Mireille Bousquet-Mélou, CNRS, LaBRI, Bordeaux

ArXiv math.CO /0501266
ArXiv math.PR/0500322 (with Svante Janson)

http://www.labri.fr/~bousquet



A complete binary tree

n internal vertices, called nodes (size n)

n + 1 external vertices, called leaves



An (incomplete) binary tree

n nodes (size n)



A plane tree

Each node has a (possibly empty) ordered sequence of children

n edges, n + 1 nodes (size n)



What is the shape of a (large) random binary tree?I



The (horizontal) profile of a binary tree
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A binary tree of height 4 (or 5...)



The horizontal profile of a plane tree
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A plane tree of height 3.



NEW! The vertical profile of a binary tree
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A binary tree of right width 3, and vertical profile [2,2;4,2,1, 1].



Why study the vertical profile of trees?



Why study the vertical profile of trees?

Wait and see!



Limit results on the shape of trees: general approachl

e Enumerative combinatorics (decompositions of trees, recurrence rela-
tions, generating functions...)

e Singularity analysis [Flajolet-Odlyzko 90]: extract from the generating
functions the asymptotic behaviour of their coefficients



Decomposition and enumeration of binary trees

Let a, be the number of binary trees with n nodes (internal vertices):

(ag = 1

an,

n—1
Z Am Ap—m—1
m=0

Let A(¢) :== ) ant" be the associated generating function:
n=>0

A(t) =1 4 tA()?.

n—m-—1

= 1 + tA(t)?




Decomposition and enumeration of plane trees

Let af be the number of plane trees with n edges (n + 1 vertices):

( *
ag = 1 .
n_
9 _ * %k
a;kz — Z A, Ap—m—1
\ m=0

Let A*(t) := ) ant" be the associated generating function:
n=>0

A*(t) = 1 4 tA*(t)2.

A* (1)

I
=

+ tA*(t)?



T he Catalan numbers

There are as many binary trees with n nodes as plane trees with n edges:
an — a:;

T he associated generating function is
A(t) = A*(t) =) ant”
n

It satisfies

_ > _1-1—-4t 1 2n .,
AR = 1+ tADZ2 = A@R) = -, —Eonﬂ(n)t'

Hence

is the nth Catalan number.



Part 1. Height and width of binary treesl

farets

faets




Counting trees of bounded height

Let Hc;(t) = H¢; be the generating function of binary trees of height at
most j:

Let ng(t) = sz be the generating function of plane trees of height at

most j, where t counts edges.
' - @ + ! ‘

Hio=1
He,=1+tHg (HE,




Counting trees of bounded (right) width

Let W,;(t) = W, be the generating function of binary trees of right width
at most j.

Wg_l =1
For 7 20, W¢g=1+tWg11Wq




Trees of bounded height or bounded width: functional equations

Family of trees

Bounded height

Bounded (right) width

H<o:1
He;j=1+tH2 4

* p—
<0

=1+ tH:,_HZ,

*
<J




Generating functions for trees of bounded height /width

Proposition: The generating function of plane trees of height < j is:

§ _Al_Qj—I-l
<) T 1—Qj+2

where A counts plane trees and Q = A — 1 [de Bruijn, Knuth, Rice 72].



Generating functions for trees of bounded height /width

Proposition: The generating function of plane trees of height < j is:

O
He = AT o

where A counts plane trees and Q = A — 1 [de Bruijn, Knuth, Rice 72].

SRR P >

Proposition [mbm 06]: The generating function of binary trees of right

width < 7 is:
S (1 —ZIt2)(1 -2t
ST (1 Z iy (1 = zi 5y
where A counts binary trees and Z = Z(t) is the unique series in ¢ such that
2
(14 2%)
Z =t and Z(0) = 0.
1 — 27+ Z2

But. . . why?



Limit results on the shape of trees: general approach

e Enumerative combinatorics: Using a recursive decomposition of trees,
write equations for the relevant generating functions and solve them...

e Use the results (or the technique) of singularity analysis [Flajolet-Odlyzko
90] to extract from these series the asymptotic behaviour of their coefficients

— Results: "“If B(t) = _,, bnt™ behaves like this in the neighborhood of its
dominant singularity ts, then its coefficients b, behave asymptotically like
that.”

— Technique: Cauchy’'s formula

bn:Qiﬁ/ ()

for a carefully chosen contour C,.




