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Counting walks in (rational) cones

Take a starting point p0 in Z
2, a (finite) step set S ⊂Z

2 and a cone C.

Questions
What is the number c(n) of n-step walks starting at p0, taking
their steps in S and contained in C?

For (i , j) ∈ C, what is the number ci ,j (n) of such walks that end at
(i , j)?
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(i , j) = (5,1)

• Generating function:

C(x ,y; t) =
∑
i ,j ,n

ci ,j (n)x iy j tn

=
∑

w walk
x i(w)y j(w)t |w |

What is the value/nature of this series?
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A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t ,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A (i)(t) = 0

• D-algebraic series

P(t ,A(t),A ′(t), . . . ,A (d)(t)) = 0

Multi-variate series: one DE per variable
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Normalizing the cone: 4 cases

The full space: rational series

C(x ,y; t) =
1

1− tS(x ,y)
=

∑
n≥0

tnS(x ,y)n ,

where S(x ,y) is the step polynomial:

S(x ,y) =
∑

(i ,j)∈S
x iy j .

A half-space: algebraic series
[Gessel 80]; [mbm-Petkovšek 00], [Duchon 00], [Banderier & Flajolet
02]...

A convex cone→ walks in the non-negative quadrant: Q(x ,y; t)

A non-convex cone→ walks avoiding the negative quadrant: C(x ,y; t)
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Walks with small steps

• S ⊂ {1̄,0,1}2 \ {(0,0)} ⇒ 28 = 256 step sets (or: models)

• However, some models are equivalent to a half-space problem
(hence algebraic) and/or to another model (diagonal symmetry).

• In the quadrant, one is left with 79 interesting distinct models
[mbm-Mishna 09].

• In the three-quadrant cone, one is left with only 74 interesting
distinct models: the 5 “singular” models become trivial.

Singular models
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Non-singular

Singular



Classification of quadrant walks with small steps

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS,0: 19

DF transc.

|G |=∞: 56

Not D-finite

decoupled: 9

D-alg.

not decoupled: 47

not D-alg.

The 4 algebraic models:

Kreweras Reverse Double Gessel
Kreweras Kreweras

What about walks in the three-quadrant cone?



Outline

I. Kreweras’ walks in the quadrant

Functional equation

A solution via invariants
[Bernardi, mbm, Raschel 17(a)]

II. Kreweras’ walks in three quadrants

Functional equation

A solution via invariants

/ C � B .

Invariants: a method introduced by W. Tutte to count properly
coloured planar triangulations (1973-1984)



Kreweras’ walks in the quadrant

• Generating function:

Q(x ,y) ≡Q(x ,y; t) =
∑

i ,j ,n≥0

qi ,j (n)x iy j tn

where qi ,j (n) is the number of walks of length n from (0,0) to (i , j) in
the quadrant.

(i , j) = (4,3)

• Functional equation (with x̄ = 1/x , ȳ = 1/y):

Q(x ,y) = 1 + t(xy + x̄ + ȳ)Q(x ,y)− t x̄Q(0,y)− t ȳQ(x ,0).

Equivalently,

xy(1− t(xy + x̄ + ȳ))Q(x ,y) = xy − tyQ(0,y)− txQ(x ,0),

where
K(x ,y) := xy (1− t(xy + x̄ + ȳ))

is the kernel (a polynomial in t ,x ,y). Two catalytic variables: x and y .
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What are invariants?

A pair of series (I(x),J(y)) in t with coefficients in Q(x) and Q(y)
(respectively) is a pair of invariants if I(x)−J(y) is divisible by K(x ,y).

• Isn’t any series divisible by K(x ,y)? After all,

1
K(x ,y)

=
1

xy(1− t(xy + x̄ + ȳ))
= x̄ ȳ

∑
n≥0

tn(xy + x̄ + ȳ)n

is well-defined...

•We want more: the coefficients (of tn , n ≥ 0) in the ratio

H(x ,y) =
I(x)− J(y)

K(x ,y)
,

which are rational functions of the form p(x ,y)/(d(x)d ′(y)), must
have poles of bounded order at x = 0 and y = 0.
Equivalently, there exists i , j such that the coefficients of x iy jH(x ,y)
have no pole at x = 0 nor y = 0.
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Do such pairs exist?

• Trivial invariants: take I(x) = J(y) ∈Q((t))

• Basic rational invariants: let

I0(x) = x̄2 − x̄/t − x , J0(y) = I0(y).

Then

K(x ,y) · x − y
x2y2

· 1
t

= I0(x)− J0(y),

and the series H0(x ,y) = (x − y)/(tx2y2) has poles of bounded order
at x = 0 and y = 0.

New invariants from old ones
The componentwise sum (resp. product) of two pairs of invariants
(I0(x),J0(y)), (I1(x),J1(y)) is another pair of invariants.

(I0(x) + I1(x),J0(y) + J1(y)), (I0(x)I1(x),J0(y)J1(y))
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What are invariants good for?

Functional equation:

K(x ,y)Q(x ,y) = xy − tyQ(0,y)− txQ(x ,0).

