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A Markov chain

e Consider the symmetric group 6,441 on the elements {0, 1,...,d}.
e Start from the identity permutation 7(©0) = 012...4.

e Apply an adjacent transposition, taken uniformly at random (probability 1/d
for each).

e Repeat.

Example: d =2
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A Markov chain

e Consider the symmetric group 6,441 on the elements {0, 1,...,d}.
e Start from the identity permutation 7(©0) = 012...4.

e Apply an adjacent transposition, taken uniformly at random (probability 1/d
for each).

e Repeat.
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Periodicity

This chain, 7(9 #(1) 7(2) s periodic of period 2: it takes an even number
of steps to return to a point.
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Aperiodic variants

This chain, 7(9 #(1) 7(2) s periodic of period 2: it takes an even number
of steps to return to a point.
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e Either: do nothing with probability 1/(d+1), and otherwise apply an adjacent
transposition chosen uniformly



Aperiodic variants

This chain, 7(9 #(1) 7(2) s periodic of period 2: it takes an even number
of steps to return to a point.
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e Either: do nothing with probability 1/(d+1), and otherwise apply an adjacent
transposition chosen uniformly

e Or: consider the chains (7.‘.(271)) and (w(2”+1))

n n



Aperiodic variants

This chain, 7(9 #(1) 7(2) s periodic of period 2: it takes an even number
of steps to return to a point.

210 ODD
/ \
1?0 2‘01— EVEN
102 021 ODD
I 012/ EVEN

e Either: do nothing with probability 1/(d+1), and otherwise apply an adjacent
transposition chosen uniformly

e Or: consider the chains (7.‘.(271)) and (w(2”+1))

n n

These three chains are aperiodic, irreducible and symmetric, and thus converge
to the uniform distribution on their respective state spaces.



Motivations

e 1980 — 2010: Random walks in finite groups (Aldous, Diaconis, Letac,
Saloff-Coste, Wilson...)

Tools: coupling techniques, representation theory...



Motivations

e 1980 — 2010: Random walks in finite groups (Aldous, Diaconis, Letac,
Saloff-Coste, Wilson...)

Tools: coupling techniques, representation theory...

e More recently: Computational biology (N. Beresticky, Durrett, Eriksen, Hult-
man, H. Eriksson, K. Eriksson, Sjostrand...)

A transposition: a gene mutation



What do we ask? What do we expect?

e Mixing time: How much time does it take to ‘reach” the uniform distribution?

The total variation distance between the distribution at time n and the uniform
distribution on G 41:

d=3 d= 4 d large
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What do we ask? What do we expect?

e Mixing time: How much time does it take to ‘reach” the uniform distribution?

The total variation distance between the distribution at time n and the uniform
distribution on G 41:

d=3 d= 4 d large
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[Aldous 83, Diaconis & Saloff-Coste 93, Wilson 04]



What do we ask? What do we expect?

e Focus on observables, for instance the inversion number Z,,, = inv(x(™).

The expected value of the inversion number, |, :=E(Zy,,):

— Estimate the number of transpositions (mutations) that have occurred,
and hence the evolutionary distance between species.

Of particular interest: what happens before mixing.



What do we ask? What do we expect?

Let Q = (Qo,r) be the transition matrix of the chain:
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What do we ask? What do we expect?

Let Q = (Qo,r) be the transition matrix of the chain:

O 1/2 1/2 O O
1/2 O 0 O 1/2
Q=1 1/2 O O 1/2 O
0 O 1/2 O O
\ 0 0 0 1/2 1/2
e For all o € Si41
Go(t) = Z P (W(n) = a)
n>0

IS a rational series in t.
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What do we ask? What do we expect?

Let Q = (Qos,r) be the transition matrix of the chain:

210
0 1/2 1/2 0 0 0 ) RN

1/2 0 0 0 1/2 0 120 201
Q=12 o o0 1/2 0 o0 | |
O 0 1/2 0 0 1/2 102 021

\ 0 0O o0 1/2 1/2 0 | \012/

e Forall o € 6441,

Go(t) == > P (W(n) - 0) = 2. Qlyot ((1 - tQ)_l)id

n>0 n>0 7
IS a rational series in t.

e The GF of the expected inversion number

Slapt"= > | X inv(@P (" =0) [t"= Y inv(e)Go(t)

n>0 n>0 066d+1 0€6d+1
is rational as well.



A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions
in 6d—|—1 IS

=A@+ 1) 1 i (¢ + Ck)z .
n T o 2 Jjk >
4 8(d+1)=, k=0 s Sk

where
COS Sin (2k + D)7
Cl. — L, Sl — L, A = 9
k k k k k 2d + 2
and
i =1— E(l —cjcr).
Remarks

e The series >, |;,t" is rational.

e For d large enough (d > 8), l;,, increases, as n grows, to d(deLl), which is the
average inversion number of a random permutation in G44 1.