The average height of binary trees: experimental approach

Consider the average height of plane trees of size n:

E(Hy) = Z h(r) = — Z J (hin<j = Pn,<j—1)-

W |r|=n " j20

40

30

&
20 ff

1.0

~
-:-"'"
-~
e
-
&
-+
e
.
-+
.
~
e
i _.._:.*
+
&
P
&
2
&
I
&
hy
&2
Py
Py
Py
Py
Iy
+
+
+

50 100 150 200



Convergence in law of the height: experimental approach

The number of trees of size n and height at most j is h} < For x > O,
consider

Jn an n,<xy/n’

the proportion of trees of size n having height at most zy/n. It is the
probability that a random tree of size n has height at most xz/n.

H 1

Graph of Fn(x) :




Limit results for the height of trees

Convergence in law: For all x > 0,

P(Hz <x> — F'(x),

Jn
where
1 A
F(z) = —- / coth(zv/—2)V—ze *dz i H
i T T
+ 00 _1/ -
k=—oc0 —_— .

Convergence of the moments: Let H} be the (random) height of a plane
tree with n edges. As n — oo,

%k k k
E(;'ﬁ”) T E ((%) ) e k(k — )M (k/2)C(K) for k > 2.

[Flajolet-Odlyzko 82], [Brown-Schubert 84]
+ similar results for binary trees



Limit results for the right width of binary trees [mbm 06]

Convergence of the moments: Let W, be the (random) right width of a
binary tree with n nodes. Then, as n — oo,

EWn)  3v7 W, )2
nl/4  \/2r(3/4) . (<n1/4> ) - 6vm,

k
E((Wn> )_ 24 /7k!C(k — 1) for k>3

nt/4) | V2ET((k—2)/4)

Convergence in law:

3 \/ —ze *

Gle) = i/ JH sinh?(x(—214//2))

dz — / -
N




Height and width of binary trees




Part 2. What about the profiles?
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Gallery of (horizontal and vertical) profiles
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Horizontal profiles of random binary trees with 1000 nodes.
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Vertical profiles of random binary trees with 1000 nodes.



The average (horizontal and vertical) profiles

Average horizontal profile of plane trees of size 10, 20, 30, 40, 50:




One new ingredient: bivariate generating functions

Before: Given 5, how many plane trees of size n have height at most 57

= series  HZ (t) =) hp<;t"
n

Now: Given 5, how many plane trees of size n have exactly £ nodes at height
77

: k
= series  Pf(t,u) =) ppy;t'u
n,k



The number of nodes at height ; (plane trees)

Let Pj* - P;‘(t,u) be the generating function of plane trees, counted by edges
(variable t) and by the number of nodes at height 5 (variable w):

P} = uA(t)
P;=1+tP; P} = e 4

Proposition [777]:

r g T M@
J 1 — MQit1
where A counts plane trees, Q = A — 1 and
A—u— tuA?

w4 AL —u) + tuA2(1 — A)




The number of nodes at abscissa j (binary trees)

Let V; = V;(t,u) be the generating function of binary trees, counted by nodes
(t) and by the number of nodes at abscissa j (variable u).

V..

Proposition [mbm 06]: the series Vj are algebraic. Moreover,

VO — 1 —I_ utV12
For ] > 1, V7 =1 —|—t‘/j_|_1‘/j_1

(1 + MZ)H)(1+ MZIt>)

V.= A . :
/ (1+ MZit2)(1 + MZi+3)
where A counts binary trees,
2
(1+2?)
1 - Z4 72

and M = M (t,u) is the unique power series in t such that

Z(14+ MZ)2(1+ MZ?)(1+ MZ5)
14+ 221+ 2+4+2%)(1 - 2)3(1 — M225)

M= (u-1)



The horizontal profile

A tree of size n has, on average, height O(y/n). How many nodes are there
at a given (horizontal) level?

777



The horizontal profile

A tree of size n has, on average, height O(y/n). How many nodes are there
at a given (horizontal) level?

About /n.



The horizontal profile

A tree of size n has, on average, height O(y/n). How many nodes are there
at a given (horizontal) level?

About /n.

Let X¥(j) be the number of nodes located at height j in a random plane
tree with n edges.

We study the quantity
X5 ([Av/n])
Vn .




The vertical profile

A binary tree of size n has, on average, width O(n1/4). How many nodes
are there on a given (vertical) layer?

