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Take a starting point pg in Z2, a (finite) stepset S C 7?2 and a cone C.

What is the number c(n) of n-step walks starting at pg, taking
their steps in § and contained in C?

For (i,j) € C, what is the number ¢; ;(n) of such walks that end at
(i,4)?




Take a starting point pg in Z2, a (finite) stepset S C 7?2 and a cone C.

What is the number c(n) of n-step walks starting at pg, taking
their steps in § and contained in C?

For (i,j) € C, what is the number ¢; ;(n) of such walks that end at
(i,4)?

e Generating function:
Cloyit) =) ci(n)xy/t"
ij,n
— Z Xi(W)yJ(W)t|W|

w walk

What is the value/nature of this series?



A hierarchy of formal power series

e Rational series

A(t):%

e Algebraic series

P(t,A(t))=0
e Differentially finite series (D-finite)

d
Y P(0)Al(t)=0
i=0

e D-algebraic series

P(t,A(t),A'(t),...,Al)(t)) =0




A hierarchy of formal power series

e Rational series

A(t):%

e Algebraic series

P(t,A(t))=0
e Differentially finite series (D-finite)

d
Y P(0)Al(t)=0
i=0

e D-algebraic series

P(t,A(t),A'(t),...,Al)(t)) =0

Multi-variate series: one DE per variable



@ The full space: rational series

C¥it) = T35 = LSt

where S(x,y) is the step polynomial:

S(xy) = Z x'yl.

(i,j)eS




@ The full space: rational series

o A half-space: algebraic series
[Gessel 80]; [mbm-Petkovsek 00], [Duchon 00], [Banderier & Flajolet
02]...




Normalizing the cone: 4 cases

@ The full space: rational series
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@ A convex cone — walks in the non-negative quadrant: Q(x,y;t)




Normalizing the cone: 4 cases

@ The full space: rational series

@ A half-space: algebraic series
[Gessel 80]; [mbm-Petkovsek 00], [Duchon 00], [Banderier & Flajolet
02]...

@ A convex cone — walks in the non-negative quadrant: Q(x,y;t)

@ A non-convex cone — walks avoiding the negative quadrant: C(x,y;t)




¢S {1,0,1}%\{(0,0)} = 28 = 256 step sets (or: models)
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(hence algebraic) and/or to another model (diagonal symmetry).
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e However, some models are equivalent to a half-space problem
(hence algebraic) and/or to another model (diagonal symmetry).

e In the quadrant, one is left with 79 interesting distinct models
[mbm-Mishna 09].



Walks with small steps %

¢S {1,0,1}%\{(0,0)} = 28 = 256 step sets (or: models)

e However, some models are equivalent to a half-space problem
(hence algebraic) and/or to another model (diagonal symmetry).

e In the quadrant, one is left with 79 interesting distinct models
[mbm-Mishna 09].

e In the three-quadrant cone, one is left with only 74 interesting
distinct models: the 5 “singular” models become trivial.

Singular models
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Classification of quadrant walks with small steps

quadrant models: 79
\

\ \
|G|<co: 23 |G|=c0: 56

| |
D-finite Not D-finite
—— : |

\
0S=0:4 0OS=0: 19 decoupled: 9 not decoupled: 47

| | | |

algebraic DF transc. D-alg. not D-alg.

The 4 algebraic models:

o F A

Kreweras Reverse Double Gessel
Kreweras Kreweras

What about walks in the three-quadrant cone?



I. Kreweras’ walks in the quadrant
e Functional equation

@ A solution via invariants
[Bernardi, mbm, Raschel 17(a)]

Il. Kreweras’ walks in three quadrants

@ Functional equation

@ A solution via invariants

4O D> P>

Invariants: a method introduced by W. Tutte to count properly
coloured planar triangulations (1973-1984)



Kreweras’ walks in the quadrant nd

e Generating function:

Qluy)=Qluyit) = ) aiy(n)x'y't”

i,j,n=0

where g; ;(n) is the number of walks of length n from (0,0) to (i,j) in

the quadrant.
| () =(43)




Kreweras’ walks in the quadrant nd

e Generating function:
Qoy)=Q(xyit)= )  ai(n)x'y't"
i,j,n>0

where g; ;(n) is the number of walks of length n from (0,0) to (i,j) in
the quadrant.

e Functional equation (with x = 1/x, y = 1/y):
Q(xy)=1+t(xy+x+y)Q(xy)-txQ(0,y) -tyQ(x,0).




