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I. Generalities




Self-avoiding walks (SAW)

What is ¢(n), the number of n-step SAW?

c(l) = 4

c(2) = ¢(1)x3 = 12
c(3) = ¢(2) x3 = 36
c(4) = ¢(3) x3 -8 = 100

Not so easy! c¢(n) is only known up to n =71 [Jensen 04]

Problem: a highly non-markovian model



Some (old) conjectures/predictions

e T he number of n-step SAW behaves asymptotically as follows:

c(n) ~ (k) p"'n?
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Some (old) conjectures/predictions

e T he number of n-step SAW behaves asymptotically as follows:
c(n) ~ (k) p'n’

where

- ~v=11/32 for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

- 1 =1/2 4+ +/2 on the honeycomb lattice [Nienhuis 82]
(proved this summer [Duminil-Copin & Smirnov])



Some (old) conjectures/predictions

e T he number of n-step SAW behaves asymptotically as follows:

c(n) ~ (k) p"'n?

= T he probability that two n-step SAW starting from the same point do not
intersect is
c(2n)
c(n)? -

n~ 7



Some (old) conjectures/predictions

e [ he end-to-end distance is on average

E(Dy) ~ n3/4 (vs. n1/2 for a simple random walk)

[Flory 49, Nienhuis 82]
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Some (recent) conjectures/predictions

e Limit process: The scaling limit of SAW is SLEg 3.

(proved if the scaling limit of SAW exists and is conformally invariant
[Lawler, Schramm, Werner 02])

This would imply

c(n) ~ ,ufn’nll/?’2 and E(Dp) ~ n3/4



In 5 dimensions and above

e [ he critical exponents are those of the simple random walk:

c(n) ~ u™nP, E(Dy) ~ nt/2.

e [ he scaling limit exists and is the d-dimensional brownian motion

[Hara-Slade 92]

Proof: a mixture of combinatorics (the lace expansion) and analysis



II. Exactly solvable models

= Design simpler classes of SAW, that should be natural, as general as
possible... but still tractable

e SOlve better and better approximations of real SAW

e develop new techniques in exact enumeration



II.0. A toy model: Partially directed walks

Definition: A walk is partially directed if it avoids (at least) one of the 4 steps
N, S, E, W.

Example: A NEW-walk is partially directed

=

"Markovian with memory 1"

-y

The self-avoidance condition is local.

Let a(n) be the number of n-step NEW-walks.



A toy model: Partially directed walks

e Recursive description of NEW-walks:

1
2+4a(n—1)+2¥7 2a(k) forn>1

a(0)
a(n)



A toy model: Partially directed walks

e Recursive description of NEW-walks:

a(0) = 1
a(n) = 24+a(n—1)+ QZZ;% a(k) forn>1
e Generating function:
2
A =Y a(n)t® =1+ zlL_t A + 2A(t)1t—_t

n>0



A toy model: Partially directed walks

e Recursive description of NEW-walks:

a(0) = 1
a(ln) = 24a(n—1)+ 222’;% a(k) forn>1
e Generating function:
2
A =Y a(n)t® =1+ zlL_t F LA + 2A(t)1t—_t

n>0

14t

A(t) =
Q 1 —2t—¢2

=  a(n) ~ (1 +V2)"~ (2.41..)"




Generating functions

Let A be a set of discrete objects equipped with a size:

size: A — N
a — |a

Assume that for all n,
An i={a € A :|a| =n} is finite.
Let a(n) = |Anl.

The generating function of the objects of A, counted by their size, is

A(t) = ) a(n)t"

n>0

— Z tlal

acA

Notation: [t"]A(t) := a(n)



Combinatorial constructions and operations on series: A dictionary

Construction

Numbers

Generating function

Union A=BUC

a(n) =b(n) 4+ c(n)

A(t) = B(t) + C(t)

Product A=BxC

(B, = 18]+ I

a(n) =b(0)c(n) +--- 4+ b(n)c(0)

A(t) = B(t) - C(t)

Sequence A = &(B)
A={efUBUBXxBU---




Partially directed walks revisited

t t2
Alt) =1+ 21—_t + tA(t) + 2A(t)1—_t




A hierarchy of formal power series

e The formal power series A(t) is rational if it can be written

_P@®
A0 =00

where P(t) and Q(t) are polynomials in t.

e The formal power series A(t) is algebraic (over Q(t)) if it satisfies a (non-
trivial) polynomial equation:

P(t,A(t)) = 0.

e The formal power series A(t) is D-finite if it satisfies a (non-trivial) linear
differential equation with polynomial coefficients:

Po)AR () + PL() AR~V (@) 4 .- + PL(t) A(t) = 0.