About n3/4.

Let Y, (j) be the number of nodes located at abscissa j in a random binary
tree with n nodes.

We study the quantity

Yn([Ant/4])
3/4

n



T he horizontal profile of plane trees

e [ he sequence X%(L\>_\/HJ) converges in law for each A (and as a process

n
[Drmota-Gittenberger 97] )

e [ he first moment:

g (ZalAvr])Y 5 2
On average, there are about 2Xe~**,/n nodes at height /\
[ Ayv/n| in a plane tree having n edges. \\ /

—0.2

In other words, the height of a random node in a random tree, once nor-
malized by /n, follows a law of density Dhe= .



T he vertical profile of binary trees

Let Y,(j) be the (random) number of nodes at abscissa j in a binary tree

having n nodes.

Yn([Anl/4])

e The sequence 374 converges in law to a random variable Y()\) de-
scribed explicitly by its Laplace transform for every A (and as a process

[mbm-Janson 06])

e Moreover,

E(annl/ﬂ)) v fw)m (m+1>wr<m+3>

n3/% m>O 4 4 /
This gives the average number of nodes at abscissa N
IAnl/4| in a random binary tree having n nodes. /

[mbm 06]



An example: nodes at abscissa O

e T he random variable

Yr(0)

n3/4"’
which gives the (normalized) number of nodes at abscissa 0, converges in
law to a variable Y(0) such that

o (V2\ T+ 3k/4)
E(Y(O))_<3> r(14+k/2)"

Hence (...) Y(0) = - \/Ti , where T5 3 follows a unilateral stable law of
2/3

parameter 2/3.

2/

E(e_aT2/3) — " for q > 0.

Merci Alain Rouault !



An example: nodes at abscissa O

e | he random variable
Y (0)
n3/4 ’

which gives the (normalized) number of nodes at abscissa 0, converges in
law to a variable Y(0) such that

k
b (o) = (1) T2

3 ) T(14k/2)°
Hence (...) Y(0) = - \/Tﬁz/s’ where 75,3 follows a unilateral stable law of
parameter 2/3.
E(e_aT2/3) = e_a’2/3 for a > 0.

Merci Alain Rouault !

e [ he number of nodes lying at a positive abscissa, normalized by n, con-
verges to U(0,1) [Aldous].



Part 3. Why study the vertical profile?

e Binary trees (drawn in a canonical way) form a family of embedded trees.
There are many other families!

Random increments 0,+1 along edges

e [ he same questions can be asked for any class of embedded trees:
- what is the largest label? (width)
- How many nodes have label 57 (profile)



Why study embedded trees?

e They have interesting combinatorial properties (mysterious algebraic se-
ries)



Why study embedded trees?

e They have interesting combinatorial properties (mysterious algebraic se-
ries)

The GF of embedded plane trees with increments +1 having largest label at
most j is

- (1 — 2zt (1 - 7315
J (1 —2zit2)(1 — zit+4)

where T'= 1 + 2¢T2 and

4
Z:t(l-l-Z) |
14 72




Why study embedded trees?

e They have interesting combinatorial properties (mysterious algebraic se-
ries)

e Embedded trees with nonnegative labels are related bijectively to planar
maps [Cori-Vauquelin 81], [Chassaing-Schaeffer 04], [Del Lungo, Del Ris-
toro, Penaud 00], [Bouttier-Di Francesco-Guitter 03]



Why study embedded trees?

e They have interesting combinatorial properties (mysterious algebraic se-
ries)

e Embedded trees with nonnegative labels are related bijectively to planar
maps [Cori-Vauquelin 81], [Chassaing-Schaeffer 04], [Del Lungo, Del Ris-
toro, Penaud 00], [Bouttier-Di Francesco-Guitter 03]

e They are related to ISE (the Integrated SuperBrownian Excursion)
[Aldous 93], [Borgs et al. 99]



The Integrated SuperBrownian Excursion

The ISE is a (random) probability distribution on R? that occurs (almost)
everywhere. At least, as soon as a branching structure (tree) is combined
with an embedding of the nodes in the space. The ISE describes how the
space is occupied by the nodes [Aldous 93], [Marckert-Mokkadem 03].
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Embedded trees and ISE

e Let T, denote a random embedded tree with n nodes. Let u, be the
occupation measure of Ty:

veETy
where ¢(v) denotes the label (position) of the node v, and §(x) is the Dirac

measure at x.