Kreweras’ walks in the quadrant nd

e Generating function:

Qluy)=Qluyit) = ) aiy(n)x'y't”

i,j,n>0

where g; ;(n) is the number of walks of length n from (0,0) to (i,j) in
the quadrant.

e Functional equation (with x = 1/x, y = 1/y):
Q(xy)=1+t(xy+x+y)Q(xy)-txQ(0,y) -tyQ(x,0).

Equivalently,

[ (1= 0y + X 17))Q(xy) = xv - ¥Q(0,y) - xQ(x,0),

where

K(x,y) =xy(l-t(xy +x+¥))

is the kernel (a polynomial in t, x,y). Two catalytic variables: x and y.



A pair of series (I(x),J(y)) in t with coefficients in Q(x) and Q(y)
(respectively) is a pair of invariants if I(x) — J(y) is divisible by K(x,y).

e Isn't any series divisible by K(x,y)? After all,
1 1

Kooy)  o-thotx+3) 2

is well-defined...




A pair of series (I(x),J(y)) in t with coefficients in Q(x) and Q(y)
(respectively) is a pair of invariants if I(x) — J(y) is divisible by K(x,y).

e Isn't any series divisible by K(x,y)? After all,
1 1

Kooy)  o-thotx+3) 2

is well-defined...

e We want more: the coefficients (of t"”, n > 0) in the ratio

Hixy) = ),

which are rational functions of the form p(x,y)/(d(x)d’(y)), must
have poles of bounded order at x =0 and y = 0.

Equivalently, there exists i,j such that the coefficients of xiyjH(x,y)
have no pole at x =0 nor y = 0.



e Trivial invariants: take I(x) = J(y) € Q((t))



e Trivial invariants: take I(x) = J(y) € Q((t))
e Basic rational invariants: let
b(x)=X°-%/t-x,  Jo(y)=lo(y).

Then
x—-y 1

=lo(x) = Jo(¥),

and the series Hy(x,y) = (x —y)/(tx°y?) has poles of bounded order
atx=0andy=0.

K(x,y)- .
(%) PNV



e Trivial invariants: take I(x) = J(y) € Q((t))
e Basic rational invariants: let
b(x) =X*=%/t=x,  Jo(y) =lo().
Then
K(xy)- 5553 = ()=o)

and the series Hy(x,y) = (x —y)/(tx°y?) has poles of bounded order
atx=0andy=0.

The componentwise sum (resp. product) of two pairs of invariants
(lo(x),Jo(¥)), (l1(x),J1(y)) is another pair of invariants.

(o(x) + h(x),Jo(y) + 1 (¥)),  (b(x)h(x), Jo(y)I1(y))



Functional equation:

K(xy)Q(x,y)=xy—tyQ(0,y) - txQ(x,0).



Functional equation:

K(xy)Q(x,y)=xy—tyQ(0,y) - txQ(x,0).
1/ Build a new pair of invariants:
K(xy)Hi(xy) = F(x)+ G(y) - tyQ(0,y) — txQ(x,0)
= h(x)=J(y)
with
h(x) =F(x)-txQ(x,0),  Ji(y) =-G(y)+ tyQ(0,y).



Functional equation:

K(xy)Q(x,y)=xy—tyQ(0,y) - txQ(x,0).

1/ Build a new pair of invariants:
K(x,y)Hi(xy) = F(x)+ G(y) - tyQ(0,y) - txQ(x,0)
=h(x)-h(y)
with
h(x) =F(x)-txQ(x,0),  J1(y) =-G(y)+tyQ(0,y).

2/ Relate this pair to the basic rational invariants (Iy(x), Jo(y)) using:

If K(x,y)H(x,y) =1(x)—J(y) and the coefficients of H(x,y) (in t)
have no pole at x =0 nor at y = 0, then

H(x,y)=0 and  I(x)=J(y)€Q((t))



Functional equation:
K(xy)Q(xy) = xy—tyQ(0,y) - txQ(x,0).
1/ Build a new pair of invariants:
K(xy)Hi(xy) = F(x) + G(y) - tyQ(0,y) - txQ(x,0)
=h(x)-h(y)



Step 1: decoupling nd

Functional equation:

K(x,y)Q(x,y) = xy - tyQ(0,y) - txQ(x,0).