Rat C Alg C D—finitel




Some charms of this hierarchy...

e Closure properties (+, x, derivatives, composition...)

e The series are "“easy” to handle (partial fraction decomposition, Puiseux ex-
pansions, elimination, resultants, Grobner bases...)

e A differential (resp. algebraic) equation can be guessed from the first coeffi-
cients (GFUN)

e [ he coefficients can be computed in a linear number of operations.

e (Almost) automatic asymptotics of the coefficients.

e May give insight on the (hidden) structure of the objects — or prove that they
are inherently complex



What to do with a generating function?

e Extract the nth coefficient a(n) (when nice...)

e The asymptotic behaviour of a(n) can often be derived from the behaviour
of A(t) (seen as a function of a complex variable) in the neighborhood of its
dominant singularities.

Example: limsupa(n)l/™ = p <= A(t) has radius 1/u

Transfer theorems: under certain hypotheses, if A(t) has a unique dominant
singularity at 1/pu,

1
A(t) ~ — ~ "n®
W~ qtda = M e
Analytic combinatorics [Flajolet-Sedgewick 09]
Example: A(t) = —LTt _ has a simple pole (a =0) at te.=+v2 -1

1-—2t—¢2

— a(n) ~ k(v/2 + 1)"n0



Multivariate generating functions

e Enumeration according to the size (main parameter) and another parameter:

A(t,z) = ) tlalgr(a)
ac A
e [ hen
oA
ox?

[t"]

(¢, z) = >, pla)p(a) —1) - (p(a) —i+1)

r=1 a:la|=n
[ F4A(t, 1)
[t At 1)

is the 7th factorial moment of p(a), when a is taken uniformly among objects
of size n.

=En(p(p—1)---(p—i+1))

e Asymptotic behaviour of the coefficients = Asymptotic behaviour of the
moments

Analytic combinatorics [Flajolet-Sedgewick 09]



Multivariate generating functions

e Enumeration according to the size (main parameter) and another parameter:

A(t,z) = ) tlalzp(a)
ac A
e [ hen
(A7) Yarjaj=n @
[t"]A(t, 1) 2 a:la)=n 1
is the probability generating function of p(a), when a is taken uniformly among
objects of size n.

e Combined with:

— asymptotic behaviour of [t"]|A(t,z) (for x € R)

— continuity theorems for (Laplace or Fourier) transforms,
this often yields a limit law for the additional parameter p.

Analytic combinatorics [Flajolet-Sedgewick 09]



Example: the number of North steps in a partially directed walk

e [ he bivariate generating function is

14+¢
1—t—te(l41)

A(t,x) = Zt|w|af;N(w) =

e For x in a neighborhood of 1, there holds uniformly

n

MAG D) (et V14 6z 4 22

[t"]A(t, 1) 2(1 4+ 2) (1+0(1/n))

e By the quasi-power Theorem, the number N, of North steps satisfies

E(Np) ~ mn, V(Np) ~ s°n,

for some m,s2 > 0, and the normalized random variable M;;\/%m converges in law
to a standard normal distribution.

+ Similar result for the abscissa of the endpoint (with mean 0).



Random partially directed walks

e Asymptotic properties: coordinates of the endpoint

E(X,) =0, E(X2)~n, E(Yy) ~ n
e Random NEW-walks:

3000 1 3000 -
2500 2500 |
2000 A 2000 |
1500 -| 1500
1000 1000 -
500 %ﬂ*
1 -dj%
0 500 1000 1500 2000 2500 0 20 40 60 80 100

Scaled by n (= and |) Scaled by /n (=) and n (|)



II.1. Weakly directed walks

(Joint work with Axel Bacher)



Bridges

e A walk with vertices vg,...,v;,...,vn iS a bridge if the ordinates of its vertices
satisfy yo < y; < yn for 1 <i < n.

—

e [ here are many bridges:

/
b(n) ~ :ugm'dgen’y

where

Hbridge — HSAW



Irreducible bridges

Def. A bridge is irreducible if it is not the concatenation of two bridges.