1/ Build a new pair of invariants:

K(x ,y)H1(x ,y) = F(x) +G(y)− tyQ(0,y)− txQ(x ,0)

= I1(x)− J1(y)

with

I1(x) = F(x)− txQ(x ,0), J1(y) = −G(y) + tyQ(0,y).

2/ Relate this pair to the basic rational invariants (I0(x),J0(y)) using:

The invariant lemma
If K(x ,y)H(x ,y) = I(x)− J(y) and the coefficients of H(x ,y) (in t)
have no pole at x = 0 nor at y = 0, then

H(x ,y) = 0 and I(x) = J(y) ∈Q((t)).
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Step 1: decoupling

Functional equation:

K(x ,y)Q(x ,y) = xy − tyQ(0,y)− txQ(x ,0).

1/ Build a new pair of invariants:

K(x ,y)H1(x ,y) = F(x) +G(y)− tyQ(0,y)− txQ(x ,0)

= I1(x)− J1(y)

Easy! The term xy decouples modulo K(x ,y):

− 1
txy

K(x ,y) = xy + x̄ + ȳ −1/t .

So we have a new pair of invariants:

I1(x) = txQ(x ,0) + x̄ −1/(2t), J1(y) = −I1(y).
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Step 2: relate (I1,J1) to the basic invariants (I0,J0)

We have two pairs of invariants:

I0(x) = x̄2 − x̄/t − x , J0(y) = I0(y),

I1(x) = x̄ −1/(2t) + txQ(x ,0), J1(y) = −I1(y).

The series I1(x) has valuation −1 in x , while I0(x) has valuation −2.

Observation: I1(x)2 − I0(x) has no pole! Define

I(x) := I1(x)2 − I0(x) J(y) := J1(y)2 − J0(x).

Then (I(x),J(y)) is a pair of invariants,

−K(x ,y)H(x ,y) = I(x)− J(y),

where

H(x ,y) =
x − y
tx2y2

+
(
Q(x ,y) +

1
xyt

)
(I1(x) + J1(y) )

has no pole at x = 0 nor y = 0.
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Applying the invariant lemma

Hence

I(x) = I1(x)2 − I0(x) = (txQ(x ,0)−1/(2t))2 + 2tQ(x ,0) + x

is a series of Q((t)), equal to its value at x = 0:

(txQ(x ,0)−1/(2t))2 + 2tQ(x ,0) + x = 1/(2t)2 + 2tQ(0,0).

We have obtained an equation in one catalytic variable
⇒ systematic solution (via Brown’s quadratic method, or
[mbm-Jehanne 06])

GF of Kreweras’ walks in the quadrant

Let Z ≡ Z(t) be the only series in t such that Z = t(2 + Z3). Then

Q(x ,0) =
1
tx

( 1
2t
− 1
x
−
(1
Z
− 1
x

)√
1− xZ2

)
.

[Kreweras 65], [Gessel 86], [mbm 05]...
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Other quadrant models with small steps

Two ingredients:

A pair (I0(x),J0(y)) of rational invariants⇒ 23 models with a
finite group
A decoupling identity of the form

xy = F(x) +G(y) +K(x ,y)H(x ,y)

⇒ 4 of the 23 models

The use of invariants solves these four models, proving algebraicity.

Kreweras Reverse Double Gessel
Kreweras Kreweras

[Bernardi, mbm, Raschel 17(a)]



Reverse Kreweras walks

• Basic rational invariants

K (x ,y)
x − y
txy

=I0(x)−J0(y)

with
I0(x) = x̄ + x/t − x2, J0(y) =I0(y).

• Invariants related to Q (x ,y):

− 1
ty
K (x ,y)(1 + tyQ (x ,y)) =I1(x)−J1(y)

with

I1(x) = tQ (x ,0)− x/t + x2, J1(y) = −tQ (0,y)− ȳ + tQ (0,0)

GF of reverse Kreweras walks [Mishna 09, mbm-Mishna 10]

Q (x ,0) =
Z
(
4− Z3

)
16t

− t − x2 + tx3

2xt2

−

(
2x2 − xZ2 − Z

)√
1− xZ(Z3 + 4)/4 + x2Z2/4

2txZ
.
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)√
1− xZ(Z3 + 4)/4 + x2Z2/4

2txZ
.



Reverse Kreweras walks

• Basic rational invariants
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x − y
txy
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II. Kreweras’ walks

in three quadrants

C(x ,y) ≡ C(x ,y; t) =
∑

i ,j ,n≥0

ci ,j (n)x iy j tn

where ci ,j (n) is the number of walks of length n from (0,0) to (i , j)
avoiding the negative quadrant.



First functional equation

Functional equation (with x̄ = 1/x , ȳ = 1/y):

C(x ,y) = 1 + t(xy + x̄ + ȳ)C(x ,y)− t x̄C−(ȳ)− t ȳC−(x̄),

where
C−(x̄) =

∑
i<0,n≥0

c−i ,0(n)x i tn

counts walks ending on the negative x-axis.

