi+1)

)

∏k
i=0

(

tq
q−t − U(qi)

)

(

1+
U(qk)− t

t(1− tU(qk))
+

U(qk+1)− t

t(1− tU(qk+1))

)

• The series P(t; 1) has in�nitely many poles, satisfying tq
q−t = U(qi) for some

i ≥ 0. Hen
e it is neither algebrai
, nor even D-�nite.

• Dominant singularity: (again) a simple pole for 1−2t−2t2+2t3 = 0. Asymp-toti
ally,

p(n) ∼ κ (2.48...)n



Two- and three-sided walks: asymptoti
 enumeration

• The numbers of 2-sided and 3-sided n-step prudent walks satisfy

p2(n) ∼ κ2 µ
n, p3(n) ∼ κ3 µ

nwhere µ ≃ 2.48... is su
h that
µ3 − 2µ2 − 2µ+2 = 0.Compare with 2.41... for partially dire
ted walks, 2.54... for weakly dire
tedbridges, but 2.64... for general SAW.

• Conje
ture: for general prudent walks
p4(n) ∼ κ4 µ

nwith the same value of µ as above [Dethridge, Guttmann, Jensen 07℄.



Two-sided walks: properties of large random walks(uniform distribution)

• The random variables Xn, Yn and δn satisfy

E(Xn) = E(Yn) ∼ n E((Xn − Yn)
2) ∼ n, E(δn) ∼ 4.15 . . .(+ gaussian limit law after normalization)

Xn

Yn

δn



Two-sided walks: random generation (uniform distribution)
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• Re
ursive step-by-step 
onstru
tion à la Wilf ⇒ 500 steps(pre
omputation of O(n2) large numbers)
• Boltzmann sampling via a 
ontext-free grammar[Du
hon-Flajolet-Lou
hard-S
hae�er 02℄

E(Xn) = E(Yn) ∼ n E((Xn − Yn)
2) ∼ n, E(δn) ∼ 4.15 . . .



Three-sided prudent walks:random generation and asymptoti
 properties

• Asymptoti
 properties: The average width of the box is ∼ κn (varian
e ∼ n,gausiian limit law after normalization)
• Random generation: Re
ursive method à la Wilf ⇒ 400 steps(pre-
omputation of O(n3) numbers)
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Four-sided (i.e. general) prudent walks

• An equation with 3 
atalyti
 variables:

(

1− uvwt(1− t2)

(u− tv)(v − tu)

)

T(u, v, w) = 1+ T (w, u)+ T (w, v)− tv
T (v, w)

u− tv
− tu

T (u,w)

v − tuwith T (u, v) = tvT(u, tu, v).
• Conje
ture:

p4(n) ∼ κ4 µ
nwhere µ ≃ 2.48 satis�es µ3 − 2µ2 − 2µ+2 = 0.

• Random prudent walks: re
ursive generation, 195 steps (si
! O(n4) numbers)
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II.3. Another distribution: Kineti
 prudent walks

At time n, the walk 
hooses one of the admissible steps with uniform probability.[An admissible step is one that gives a prudent walk℄1/3 1/2

Remark: Walks of length n are no longer uniform
1

4
· 1
3
· 1
3
· 1
3

1

4
· 1
3
· 1
3
· 1
2



Another distribution: Kineti
 prudent walks

• Kineti
 model: re
ursive generation with no pre
omputation
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• Theorem: The walk 
hooses uniformly one quadrant, say the NE one, andthen its s
aling limit is given by

Z(u) =

∫ 3u/7

0

(1W(s)≥0 e1 + 1W(s)<0 e2
)

dswhere e1, e2 form the 
anoni
al basis of R2 and W (s) is a brownian motion.[Be�ara, Friedli, Velenik 10℄



A kineti
, 
ontinuous spa
e version: The ran
her's walk

At time n, the walk takes a uniform unit step in R2, 
onditioned so that thenew step does not interse
t the 
onvex hull of the walk.

Theorem: the end-to-end distan
e is linear. More pre
isely, there exists a
onstant a > 0 su
h that
lim inf

||ωn||
n

≥ a.[Angel, Benjamini, Virág 03℄, [Zerner 05℄Conje
tures

• Linear speed: There exists a > 0 su
h that ||ωn||
n → a a.s.

• Angular 
onvergen
e: ωn
||ωn|| 
onverges a.s.



What's next? Exa
tly solvable models

• Exa
t enumeration: General prudent walks on the square latti
e � Growth
onstant?
• Uniform random generation: better algorithms (maximal length 200 for gen-eral prudent walks...)
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• A mixture of both models: walks formed of a sequen
e of prudent irredu
iblebridges?