Observation: A bridge is a sequence of irreducible bridges




Weakly directed bridges

Definition: a bridge is weakly directed if each of its irreducible bridges avoids
at least one of the steps N, S, E, W.

This means that each irreducible bridge is a NES- or a NWS-walk.

- B

Un

Vo

= Count NES- (irreducible) bridges



Enumeration of NES-bridges

Proposition

e T he generating function of NES-bridges of height k+1 is

k+1
B(k—l—l)(t) — Zb%k—l—l)tn _ t + |
n Gk(t)
where G_1 =1, Go=1—-t, and for £ > O,

Gry1= (1 —t+t°+ )G}, — t°Gp_1.




Enumeration of NES-bridges

Proposition

e The generating function of NES-bridges of height k41 is i |

tk+1

BE+D () — D — P
B=2 Gr (D)

where G_1 =1, Go=1—-t, and for £ > O,

Gry1= (1 —t+t°+ )G}, — t°Gp_1.

e T he generating function of NES-excursions of height at most k is

EF)(4) = % (Gé_l — 1) .
k

Excursion: yo =0 =1y, and y; > 0 for 1 <i <n. 4



Enumeration of NES-bridges

(\/\/ N\J\/\/ Last return to height O
m M M First return to height 0

e Bridges of height k + 1:
Bk+1) — yg(k) 4 p(k)2 p(k)
e Excursions of height at most k&
ER) =1 4t5W 442 (B*-D — 1) 443 (01 — 1) p¥)

e Initial conditions: E(-1 =1, B(1) =¢/(1 —¢).



Enumeration of NES-bridges

Proposition

e The generating function of NES-bridges of height k41 is i |

tk+1

BE+D () — D — P
B=2 Gr (D)

where G_1 =1, Go=1—-t, and for £ > O,

Gry1= (1 —t+t°+ )G}, — t°Gp_1.

e T he generating function of NES-excursions of height at most k is

EF)(4) = % (Gé_l — 1) .
k

Excursion: yo =0 =1y, and y; > 0 for 1 <i <n. 4



Enumeration of weakly directed bridges

e GF of NES-bridges:
th+1
B(t)= ) ——
k>0 G



Enumeration of weakly directed bridges

e GF of NES-bridges:
th+1
B(t) = —_—
k>0 G,

e GF of irreducible NES-bridges:

(1) _ BQ@)
1—1(t) = 1) = 14+ B(t)

B(t) =



Enumeration of weakly directed bridges

e GF of NES-bridges:

k41
B(t) = —_—
k>0 G
e GF of irreducible NES-bridges:
I(t B(t
B(t) = (t) = I(t) = ()
1—1(¢) 1+ B(t)

e GF of weakly directed bridges (sequences of irreducible NES- or NWS-
bridges):

W) — 1 B 1
IO -0 1 (2 )

with G_1 =1, Go=1—-t, and for k> 0,

Gry1= (1 —t+t°>+ )G} — t°Gp_1.

[Bacher-mbm 10]



Asymptotic results and nature of the generating functions

B(t) = e W(t) = .
t ¢
’ 2B(t
k>0 1= (1+£§<3f) —t)

with G_1 =1, Go=1—t, and for k > 0,

Gry1= (1 —t+t°+ )G} — t°Gj_1.

The zeroes of G (here, k = 20):

—V2-1




Asymptotic results and nature of the generating functions

(t) = e W(t) = .
B(t t
’ 2B(t
k>0 1“(L+é&)_t>

e The series B(t) and W (t) are meromorphic in C\ £, where £ consists of the
two real intervals [-v/2 — 1, —1] and [v/2 — 1, 1], and of the curve

1 — 22 —223

1422 }
This curve is a natural boundary of B and W. These series thus have infinitely
many singularities.

EOZ{:I:—I—iy::cZO, y2=




Asymptotic results and nature of the generating function

(t) = e W(t) = .
B(t t
’ 2B(t
k>0 1“(L+é&)_t>

e The series B(t) and W(t) are meromorphic in C\ & where £ consists of the
two real intervals [-v/2 — 1, —1] and [v/2 — 1, 1], and of the curve

1 — 22 —223
142z '

This curve is a natural boundary of B and W. These series thus have infinitely
many singularities.