1/ Build a new pair of invariants:

K(xy)Hi(xy) = F(x) + G(y) - tyQ(0,y) - txQ(x,0)
=h(x)-Jh(y)
Easy! The term xy decouples modulo K(x,y):
1
-——K(x,y)=xy+x+y-1/t.
txy

So we have a new pair of invariants:

h(x) =txQ(x,0)+x-1/(2t),  Ji(y)=-h(y)



We have two pairs of invariants:
Io(x) =%° =X/t - x, Jo(y) =lo(y),
h(x) =x-1/(2t) + txQ(x,0),  J1(y) =—-h(y)

The series I1(x) has valuation -1 in x, while Iy(x) has valuation —2.



Step 2: relate (I;,J;) to the basic invariants (lp, Jg)

We have two pairs of invariants:

lo(x) =x% =X/t —x, Jo(y) = lo(y),
Il(X):)_(_l/(Zt)+tXQ(XIO); J1 y):_ll(y)
The series I;(x) has valuation —1 in x, while y(x) has valuation —2.

(
(

Observation: I1(x)? — Iy(x) has no pole! Define

1(x) = h(x)?=l(x)  J(y)=h(¥)? = Jo(x)-
Then (I(x),J(y)) is a pair of invariants,



Step 2: relate (I;,J;) to the basic invariants (lp, Jg)

We have two pairs of invariants:
lo(x) =% =%/t - x, Jo(y) =lo(y),
h(x)=x-1/(2t) + txQ(x,0),  Ji(y)=-h(y)

The series I;(x) has valuation —1 in x, while y(x) has valuation —2.

(
(

Observation: I1(x)? — Iy(x) has no pole! Define
1(x) =l (x)? = Ip(x) J(y) == I (y)? = Jo(x).
Then (I(x),J(y)) is a pair of invariants,
—KOoy)HG0y) = 1(x) = J(y),

where
X_

y
7,2 + (Q(X,y)

has no pole at x =0 nor y = 0.

H(x,y) =

)60+ h()

+ _
Xyt



Hence
1(x) = h(x)? = lo(x) = (xQ(x,0) = 1/(2t))? + 2tQ(x,0) + x

is a series of Q((t)), equal to its value at x = O:



Applying the invariant lemma n

Hence
1(x) = h(x)? = Io(x) = (txQ(x,0) = 1/(2t))? + 2tQ(x,0) + x

is a series of Q((t)), equal to its value at x = 0:

(txQ(x,0) - 1/(2t))? 4+ 2tQ(x,0) 4+ x = 1/(2t)? + 2tQ(0,0).

We have obtained an equation in one catalytic variable



Applying the invariant lemma n

Hence
1(x) = h(x)? = Io(x) = (txQ(x,0) = 1/(2t))? + 2tQ(x,0) + x

is a series of Q((t)), equal to its value at x = 0:

(txQ(x,0) - 1/(2t))? 4+ 2tQ(x,0) 4+ x = 1/(2t)? + 2tQ(0,0).

We have obtained an equation in one catalytic variable
= systematic solution (via Brown’s quadratic method, or
[mbm-Jehanne 06])



Hence
1(x) = l(x)? = Ip(x) = (txQ(x,0) — 1/(2t))? 4+ 2tQ(x,0) 4 x

is a series of Q((t)), equal to its value at x = 0:

(txQ(x,0) - 1/(2t))? 4+ 2tQ(x,0) 4+ x = 1/(2t)? + 2tQ(0,0).

We have obtained an equation in one catalytic variable
= systematic solution (via Brown’s quadratic method, or
[mbm-Jehanne 06])

Let Z = Z(t) be the only series in t such that Z = t(2 4+ Z3). Then

X

[Kreweras 65], [Gessel 86], [mbm 05]...



Other quadrant models with small steps

Two ingredients:

e A pair (lp(x), Jo(y)) of rational invariants = 23 models with a
finite group
@ A decoupling identity of the form

xy =F(x)+ G(y) + K(x,y)H(xy)
= 4 of the 23 models

The use of invariants solves these four models, proving algebraicity.