Another formula for the expected inversion number [Eriksen 05]

in= 2 () 2 (2 )9 0uihen
r=1 s=1
with
d 2[s/2] — 1
sd = (=1)*(p - 20)
Js.d ggkgo b <(s/21 + 0+ k(d+ 1))
and

RSV 2[s/2]
e ;%:z( Y <LS/2J+j(d+ 1))'

Based on [Eriksson & Eriksson & Sjostrand 00]

Beresticky & Durrett 08: ‘it is far from obvious how to extract useful asymp-
totic from this formula’.

Combinatorialists could not throw in the sponge!



A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions
in 6d—|—1 IS

oo ddry 0 i (¢ ‘|‘Ck)2 _
i 4 8(d+1)2, k=0 s sk J
where
. (2k + 1)«
Ccp — COS o, S = SIN oy, ap = >d + 2 ,
and

i =1— E(l —cjcr).

Remark: For d large enough (d > 8), lg.n, inCreases, as n grows, to d(djl), which
is the average inversion number of a random permutation in &4 1.



The expected inversion number: asymptotics

Three regimes, as d and n tend to oo

e \When n is “small”’, each step of the chain increases the inversion number with
high probability. For example,

G =1, B(vG@)=2)=1-  F(ivG™) =n)=1-0().
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e When n is “large”, the expected inversion number must approach its limit
value d(d+1)/4 ~ d?/4.



The expected inversion number: asymptotics

Three regimes, as d and n tend to oo

e \When n is “small”’, each step of the chain increases the inversion number with

high probability. For example,
1

G =1, B(vG@)=2)=1-  F(ivG™) =n)=1-0().

e When n is “large”, the expected inversion number must approach its limit
value d(d+1)/4 ~ d?/4.

e An intermediate regime?



Small times: linear and before

e Sub-linear regime. If n = o(d),

lan _ 4 + O(n/d).
n



Small times: linear and before

e Sub-linear regime. If n = o(d),

Idn

=14 0(n/d).
e Linear regime. If n ~ kd,
i = () + O(1/d)
where
) = ?1&/000 1— expt(z_(?ﬁft/z()l + t2))dt
) jzzo(_l)jj!(ﬁi)ll>!2(2“>j'

The function f(k) decreases from f(0) =1 to f(oo) = 0.



Large times: cubic and beyond

e Super-cubic regime. If n > d3,




Large times: cubic and beyond

e Super-cubic regime. If n > d3,

e Cubic regime. If n ~ kd3,

ld,n
d?

2/ 2 2
1 16 —Kkme(2j+1)7/2
g<m>=4—4(§:€ — )
T \j>0 (27 + 1)

~ g(k)

where

The function g(k) increases from g(0) = 0 to g(oco) = 1/4.



Around the mixing time (super-cubic regime)

Assume n ~ kd3 logd.

o If Kk < 1/72, there exists v > 0 such that

d(d—+ 1
ap < REED _ gqttn),
’ 4
o If k > 1/72, there exists v > 0 such that
d(d 4+ 1) _
ldn = 4 — O(dl 7).

e For the critical value x = 1/72, the following refined estimate holds: if
n ~ 1/m2d3logd+ ad3 + o(d3), then

. d(d+ 1) 16d
B 4 w4

i e (14 0(1)).



The intermediate regime

o If d < n < d3,

Id,n _ \/5
vVdn T

Remark. For a related continuous time chain, the normalized inversion number
Tan/Vdn converges in probability to |/2/7 [Beresticky & Durrett 08]



A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions
in 6d—|—1 IS

oo ddry 0 i (5 + ck>2 _
i 4 8(d + 1)2 k=0 s Sk J
where
. (2k + L7
Ccp — COS o, S = SIN oy, ap = >d + 2 ,
and

i =1— E(l —cjcr).



Where are the inversions? [Eriksson et al. 00]

For ¢+ < 7, let pz(?-) be the probability that there is an inversion at time n in the
positions ¢ and 5 4+ 1:

" =P(x{™ > x{™).

e T he expected number of inversions at time n is



Where are the inversions? [Eriksson et al. 00]

For ¢+ < 7, let pz(?-) be the probability that there is an inversion at time n in the
positions ¢ and 5 4+ 1:

" =P(x{™ > x{™).

e [ he numbers p,g?) can be described recursively by examining where were the

(n) (n) -
values T, and T4 at time n — 1.



Where are the inversions? [Eriksson et al. 00]

For « <, let p( n) be the probability that there is an inversion at time n in the
positions ¢ and g + 1:

pf?) — P(ﬂ'( n) > W(n)l).

e [ he numbers p( n) can be described recursively by examining where were the

values wz-( n) and 7r§f1 at time n — 1. For instance:

— ¢ =37 and the nth transposition has switched the :th and ¢ 4 1st values:

ptn 1)
(1-257)5

— 0 # 1 =3 # d and the nth transposition has not changed the values at
positions 2 and 7+ 1,
p(n=1) -3
Py d)’

— etc.