EOZ{:I:—I—iy::cZO, y2=

e The series B(t) has radius v/2 — 1, while W (t) has a simple pole p of smaller

- — 2B(p) _
modulus (for which 1 = T+5(0) 0).



Asymptotic results and nature of the generating function

(1) —tk+1 W (t) .
’ 2B(t
k=0 Ok - (50 —Y)

e The series B(t) and W (t) are meromorphic in C\ & where £ consists of the
two real intervals [-v/2 — 1, —1] and [v2 — 1, 1], and of the curve

1 — 22 —2¢3
1422 '

This curve is a natural boundary of B and W. These series thus have infinitely
many singularities.

SOZ{x—I—iy::BZO, y2=

e The series B(t) has radius v/2 — 1, while W (t) has a simple pole p of smaller

- _ 2B(p) _
modulus (for which 1 = T+ 5(0) 0).

e The number w(n) of weakly directed bridges of length n satisfies

w(n) ~ p",
with u ~ 2.54 (the current record).



The number of irreducible bridges

e [ he generating function of xeakly directed bridges, counted by the length
and the number of irreducible bridges, is

1

e Let N, denote the number N, of irreducible bridges in a random weakly
directed bridge of length n. Then

W(t,x) =

E(Np) ~ mn, V(Ny) ~ s°n,
where
m~ 0.318 and s°~0.7,

and the random variable Ng;\/%‘” converges in law to a standard normal distribu-
tion. In particular, the average end-to-end distance, being bounded from below
by E(Ny), grows linearly with n.



A random weakly directed bridge



II. 2. Prudent self-avoiding walks

Self-directed walks [Turban-Debierre 86]
Exterior walks [Préa 97]

Outwardly directed SAW [Santra-Seitz-Klein 01]
Prudent walks [Duchi 05], [Dethridge, Guttmann, Jensen 07], [mbm 08]



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.
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Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Remark: Partially directed walks are prudent
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Some properties of prudent walks

The box of a prudent walk
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Some properties of prudent walks

Each new step either inflates the box or walks (prudently) along the border.
(i) (i)
i I
X (i)

e After an inflating step, 3 possible extensions

e Otherwise, only 2.

= Count prudent walks by looking for inflating steps

When do we create an inflating step?



More parameters

' )
<]—>‘ o

If one knows:

e the direction of the last step,

e Whether it is inflating or not,

e the distances ¢, 5 and h,

then one can decide which steps can be appended to the walk, and the new
values of these parameters.

= Count prudent walks by looking for inflating steps, keeping track of the
distances 1,73, h



Recursive construction of prudent walks

e [ hree more parameters

(catalytic parameters)

\ 4

e Generating function of prudent walks ending on the top of their box:

(1 B vowt(1 — t2)
(u —tv)(v — tu)

) Tt u,v,w) =
T v,w) tuT(t; U, W)

u — tu v — tu

14+ 70 w,u) + T w,v) — to

with 7 (¢; w,v) = tvT'(t; u, tu,v).

e Generating function of all prudent walks, counted by the length and the
half-perimeter of the box:

Ptiu)=14+4T; u,u,uw) —4T(t; 0, u,uw)



Simpler families of prudent walks [Préa 97]

j B
:4 _>.< >: .—I_I -
_Ll_ ? ol
N I L o
3-sided 2-sided 1-sided

e The endpoint of a 3-sided walk lies always on the top, right or left side of
the box

e T he endpoint of a 2-sided walk lies always on the top or right side of the box
e The endpoint of a 1-sided walk lies always on the top side of the box (=
partially directed!)



Functional equations for prudent walks:
The more general the class, the more additional variables

(Walks ending on the top of the box)

e General prudent walks: three catalytic variables
T(w,w)  T(u,w)
—tu

u — tu v — tu

(1 B vowt(1 — t2)
(u — tv) (v — tu)
with 7 (u,v) = tvT(t; u, tu, v).