< F A

Kreweras Reverse Double Gessel
Kreweras Kreweras

[Bernardi, mbm, Raschel 17(a)]



e Basic rational invariants
X-y 3
T () g = Ho() = Fo(y)

with
So(x)=x+x/t=x%,  Fly)=H().



e Basic rational invariants
X-y 3
T () g = Ho() = Fo(y)

with
So(x)=x+x/t=x%,  Fly)=H().

e Invariants related to @(x, y):
1
—5 F 0oy (14 @ (xy)) = Al - Al)

with
AKX) = t@(x,0)~x/t +3°,  F(y)=-t@(0,y) -y + t&@(0,0)



e Basic rational invariants
X-y 3
F(x,y) 0y So(x) = H(y)

with
So(x)=x+x/t=x%,  Fly)=H().

e Invariants related to @(x, y):
1
5 P Loy ty@(xy)) = Al) - AL)

with
A(x)=t@(x,0)-x/t+x°, FA(y)=-t@(0,y) -y +t@(0,0)

2(4_23)_ t—x2+tx3

2xt2
(2x2-x22-Z)\[1-xZ(Z3 + 4)/4 + x?Z?/4




~ i

Clxy)=Cxy;t) = Z cij(n)x'yt"

i,j,n>0

where ¢; j(n) is the number of walks of length n from (0,0) to (i,j)
avoiding the negative quadrant.



Functional equation (with x = 1/x, y = 1/y):
Clxy)=1+1tly+x+y)C(xy)-txC(y) - tyC.(X),

where

C(R)= ) ciolnxe”
i<0,n>0
counts walks ending on the negative x-axis.

-




First functional equation nd

Functional equation (with x = 1/x, y = 1/y):
Clxy)=1+tlxy+x+y)C(xy)-txC_(y)-tyC. (),
where
C_(x)= Z c_io(n)x't"
i<0,n>0
counts walks ending on the negative x-axis.

Equivalently,
(1 t(xy + % +7))C(xy) = xy — tyC_(7) - txC_(X). |

e The coefficients of C(x,y) have poles of arbitrarily large order at
x=0andy=0.

e It suffices to determine C_(X), the GF of walks ending on the
negative x-axis.



e A la Raschel-Trotignon (2019):

C(xy) =xU(x,xy) + D(xy) + yU(¥,xy),

where U(x,y) € Q[x y|[[t]] and D(x) € Q[x][[t]].
xU(0, xy)

D(xy)




e A la Raschel-Trotignon (2019):
Cloy) =XU(X xy) + D(xy) +yU(¥, xy),
where U(x,y) € Q[x y|[[t]] and D(x) € Q[x][[t]].

e Step-by-step construction:

xU(0, xy)

xU(X,xy) = t(xy + X+ y)xU(X, xy)
+ txD(xy)
-ty (xU(x,0) + xU(0,xy) —xU(0,0)).

%U(%,0)



e A la Raschel-Trotignon (2019):
Cloy) =XU(X xy) + D(xy) +yU(¥, xy),
where U(x,y) € Q[x y|[[t]] and D(x) € Q[x][[t]].

e Step-by-step construction:

xU(0, xy)

xU(X,xy) = t(xy + X+ y)xU(X, xy)
+ txD(xy)
-ty (xU(x,0) + xU(0,xy) —xU(0,0)).

Analogously, xU(x,0)

D(xy) =1+ txyD(xy)+ 2ty (xU(0O, xy)-xU(0,0)).



e Two equations:
X(1-t(xy +x+y))U(x,xy) = —tyxU(x,0) + txD(xy)

—tyxU(0O,xy) + tyxU(0,0),
(1 -txy)D(xy) =1+ 2tyxU(0,xy) - 2tyxU(0,0).



Split the cone in two convex cones
e Two equations:

Xx(1-t(xy +x+y))U(x,xy) =—-tyxU(x,0) + txD(xy)
—tyxU(0,xy) + tyxU(0,0),
(1 -txy)D(xy) =1+ 2tyxU(0,xy) — 2tyxU(0,0).

e Straightening: (X, xy) — (x,y)

x(1-t(y +x+xy))U(xy) = -tyU(x,0) + txD(y)
~tyU(0,y) + tyU(0,0),
(1-ty)D(y) = 1+2tyU(0,y) - 2tyU(0,0).