III. Self-avoiding walks on the honey
omb latti
e

d'après H. Duminil-Copin and S. Smirnov, ArXiv 1007.0575



Simple bounds on c(n)
Let c(n) be the number of n-step SAW. We have

Fn+1 ≤ c(n) ≤ 3 · 2n−1with F0 = F1 = 1 and Fn+1 = Fn + Fn−1 (Fibona

i numbers).

• Upper bound: at most two possible extensions at ea
h step

• Lower bound: SAW that never move in the South dire
tion (partially di-re
ted).



The 
onne
tive 
onstant

Clearly,
c(m+ n) ≤ c(m)c(n)

⇒ lim c(n)1/n exists and

µ := lim c(n)1/n = inf c(n)1/n



The 
onne
tive 
onstant

µ := lim c(n)1/n = inf c(n)1/nGiven the bounds
Fn+1 ≤ c(n) ≤ 3 · 2n−1,there holds

1+
√
5

2
≃ 1.62 ≤ µ ≤ 2

Theorem [Duminil-Copin & Smirnov 10℄
µ =

√

2+
√
2 ≃ 1.85Conje
tured by Nienhuis in 1982



Sub-families of SAW

Self-avoiding polygons and self-avoiding bridges
• Same growth 
onstant:

p(n)1/n → µ and b(n)1/n → µ[Hammersley 61℄



Generating fun
tions

For self-avoiding walks, polygons and bridges:

C(t) =
∑

c(n)tn, P(t) =
∑

p(n)tn, B(t) =
∑

b(n)tn

Theorem [Duminil-Copin & Smirnov 10℄The radius of 
onvergen
e of these series is

tc =
1

√

2+
√
2
.Moreover:

• C(t) diverges at tc,

• P(t) 
onverges at tc.Conje
tures:

C(t) ∼ 1

(1− tc)43/32
, P(t)sing ∼ (1− tc)

3/2, B(t) ∼ 1

(1− tc)9/16



Walks starting and ending at mid-edges



A key identity

Consider the following domain Dh,ℓ.
ℓ

h

a



A key identity

Consider the following domain Dh,ℓ.Let Lh,ℓ(t) (resp. Rh,ℓ(t), Mh,ℓ(t)) be the gen-erating fun
tion of walks that start from a andend on the left (resp. right, middle) border ofthe domain Dh,ℓ. These series are polynomialsin t.Then for all h and ℓ, at t = tc = 1/
√

2+
√
2,

√

2−
√
2

2
Lh,ℓ(tc) +Rh,ℓ(tc) +

1√
2

Mh,ℓ(tc) = 1

Mh,ℓ

ℓ

Rh,ℓ

Mh,ℓ

Lh,ℓ

h

a



An upper bound on µ

√

2−
√
2

2
Lh,ℓ(tc) +Rh,ℓ(tc) +

1√
2

Mh,ℓ(tc) = 1

Consider walks in Dh,ℓ that go from a to a+(≃ self-avoiding polygons). Their generatingfun
tion P̃h,ℓ(t) satis�es
P̃h,ℓ(tc) ≤ Lh,ℓ(tc) ≤ 2

√

2−
√
2But

P̃h,ℓ(tc) → P̃ (tc) ≥ t2cP(tc)as h, ℓ → ∞. This implies that P(tc) is �nite.Hen
e µ ≤ 1/tc =
√

2+
√
2.

Mh,ℓ

ℓ

Rh,ℓ

Mh,ℓ

Lh,ℓ

h

a

a+



A lower bound on µ

√

2−
√
2

2
Lh,ℓ(tc) +Rh,ℓ(tc) +

1√
2

Mh,ℓ(tc) = 1

As h → ∞, Lh,ℓ(tc) and Rh,ℓ(tc) in
rease to limitvalues Lℓ(tc) and Rℓ(tc). Hen
e Mh,ℓ(tc) de-
reases to a limit value Mℓ(tc).
• If Mℓ(tc) > 0 for some ℓ, the series

∑

h

Mh,ℓ(tc)diverges. As it 
ounts 
ertain SAW, this impliesthat µ ≥ 1/tc.