) T u,v,w) =14+T(w,u)+T (w,v)—tv

e [ hree-sided walks: two catalytic variables
2 2

wot(1 — t2) t<v t<u
1 — Tt u,v) =14+ .- — T(t, tv,v) — T(t; u,tu
( (u—tv)(v—tu)) ( ) + u — tv ( ) v —tu ( )
e Two-sided walks: one catalytic variable
tu(1l — t2) u — 2t
1 — T(t; = t T(t;t
( (1—tu)(u—t)> (t;w) 1—tu+ u—t (&)



Where do these equations come from? Two-sided walks

Generating function:

P(t;u) = Z p(n; )t = Z P(t)u’ = P(u)

e For walks ending on the top of their box: series T'(t;u) = T(u)



Two-sided walks

Take a walk ending on the top of its box: where is the last step that has moved
the top or right side of the box?

e Either there was no such step: -

1
1 —tu
e ... Or an East step moved the right side:

t Y Tt =tT(t;t)



Two-sided walks

. or a North step moved the top side:

- >
k! |
9 — |____'___'___
| : | C—J
 — l——

(at least one West step)

t2u U 4

T(t;u) +t Y T;(t) i: thy =k = - (uT(t;u) — tT(t; 1))

1 —tu >0 =0 — tu u—t



Two-sided walks

e The generating functionT'(¢t; u) = T'(u) of two-sided walks ending on the top
of their box satisfies:

(1 o tu(l —t9)
(1 —tu)(u—1)

)T(u)z

1 —tu u—t

e The length generating function P(¢) of all two-sided walks is
P(t) =2T(t;1) —T(¢;0)

(inclusion-exclusion)



Two-sided walks: the kernel method

((1 —tu)(u —t) — tu(l — t2)) Tt u) =u—t~+ t(u— 2t)(1 — tu)T(t; t).

o If w=U(t) cancels (1 — tu)(u—t) — tu(1l — t2), then

0=U(t) —t+ t(U(t) —2t)(1 — tU))T(t: 1),

that is,
t—U(t)
t(U(t) —2t)(1 —tU(t))

T(t; t) =

e We know such a series U(t) :

1—t4+ 12413 — /(1 — %) (1 — 2t — 12)

Ut = ot

[Knuth 72], [mbm-Petkovsek 2000]



Two-sided walks

e [ he length generating function of 2-sided walks is

1

P(t) =
(t) 1 — 2t — 2t2 4 2¢3

1—|—t—t3—|—t(1—t)J

e Dominant singularity: a simple pole for 1 — 2t — 2t2 4+ 2¢3 = 0, that is,
te = 0.40303.... Asymptotically,

p(n) ~ k(2.48..)"

Compare with 2.41... for partially directed walks.

e Another approach: factorization of walks [Duchi 05] 7




Functional equation for 3-sided walks
(Walks ending on the top of the box)

e [ hree-sided walks: two catalytic variables

(1 B wot(1 — t2)
(u —tv)(v — tu)

t2v t2u

T(t; tv,v) —

T(t; u,tu)
u — tv v —tu

)T(t;u,v) =14 -



Three-sided walks: two catalytic variables

e Functional equation for T'(¢t; u,v) = T(u,v):

K(u,v)T(u,v) = A(u,v) + B(u,v) P(u) + B(v,u) ®(v)
for polynomials K(u,v), A(u,v), B(u,v), with ®(u) = T'(u, tu).



Three-sided walks: two catalytic variables

e Functional equation for T'(¢t; u,v) = T (u,v):

K(u,v)T(u,v) = A(u,v) + B(u,v) P(u) + B(v,u) ®(v)
for polynomials K(u,v), A(u,v), B(u,v), with ®(u) = T'(u, tu).

e Cancellation of the kernel: K(u,V(u)) = 0 for a series V(u) =V (t;u)

A, V(u) BV (), u)
B(u,V(w) B(u,V(u))

P(u) = PV (u))



Three-sided walks: two catalytic variables

e Functional equation for T'(¢t; u,v) = T (u,v):

K(u,v)T(u,v) = A(u,v) + B(u,v) P(u) + B(v,u) ®(v)
for polynomials K(u,v), A(u,v), B(u,v), with ®(u) = T'(u, tu).

e Cancellation of the kernel: K(u,V(u)) = 0 for a series V(u) =V (t;u)

A(u,V(u)) BV (u),u)

P = B V) T Blu, v (W)

P(V(u))

e If it is possible to iterate (...), denote V) = vV(V(V(---(w)))) (k iterations):

(1) (2) y(Dy... (k) 1/ (k—1) (k) 1/(k+1)
o) = 3 (c1)k-1 BV B, VD) - BV, VI ) AT, VD)
k>0 B(u, VID)B(V(D, V). p(v -1, V() B(vF), v(k+1))