Split the cone in two convex cones
e Two equations:

Xx(1-t(xy +x+y))U(x,xy) =—-tyxU(x,0) + txD(xy)
—tyxU(0,xy) + tyxU(0,0),
(1 -txy)D(xy) =1+ 2tyxU(0,xy) — 2tyxU(0,0).
e Straightening: (X, xy) — (x,y)
x(1-t(y +x+x¥))U(xy) = -tyU(x,0) + txD(y)
-tyU(0,y) +tyU(0,0),
(1-ty)D(y)=1+2tyU(0,y)-2tyU(0,0).

e Linear combination:

2% (x,y)U(x,y) =y + (ty + 2tx = 1)yD(y) - 2tU(x,0),

where now % (x,y) = xy(1 —t(x +y + X¥)) is the kernel of reverse
Kreweras’ walks.



2F (x,y)U(x,y) =y + (ty + 2tx - 1)yD(y) — 2tU(x,0)

Two new difficulties:
@ one needs to “decouple” y, in some sense,

e the term (ty + 2tx — 1) depends on x (and y).



2F (x,y)U(x,y) =y + (ty + 2tx - 1)yD(y) — 2tU(x,0)

Two new difficulties:
@ one needs to “decouple” y, in some sense,

e the term (ty + 2tx — 1) depends on x (and y).

Two good news:
@ Decoupling:
y=(ty+2tx-1)G(y) - F(x)
with G(y) =1/t and F(x) = 2x - 1/t.



We want to construct % -invariants...

2F (x,y)U(xy)=y+ (ty+2tx—-1)yD(y) - 2tU(x,0)

Two new difficulties:
@ one needs to “decouple” y, in some sense,

e the term (ty + 2tx — 1) depends on x (and y).

Two good news:

@ Decoupling:
y=(ty+2tx-1)G(y) - F(x)

with G(y) =1/t and F(x) = 2x - 1/t.
@ The square of (ty + 2tx — 1) is a function of y (modulo # (x,y)):

(ty + 2tx — 1)2 =A(y) -4ty F (x,y)

where A(y) = (1 - ty)? - 4ty.



2F (x,y)U(x,y) =y + (ty + 2tx — 1)yD(y) - 2tU(x,0)
e Decoupling: since y = (ty + 2tx— 1)/t —2x+ 1/t,

2H (x,y)U(x,y) = (ty + 2tx — 1)(yD(y) + 1/t) - (ZtU(x, 0) + 2x — 1/t)



2F (x,y)U(x,y) =y + (ty + 2tx — 1)yD(y) - 2tU(x,0)
e Decoupling: since y = (ty + 2tx— 1)/t —2x+ 1/t,

2 (x,y)U(x,y) = (ty + 2tx— 1)(yD(y) + 1/t) - (2tU(x,0) + 2x — 1/t
e Since (ty + 2tx — 1)? = A(y) — 4ty F (x,y), multiply out by

(ty +2tx = 1)(yD(y) + 1/t )+(2tU(x,0) + 2x - 1/t).



A new pair of # -invariants

2K (x,y)U(x,y) =y+ (ty+ 2tx—-1)yD(y) - 2tU(x,0)
e Decoupling: since y = (ty + 2tx— 1)/t —2x+ 1/t,

2 (x,y)U(x,y) = (ty + 2tx—1)(yD(y) + 1/t) - (2tU(x,0) + 2x — 1/t)
e Since (ty + 2tx — 1)? = A(y) — 4ty F (x,y), multiply out by
(ty + 2tx — 1)(yD(y) + 1/t)+(2tU(x,O) +2x - l/t).

e We have found a new pair of 7 -invariants:

Sa(x) = (ZfU(X,O) +2x - %)2 Hy) = A(y)(yD(y) + —)

with A(y) = (1 - ty)? - 4ty.



e Recall:
F(x) =%+ x/t— x>, HSo(x) = FH(y),
Fix) = t@8(x,0)~x/t + 2, Aly) =y~ t@(0,y)+t@(0,0).