• If Mℓ(tc) = 0 for all ℓ, another argumentshows that ∑ℓRℓ(tc) (the generating fun
tionof bridges) diverges.In both 
ases, µ ≥ 1/tc =
√

2+
√
2. Mh,ℓ

ℓ

Rh,ℓ

Mh,ℓ

Lh,ℓ

h

a



A lower bound on µ (
ontinued)

α Lh,ℓ(tc) +Rh,ℓ(tc) +
1√
2

Mh,ℓ(tc) = 1

• If Mℓ(tc) = 0 for all ℓ, then
α Lℓ(tc) +Rℓ(tc) = 1

⇒ α
(

Lℓ+1(tc)− Lℓ(tc)
)

= Rℓ(tc)−Rℓ+1(tc)

⇒ 2αtcRℓRℓ+1 ≥ Rℓ(tc)−Rℓ+1(tc)

⇒ 2αtc ≥ 1
Rℓ+1(tc)

− 1
Rℓ(tc)

⇒ 2ℓαtc +
1
R1

≥ 1
Rℓ

⇒ Rℓ ≥
1

2ℓαtc + β
,so that ∑

ℓRℓ(tc) (the generating fun
tion ofbridges) diverges. ℓ

a

ℓ

a

Lℓ Rℓ+1



A key identity

√

2−
√
2

2
Lh,ℓ(tc) +Rh,ℓ(tc) +

1√
2

Mh,ℓ(tc) = 1Where does it 
ome from?From a lo
al identity that is re-summed over all verti
es of the domain.



A lo
al identityLet D be a �nite, simply 
onne
ted domain, and a a point on the boundary of

D. For p a point in the domain, let

F(p) ≡ F(t, α; p) =
∑

ω:a p
t|ω|eiαW(ω),where |ω| is the length of ω, and W (ω) its winding number.

a

p

W (ω) = 0 W (ω) = −2π W (ω) = −π



A lo
al identityLet D be a �nite, simply 
onne
ted domain, and a a point on the boundary of

D. For p a point in the domain, let

F(p) ≡ F(t, α; p) =
∑

ω:a p
t|ω|eiαW(ω),where |ω| is the length of ω, and W (ω) its winding number.

a

p

W (ω) = 0 W (ω) = −2π W (ω) = −πRem. W is additive:

W (ω) =
π

3
(left turns− right turns) .

π
3

−π
3



A lo
al identityLet
F(p) ≡ F(t, α; p) =

∑

ω:a p in D

t|ω|eiαW(ω),

If p, q and r are the 3 mid-edges around a vertex v of the honey
omb latti
e,taken in 
ounter
lo
kwise order, then, for t = tc and α = −5/8,

F(p) + jF(q) + j2F(r) = 0,where j = e2iπ/3, or, more symmetri
ally,
(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0.

p
q

vr
a



A lo
al identityProof: Group walks three by three or two by two as follows

• Walks that avoid v + walks in whi
h v is the last visited vertex:

q

r p

q

r p

q

r p

v v v

• Walks that visit v before their last vertex:
q

r p

q

r p

v v

The 
ontribution of all walks in a group is zero.



A lo
al identity

• Walks that avoid v + walks in whi
h v is the last visited vertex:

q

r p

q

r p

q

r p

v v v

1 + jtc e−iαπ/3 + j2tc eiαπ/3 = 0



A lo
al identity

• Walks that avoid v + walks in whi
h v is the last visited vertex:

q

r p

q

r p

q

r p

v v v

1 + jtc e−iαπ/3 + j2tc eiαπ/3 = 0

• Walks that visit v before their last vertex:
q

r p

q

r p

v v

e−iαπ/3e5iαπ/3 + j2eiαπ/3e−5iαπ/3 = 2j cos(απ/3− 2π/3) = 0



Proof of the key identity

Sum the lo
al identity
(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0over all verti
es v of the domain Dh,ℓ.

• The inner mid-edges do not 
ontribute.

•The winding number of walks ending on theboundary is known.

Mh,ℓ

ℓ

Rh,ℓ

Mh,ℓ

Lh,ℓ

h

a



Proof of the key identity

Sum the lo
al identity
(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0over all verti
es v of the domain Dh,ℓ.

• The inner mid-edges do not 
ontribute.

• The domain has an up-down symmetry.
• The winding number of walks ending on theboundary is known.This gives:

√

2−
√
2

2
Lh,ℓ(tc) +Rh,ℓ(tc) +

1√
2

Mh,ℓ(tc) = 1,

Mh,ℓ

ℓ

Rh,ℓ

Mh,ℓ

Lh,ℓ

h

a

where Lh,ℓ(t) (resp. Rh,ℓ(t), Mh,ℓ(t)) are the generating fun
tion of walks thatstart from a and end on the left (resp. right, middle) border of the domain

Dh,ℓ.