A recursion for the inversion probabilities

Lemma. The inversion probabilities pzo;-) are characterized by:
pP =0 for 0<i<j<d,
and for n > 0,
(n+1) _ (n) 4 1 (n) ()Y 4 Y (n)
pij  =Pig g 2 (pk,e ~Pij ) T4 (1 — 2P )
(k,0)<>(i,5)
where 57;,]- = 1 if ¢+ = 5 and O otherwise, and the neighbour relations « are those
of the following graph:

(d—1)

~ A (weighted) walk in a triangle.



A functional equation for the GF of the inversion probabilities

Let P(t;u,v) be the generating function of the numbers pz(?})i

P(t;u,v) = P(u,v) := > " > p,gz)uivj.

n>0 0<i<j<d



A functional equation for the GF of the inversion probabilities

(n).
1, )

P(tu,v) = P(u,v) 1= > _ t" > png)uivj.

n>0 0<i<j<d

Let P(t;u,v) be the generating function of the numbers p

T he above recursion translates as

t _ _
(1—t—|—g(4—u—u—v—v)>P(u,v)=
t 1 — ydd
&((1—11,@)(1—75)

where w = 1/u, v = 1 /v, and the series Py, P and Ps describe the numbers p
on the boundaries of the graph:

(= DPw) — (v — 1)1 P(u) — (u+ 6>P5<uv>) |

(n)
2,]

J

Py (Ieft)

Py(v) = Pi(t;v) = P(¢;0;v)

& Z-



Back to the inversion number

We are interested in

li(t) = D lgnt" = P(¢;1,1),

n>0
which, according to the functional equation, may be rewritten
t 2tPs(1)
1(t) = 5 .
(1—-1) d(1l —1t)
490 > D>

P(t;u,v) = P(u,v) 1= > _ t" > pgg)uivj.

n>0 0<i<j<d

(1—t—|—§(4—u—ﬁ—v—6))P(u,v}:

t 1 — udyd - 1\p -1 p -
d ((1 —uv)(1l —1) —(@—=1)P(v) = (v —1)v p(u) — (u+ ) 5(uv)> :



(1—t—|—§(4—u—ﬁ—v—6))P(u,’U)=
t 1 — y%pd
é<(1—uv)(1—t)

— (- 1)P(v) — (v — Do 1P (w) = (u+ 17)P5(uv)>



What a beautiful equation!

(1—t—|—2(4—u—ﬂ—v—6)>P(u,v}=
t 1 — ydpd
&((1—uv)(1—t)

—(z-1)P(v) — (v — D 1P w) - (u+ 5)P5(uv)>

Analogies with:

e \Walks with steps £1 in a strip of height d:

(1 —t(u+0))P) =1—tuPy — tu® TP,

e Walks in the quarter plane

(1—tlut+u+v+2)P(u,v) =
1 —tuP(0,v) — tvP(u,0)

e and others...



T he ingredients of the solution

(1—t—|—2(4—u—fﬁ—’u—5))P(u,’u)=
t 1 — udyd
&((1—uv)(1—t)

—(z-1)P(v) — (v — D 1P w) = (u+ 17)P5(uv)>

e Cancel the kernel (1 —t—|—§(4—u—a—v —6)) by coupling v and v
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T he ingredients of the solution

(1—t—|—2(4—u—ﬁ—fu—fz_})>P(u,v)=

t 1 — udyd
d ((1 —av)(1 —t)

—(z-1)P(v) — (v — D 1P w) = (u+ 5)P5(uv)>

e Cancel the kernel (1 —t—|—§(4—u—a—v—6)) by coupling v and v

e Exploit the symmetries of this kernel, which is invariant by (u,v) — (u,v)
(u,v) — (u,v), (u,v) — (u,v) (the reflection principle)

e Plus one more coupling between v and wv.

One obtains an explicit expression of Ps(q) at every ¢ #= —1 such that ¢¢+1 = —1,

and this is enough to reconstruct the whole polynomial Ps(u) (and in particular,
Ps(1)) by interpolation.



T he final result

The generating function () = >,>0lgnt" is

() = dd+1) 1 zd: (cj + ck)Q 1
4(1—t) 8(d+1)2 k=0 s Sk 1 —txp
with
. (2k + V)7
Ccr — COS o, S = SIn oy, A — 2d + 2 ,
and

CIZ’]k =1-— E(l — cjck).
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Perspectives

e Other generators (ex: all transpositions [Sjostrand 10], transpositions (0,1),
block transpositions...)

e Other statistics: inversion number — measure of the “distance” between the
identity and a permutation (ex: [Eriksen & Hultman 04], expected transposition
distance after n transpositions)

e Other groups: mostly, finite irreducible Coxeter groups, with the length as
the distance statistics ([Troili 02]: the case of I»(d)). When the generators are
all reflections, see [Sjostrand 10]!