Sum of algebraic series — iteration of algebraic functions



Three-sided prudent walks

o Let
1 —tw4t2 4 3w — \/(1 — ) (1 4t — tw + t2w) (1 — t — tw — t2w)
U(w) = Y :
and

1—t 4124+ 83 /(1 —tH(1 -2t —12)
2t '
e [ he length generating function of three-sided prudent walks is:

q=U(1) =

a2
P(t;1) = = 21t 2 (1 L +tf(_1tq 320 + 2t%q T(t; 1,t)>
where
175 (1 — U(¢tD) U(gk) — ¢ U(gh+1y — ¢
: _ 11k 1i=0 \1-4q q q
Hhn = kzZ:O( Y 1o (% — U(qi)> <1 t(1 —tU(¢")) i t(1 — tU(qu)))



Three-sided prudent walks

The generating function of three-sided prudent walks is:

1 <1+3t+tq(1—3t—2t2)

P(t; 1) = + 2t%q T(¢; 1,t)>

1 — 2t —t2 1—tq
Hk_l ( t U(qz—|—1)> U( k) ¢ U ( k-l—l) ¢t
. o Lili=0 \1—¢ q d
H L= kzz:o( Y [Ti=o ( tgl U(g" )> <1 t(1 —tU(g")) i t(1— tU(qk+1))>

e The series P(t;1) has infinitely many poles, satisfying thq = U(q¢") for some
1 > 0. Hence it is neither algebraic, nor even D-finite.

e Dominant singularity: (again) a simple pole for 1 —2t—2t242¢t3 = 0. Asymp-
totically,

p(n) ~ k(2.48...)"



Two- and three-sided walks: asymptotic enumeration

e T he numbers of 2-sided and 3-sided n-step prudent walks satisfy
po(n) ~ ko, pa(n)~ k3 p”
where pu ~ 2.48... is such that

,u3—2,u2—2,u—|—2=O.
Compare with 2.41... for partially directed walks, 2.54... for weakly directed
bridges, but 2.64... for general SAW.

e Conjecture: for general prudent walks

pa(n) ~ kg p"

with the same value of u as above [Dethridge, Guttmann, Jensen 07].



Two-sided walks: properties of large random walks
(uniform distribution)

e T he random variables X,,, Y, and ¢,, satisfy

E(X,) = E(Y,) ~n E((Xn — Yn)?) ~ n, E(8,) ~ 4.15. ..

(+ gaussian limit law after normalization)

—~

< \‘\AV\J y
V



Two-sided walks: random generation (uniform distribution)

00000

500 steps 730 steps 1354 steps 3148 steps

e Recursive step-by-step construction a la Wilf = 500 steps
(precomputation of O(n?) large numbers)

e Boltzmann sampling via a context-free grammar
[Duchon-Flajolet-Louchard-Schaeffer 02]

E(X,) = E(Yy) ~n E((Xp — Yn)?) ~ n, E(5,) ~ 4.15 ...



T hree-sided prudent walks:
random dgeneration and asymptotic properties

e Asymptotic properties: The average width of the box is ~ kn (variance ~ n,
gausiian limit law after normalization)

e Random generation: Recursive method a la Wilf = 400 steps
(pre-computation of O(n3) numbers)




Four-sided (i.e. general) prudent walks

e An equation with 3 catalytic variables:
vowt(1 — t2)
1 —
(u — tv) (v — tu)
with T (u,v) = tvT (u, tu,v).

T (v, w) B tuT(u, w)

u — tu v — tu

) T(u,v,w) =14+T(w,u) +T(w,v) —tv

e Conjecture:

pa(n) ~ kg p"
where p ~ 2.48 satisfies pu3 —2p2 — 24 +2 = 0.

e Random prudent walks: recursive generation, 195 steps (sic! O(n*) numbers)

A N i =]

—50]
40 T 20 “io [—40
—60
[ 10 l-s0
701




II.3. Another distribution: Kinetic prudent walks

At time n, the walk chooses one of the admissible steps with uniform probability.