Two known pairs of Z -invariants (from Part )

e Recall:
Fo(x) =x+x/t - x%, Ho(x) = H(y),
Ax)=t@(x,0)-x/t+x°,  A(y)=-y-t@(0,y)+t@(0,0).

e We have just found another pair:

Hs(x) = (ZtU(X,O) +2x— %)2 =0(x%),



e Recall:
F(x) =%+ x/t— x>, HSo(x) = FH(y),
Fi(x) = t@8(x,0)~x/t + 2, Aly) =y~ t@(0,y)+t@(0,0).

e We have just found another pair:

2
H(x) = (ZtU(x, 0) + 2x - %) — 0(x9),

2
A=A 00)+ ) =-47+00°)



Two known pairs of Z -invariants (from Part )

e Recall:
Fo(x) =x+x/t - x%, Ho(x) = H(y),
A(x)=t@(x,0)-x/t+x°,  A(y)=-y-t@(0,y)+t@(0,0).

e We have just found another pair:

F(x) = (ZtU(x,O) 4 2x— %)Z — 0(x9),

2
AN =200 +7)  =-a5+00°)

e Define

F(¥) =) -4A(x),  Fy)=L0)-4A(W)

Then (F(x), £ (y)) is a pair of invariants with no pole at 0.



Two known pairs of Z -invariants (from Part )

e Recall:
Fo(x) =x+x/t - x%, Ho(x) = H(y),
A(x)=t@(x,0)-x/t+x°,  A(y)=-y-t@(0,y)+t@(0,0).

e We have just found another pair:

F(x) = (ZtU(x,O) 4 2x— %)Z — 0(x9),

2
AN =200 +7)  =-a5+00°)

e Define

F(¥) =) -4A(x),  Fy)=L0)-4A(W)

Then (F(x), £ (y)) is a pair of invariants with no pole at 0. Moreover,

T y)Z (xy) =F(x)=F(y)
where 7 (x,y) has no pole at O either



Two known pairs of Z -invariants (from Part )

e Recall:
Fo(x) =x+x/t - x%, Ho(x) = H(y),
A(x)=t@(x,0)-x/t+x°,  A(y)=-y-t@(0,y)+t@(0,0).

e We have just found another pair:

F(x) = (ZtU(x,O) 4 2x— %)2 — 0(x9),

2
AN =200 +7)  =-a5+00°)

e Define

F(¥) =) -4A(x),  Fy)=L0)-4A(W)

Then (F(x), £ (y)) is a pair of invariants with no pole at 0. Moreover,

T y)Z (xy) =F(x)=F(y)
where 7 (x,y) has no pole at O either = _#(x) and _# (y) are trivial.



Trivial invariants for reverse Kreweras’ steps

Conclusion:

H(x) = (ZtU(x,O) 4 ox- %)2 — 4(t@(x,0) ~ x/t +x°) + cst,

2

Hy)=Ay) (yD(y) + %) 4(-y -t@(0,y) +t@(0,0)) + cst,

with A(y) = (1 - ty)? - 4ty.

The constant can be determined by specializing y to the unique root
of A(y) that is a power series in t.



The GF of Kreweras walks in three quadrants [mbm|

e Walks ending on the negative x-axis: series U(x,0), with

%(2tU(x,O)+2x— %)Z _ -z +(1—x2)2(zi —3)

Z2 2 X
+(>‘<+Z— %)\/1—24223x+ ZTZXZ.
e Walks ending on the diagonal: series D(x), with
R
—(>'<+Z— %)\/1—24—223x+ ZTZXZ.

where A(x) = (1 -tx)° —4txand Z = t(2 + Z3).



The GF of Kreweras walks in three quadrants [mbm|

e Walks ending on the negative x-axis: series U(x,0), with

%(2tU(x,0)+2x— %)Z _(1-2pF +(1—x2)2(zi —3)

Z2 2 X
+(>‘<+Z— %)\/1—24223x+ ZTZXZ.
e Walks ending on the diagonal: series D(x), with
R
—(>'<+Z— %)\/1—24—223x+ ZTZXZ.

where A(x) = (1 -tx)° —4txand Z = t(2 + Z3).

e All walks in three quadrants:
xy(l-t(x+y+xy))C(x,y)=xy—tU(x,0) - tU(y,0).