Histogram of u,

-3-2-1 01 2 3



Embedded trees and ISE

e Let T, denote a random embedded tree with n nodes. Let u, be the
occupation measure of Ty:

=3 8(tw) ),

'UETTL

where ¢(v) denotes the label (position) of the node v, and é(x) is the Dirac
measure at x. Then uy is a probability distribution (total weight 1).

Histogram of u,

-3-2-1 01 2 3



Embedded trees and ISE

e Let T, denote a random embedded tree with n nodes. Let u, be the
occupation measure of Ty:

i =% S 50014,

'UETTL

where ¢(v) denotes the label (position) of the node v, and é(x) is the Dirac
measure at x. Then uy is a probability distribution (total weight 1).
It is random since it depends on the random tree 1j,.

Histogram of u,

-3-2-1 0 1 2 3



Embedded trees and ISE

o Let T, denote a random embedded tree with n nodes. Let u, be the
occupation measure of Ty:

i =% S 5(e(o)n~ 14,

'UETTL

where ¢(v) denotes the label (position) of the node v, and §(x) is the Dirac
measure at x.

e Thm. As n grows, up — pige, Where pico is the ISE.

[Aldous 93, Borgs et al. 99, Janson-Marckert 04]
This holds for “many’” families of random embedded trees!

Histogram of u,

-3-2-1 0 1 2 3



Another occurrence of ISE: Properly embedded trees

p

In dimension d > 8, the occupation measure of properly embedded trees
converges also to the d-dimensional ISE.
[Derbez-Slade 98]



Main objective: study ISE (in 1D) via embedded treesI

| W W N

e Largest label — law of the maximum of the support of the ISE

e Number of nodes at abscissa j = Anl/4 — law of the density of the ISE at
a fixed point A\

e Number of nodes at abscissa < j = Anl/4 — law of the distribution function
of the ISE at a fixed point A\



A beautiful slide for Wjcch.

e Let M; be the ith moment of the ISE (M, is a random variable!)

M; = lim % > (E(v)n_1/4)i

'UETn



A beautiful slide for Wjcch.

e Let M; be the ith moment of the ISE (M, is a random variable!)

1 > (E(v)n_1/4)i

M; = lim =
n n
vETh

e Then E (Ml%) —0and E (Ml%) _ ap T (1/2)

= , where ag = —2 and
2k/2 [ ((5k — 1)/2) 0
for £ > O,

k—1
2k
4ap =Y (7, )aian_; + k(2k — 1)(5k — 4)(5k — 6)ay_1
i=1 2



A beautiful slide for Wjcch.

e Let M; be the ith moment of the ISE (M; is a random variable!)

1 _ i
M; = lim - > (é(v)n 1/4)
UETn
ok 2k aj " (1/2)
e Then K (M =0and E(M = , where ag = —2 and
1 1
2k/2 M ((5k —1)/2)
for k > 0,
k=1 ~p
4ap=Y (2i>aiak_z- + k(2k — 1)(5k — 4)(5k — 6)ay,_ 1
i=1
e Also,
F(1/2
E(MP*M) = e 1/2 ,
2(k+0/2 7 ((5k 4+ 3¢ —1)/2)
where ag o = —2 and the q; o are determined by induction on k + £:
1 2k~ 4
A = - > (22) (j)ai,jak—i,ﬁ—j + 2000 — 1)ag41 -2

(0,0)<(4,5) <(k,)

—|—%k(2k —1)(5k 4 30— 4)(5k + 30— 6)ay_1.+ %(4]6 +1)0(5k + 30— 4)ap 1.



T hat’s I1t!

s 4

70




The Laplace transform of Y ()\)

Let A > 0. The sequence Yn(|Anl/4|) converges in distribution to a non-
negative random variable Y (A) whose Laplace transform is given, for |a| <

4//3, by
E (anW) = L()\, a)
where
48 Aa/v3)e 2
i/ Jr (1 + A(a/v3)e—2Av)2
A(x) = A is the unique solution of
P (1+ A)3
24 1—-A
satisfying A(O) = 0, and the integral is taken over

4
v2e¥ dv,

LM\, a) =1+

M= {1—te ™% 1€ (00,01} U{1+te ™4 ¢ €0,00)}.
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