[An admissible step is one that gives a prudent walk]




Another distribution: Kinetic prudent walks

e Kinetic model: recursive generation with no precomputation

000000

500 steps 1000 steps 10000 steps 20000 steps

e [ heorem: The walk chooses uniformly one quadrant, say the NE one, and
then its scaling limit is given by

3u/7
Z(’U,) — /O (1W(8)20 €1 —I— 1W(S)<O 62) ds

where ey, e> form the canonical basis of R2 and W(s) is a brownian motion.
[Beffara, Friedli, Velenik 10]



A Kinetic, continuous space version: The rancher’s walk

At time n, the walk takes a uniform unit step in IR%Q, conditioned so that the
new step does not intersect the convex hull of the walk.

‘/‘%{

Theorem: the end-to-end distance is linear. More precisely, there exists a
constant a > 0 such that

i inf 1@l > a.
n

[Angel, Benjamini, Virag 03], [Zerner 05]

Conjectures
e Linear speed: There exists a > 0 such that “w—?f” —s a a.s.

e Angular convergence: IIZ—nII converges a.s.
n



What’s next? EXxactly solvable models

e Exact enumeration: General prudent walks on the square lattice — Growth
constant?

e Uniform random generation: better algorithms (maximal length 200 for gen-
eral prudent walks...) o w1

e A mixture of both models: walks formed of a sequence of prudent irreducible
bridges?



III. Self-avoiding walks on the honeycomb lattice

d’'aprés H. Duminil-Copin and S. Smirnov, ArXiv 1007.0575



Simple bounds on c¢(n)

Let ¢(n) be the number of n-step SAW. We have
Fh41 <c(n)<3.2"71
with Fp = Iy =1 and F,,41 = I + F,,_1 (Fibonacci numbers).

e Upper bound: at most two possible extensions at each step

e Lower bound: SAW that never move in the South direction (partially di-
rected).



T he connective constant

Clearly,
c(m +n) < c(m)c(n)

= lime(n)1/™ exists and

= lim c(n)/™ = inf e(n)l/"



T he connective constant

= lim c(n)/™ = inf e(n)l/"
Given the bounds
Foi1<ec(n)<3-2n1

there holds

1++v5

S~ 1.62< <2

Theorem [Duminil-Copin & Smirnov 10]

p=12++vV2~1.85

Conjectured by Nienhuis in 1982



Sub-families of SAW

Self-avoiding polygons and self-avoiding bridges

e Same growth constant:

p(n)l/n—>,u and b(n)l/n—>,u

[Hammersley 61]




Generating functions

For self-avoiding walks, polygons and bridges:

C(t) =) c(n)t™, P(t) =) p(n)t", B(t) =) b(n)t"

Theorem [Duminil-Copin & Smirnov 10]
The radius of convergence of these series is

1

J2+v2

tc:

Moreover:
e C'(t) diverges at ¢,
e P(t) converges at t..

Conjectures:
1

C(t) ~ P(t)sing ~ (1 — t)3/2,  B(t) ~

(1-— tc)43/32’



Walks starting and ending at mid-edges



A key identity

Consider the following domain Dy, 4.

[ }



A key identity

Consider the following domain Dy, 4.

Let Ly o(t) (resp. Ry (1), My (t)) be the gen-
erating function of walks that start from a and
end on the left (resp. right, middle) border of
the domain Dy, . These series are polynomials
in t.

Then for all h and ¢, at t =t. = 1/y/2 + V2,
2 — /2
2

1
Ly o(tc) + Ry, o(te) + —= My o(tc) = 1
V2

 }

\J



An upper bound on u

2 —/2 1
L C C =
5 no(te) + Ry, o(te) + NG

Consider walks in Dy, that go from a to a™
(~ self-avoiding polygons). Their generating
function Py 4(t) satisfies

Py, o(te) < Ly p(te) <

2 /2
But

Ph,ﬁ(tc) — p(tc) > tCQEP(tC)

as h,¢ — oo. This implies that P(t.) is finite.
Hence p < 1/tc =1/2 + V2.

My, o(tc) = 1
My, o
'}
no|at
a
Ly g Ry,
My, 0




A lower bound on u

2 — /2 1
V2

5 Ly, o(te) + Ry p(tc) +

As h — oo, Ly ¢(tc) and Ry, o(tc) increase to limit
values L,(tc) and Ry(tc). Hence My ,(tc) de-
creases to a limit value My(t.).

o If My(t.) > 0 for some ¢, the series

Z Mh,e(tC)
h

diverges. As it counts certain SAW, this implies
that p > 1/tc.

o If My(tc) = 0O for all £, another argument
shows that >, Ry(t.) (the generating function
of bridges) diverges.