(Algebraicity of excursions proved by [Elvey Price, FPSAC 20])



e Number of n-step walks ending at (i,j) in the three quadrant plane:

Hij
Ci,j("')~—r(_—?;]/4)3”n_7/4 (forn+i+j=0 mod 3)



Asymptotics and harmonic function nd [mbm]

e Number of n-step walks ending at (i,j) in the three quadrant plane:
H; ;

(")~ ~t37)

e The generating function

H(xy) = Z Hi X'y,

j20,i<j

37p7/4 (forn+i+j=0 mod3)

is algebraic of degree 16, given by

(1 +xy2+x2y—3xy)%(x,y) A (x)+ = (2+xy 3X)’)%(Y)

where

= Z"Li,oxi

i>0

=)



Asymptotics and harmonic function nd [mbm]

e Number of n-step walks ending at (i,j) in the three quadrant plane:
H; ;

(")~ ~t37)

e The generating function

%(X;y) = Z Hi,ij_iyj;

j20,i<j

37p /4 (forn+i+j=0 mod3)

is algebraic of degree 16, given by

(1 +xy2+x2y—3xy)%(x,y) A (x)+ = (2+xy 3X)’)%(Y)

where

; 142 4—
= ZH?,"OXI + X X
i>0

1+2y 4 — y
ZH, ' = =
>0 1 y \/ 4 y -y




Asymptotics and harmonic function

{ [mbm]

e Number of n-step walks ending at (i,j) in the three quadrant plane:

H; ;
cij(n)~— (TM)

e The generating function

H(xy)i= ) Hpdy,

j20,i<j

is algebraic of degree 16, given by

3np=7/4 (forn+i+j=0 mod3)

(1 +xy2+x2y—3xy)%(x,y) A (x)+ = (2+xy 3X)’)%(Y)

where

_ZH o 1—|—2X 4 — X
- —i,0

i>0

[Trotlgnon 19(a)]

1+2y 4 — y
E Hiiy' = =
>0 (1-y) \/ 4-y) -y



Other three-quadrant models with small steps

Two new ingredients:
@ x/y-symmetry of the step set (for the functional equation)
@ A decoupling identity of the form

y=p(xy)G(y)+F(x)+K(xy)H(xy)

4o D> b

The use of invariants solves these 3 models, proving algebraicity:

< K

Kreweras Reverse Double
Kreweras Kreweras

D-finite: [Raschel-Trotignon 19]



Other three-quadrant models with small steps

Two new ingredients:
@ x/y-symmetry of the step set (for the functional equation)
@ A decoupling identity of the form

y=p(xy)G(y)+F(x)+K(xy)H(xy)

4o D> b

The use of invariants solves these 3 models, proving algebraicity:

o S K A

Kreweras Reverse Double Gessel
Kreweras Kreweras TO DO



e Gessel's step set (algebraicity of excursions [Budd 20]) \ﬁ



e Gessel's step set (algebraicity of excursions [Budd 20]) \ﬁ

e [Beyond finite groups] Another x/y-symmetric model with an
infinite group but a “weak” invariant

(D-algebraic [Dreyfus-Trotignon 20(a)]) \f



What's next?

e Gessel's step set (algebraicity of excursions [Budd 20]) \ﬁ

e [Beyond finite groups] Another x/y-symmetric model with an
infinite group but a “weak” invariant

(D-algebraic [Dreyfus-Trotignon 20(a)]) \f

e [Beyond purely algebraic solutions]| Revisit some solved D-finite
cases, e.g. NSEW walks, where the crux is to prove the algebraicity of
the series A(x,y) defined by:
1
xy(L-tlx+X+y+7))A(xy) = 5(2xy + Xy +x7)
—txA_(X) — tyA_(¥).

H> ‘>< ‘% [mbm 16], [mbm-Wallner 21]




Partial classification of three quadrant walks

three-quadrant models: 74
\
\ |
|Gl|<oo: 23 |G|=00: 51

| |
D-finite? Not D-finite
—t— L

3(47)  3(197)  1(97) 3(427)
l | | |

algebraic DF transc. D-alg. not D-alg.

+ results for excursions [Budd 20, Elvey Price 20]

4O D> P
algebraic [mbm]
DF transc. [mbm 16, Raschel-Trotignon 19, mbm-Wallner 21]
Non-D-finite [Mustapha 19]
D-alg./not D-alg [Dreyfus-Trotignon 20(a)]