In both cases, u > 1/t =1/2 + V2.

My o(tc) =1
My, o
é
h
a
Ly, Ry,
My, 0




A lower bound on u (continued)

1

a Ly, o(tc) + Ry o(tc) + 7

My, o(tc) =1

o If My(t.) = O for all £, then
a Ly(te) + Ry(tc) =1

= « (Le+1(tc) — Le(tc)> = Ry(tc) — Rpq1(te)
= 2atcRyRyy1 > Ry(te) — Ryy1(te)

~_ 1 1
= 2atc o Rﬁ—l—l(tC) RE(tC)

= 2bate+ 5> 1

1
= Ry > ,
= 2bat. + B
so that Y, Ry(tc) (the generating function of .
bridges) diverges. ¢




A key identity

2 /2 1
2

Ly o(te) + Ry p(tc) + 7 My, o(tc) =1

Where does it come from?

From a local identity that is re-summed over all vertices of the domain.



A local identity

Let D be a finite, simply connected domain, and a a point on the boundary of
D. For p a point in the domain, let

F(p) = F(t,a;p) = Y glwl giaW (w)

w:a~>p

where |w| is the length of w, and W (w) its winding number.

W(w) =0 W((w) = 27 W(lw) = —7



A local identity

Let D be a finite, simply connected domain, and a a point on the boundary of
D. For p a point in the domain, let

F(p) = F(t,a;p) = 5 tl@lefeW(w)

w:a~>p

where |w| is the length of w, and W (w) its winding number.

W(w) =0 W((w) = 27 W(lw) = —7
Rem. W is additive:
W(w) = g(left turns — right turns).

7T 7T
s — "3



A local identity

Let

F(p) = Ft,a;p) = Y twlefeW (W),
wia~p IN D

If p, ¢ and r are the 3 mid-edges around a vertex v of the honeycomb lattice,
taken in counterclockwise order, then, for t =t. and a = —5/8,

F(p) + jF(q) + j2F(r) = 0,

where j = ¢2i7/3 or, more symmetrically,

(p—v)F(p)+ (q—v)F(q) + (r —v)F(r) =0.




A local identity
Proof: Group walks three by three or two by two as follows
e \Walks that avoid v + walks in which v is the last visited vertex:

Vel el ey
/.__ \ / \
rw \ ruw P r

p

/ / /

e \Walks that visit v before their last vertex;

The contribution of all walks in a group is zero.



A local identity
e \Walks that avoid v + walks in which v is the last visited vertex:

/’__ \ / \
r W \ ru P r

p

/ / /

1 +,]tc e—iOé7T/3 _I_thC eiOé7T/3 — O



A local identity
e \Walks that avoid v + walks in which v is the last visited vertex:

// qm g ; f/ Q\fu ; // qm
/.__ \ / \
ra P re P r

/
/ / /

1 +,]tc e—?:Oé7T/3 +j2tc eiOé7T/3 — O

e Walks that visit v before their last vertex:

e—z'om'/3€5iom'/3 _I_j2€z'om/3€—5iom/3 = 2jcos(arn/3 —27/3) =0



Proof of the key identity

Sum the local identity

M, ¢
(p—v)F(p) +(q@—v)F(q) + (r—v)F(r) =0
: . [
over all vertices v of the domain Dy, 4.
h

e [ he inner mid-edges do not contribute.

e T he winding number of walks ending on the a

boundary is known. L R,
My, ¢




Proof of the key identity

Sum the local identity
(p—v)F(p)+(@—v)F(q) + (r—v)F(r) =0

over all vertices v of the domain Dy, 4.

e [ he inner mid-edges do not contribute.
e [ he domain has an up-down symmetry. a
e The winding number of walks ending on the ,,
boundary is known.

This gives:

2 _ \/§ 1 - >
Ly (¢ Ry, o(t — My, (te) =1, ¢
5 ne(te) + Ry o(te) + 7 he(te)

where Ly, o(t) (resp. Ry, o(t), My (t)) are the generating function of walks that
start from a and end on the left (resp. right, middle) border of the domain