Equivalently,

xy(1− t(xy + x̄ + ȳ))C(x ,y) = xy − tyC−(ȳ)− txC−(x̄).

• The coefficients of C(x ,y) have poles of arbitrarily large order at
x = 0 and y = 0.

• It suffices to determine C−(x̄), the GF of walks ending on the
negative x-axis.
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Alternative: Split the cone in two convex cones

• À la Raschel-Trotignon (2019):

C(x ,y) = x̄U(x̄ ,xy) +D(xy) + ȳU(ȳ ,xy),

where U(x ,y) ∈Q[x ,y][[t ]] and D(x) ∈Q[x][[t ]].

x̄U(x̄ ,0)

D(xy)

x̄U(x̄ ,xy)

x̄U(0,xy)

ȳU(ȳ ,xy)

• Step-by-step construction:

x̄U(x̄ ,xy) = t(xy + x̄ + ȳ)x̄U(x̄ ,xy)

+ t x̄D(xy)

−t ȳ (x̄U(x̄ ,0) + x̄U(0,xy)− x̄U(0,0)).

Analogously,

D(xy) = 1 + txyD(xy) + 2t ȳ (x̄U(0,xy)−x̄U(0,0)).
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Split the cone in two convex cones

• Two equations:

x̄ (1− t(xy + x̄ + ȳ))U(x̄ ,xy) = −t ȳx̄U(x̄ ,0) + t x̄D(xy)

− t ȳx̄U(0,xy) + t ȳx̄U(0,0),

(1− txy)D(xy) = 1 + 2t ȳx̄U(0,xy)−2t ȳx̄U(0,0).

• Straightening: (x̄ ,xy) 7→ (x ,y)

x (1− t(y + x + x̄ ȳ))U(x ,y) = −t ȳU(x ,0) + txD(y)

−t ȳU(0,y) + t ȳU(0,0),

(1− ty)D(y) = 1+2t ȳU(0,y)−2t ȳU(0,0).

• Linear combination:

2K (x ,y)U(x ,y) = y + (ty + 2tx −1)yD(y)−2tU(x ,0),

where nowK (x ,y) = xy(1− t(x + y + x̄ ȳ)) is the kernel of reverse
Kreweras’ walks.



Split the cone in two convex cones

• Two equations:
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We want to constructK -invariants...

2K (x ,y)U(x ,y) = y + (ty + 2tx −1)yD(y)−2tU(x ,0)

Two new difficulties:

one needs to “decouple” y , in some sense,

the term (ty + 2tx −1) depends on x (and y).

Two good news:

Decoupling:
y = (ty + 2tx −1)G(y)− F(x)

with G(y) = 1/t and F(x) = 2x −1/t .

The square of (ty + 2tx −1) is a function of y (moduloK (x ,y)):

(ty + 2tx −1)2 = ∆(y)−4t ȳK (x ,y)

where ∆(y) = (1− ty)2 −4t ȳ .
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where ∆(y) = (1− ty)2 −4t ȳ .



A new pair ofK -invariants

2K (x ,y)U(x ,y) = y + (ty + 2tx −1)yD(y)−2tU(x ,0)

• Decoupling: since y = (ty + 2tx −1)/t −2x + 1/t ,

2K (x ,y)U(x ,y) = (ty + 2tx −1)
(
yD(y) + 1/t

)
−
(
2tU(x ,0) + 2x −1/t

)

• Since (ty + 2tx −1)2 = ∆(y)−4t ȳK (x ,y), multiply out by

(ty + 2tx −1)
(
yD(y) + 1/t

)
+
(
2tU(x ,0) + 2x −1/t

)
.

•We have found a new pair ofK -invariants:

I2(x) =
(
2tU(x ,0) + 2x − 1

t

)2
, J2(y) = ∆(y)

(
yD(y) +

1
t

)2

with ∆(y) = (1− ty)2 −4t ȳ .
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Two known pairs ofK -invariants (from Part I)

• Recall:

I0(x) = x̄ + x/t − x2, J0(x) =I0(y),

I1(x) = tQ (x ,0)− x/t + x2, J1(y) = −ȳ − tQ (0,y) + tQ (0,0).

•We have just found another pair:

I2(x) =
(
2tU(x ,0) + 2x − 1

t

)2
=

J2(y) = ∆(y)
(
yD(y) +

1
t

)2
=

• Define

I (x) =I2(x)−4I1(x), J (y) = J2(y)−4J1(y).

Then (I (x),J (y)) is a pair of invariants with no pole at 0.

Moreover,

K (x ,y)H (x ,y) =I (x)−J (y)

where H (x ,y) has no pole at 0 either

⇒ I (x) and J (y) are trivial.
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= −4ȳ +O(y0)

• Define

I (x) =I2(x)−4I1(x), J (y) = J2(y)−4J1(y).

Then (I (x),J (y)) is a pair of invariants with no pole at 0.

Moreover,

K (x ,y)H (x ,y) =I (x)−J (y)

where H (x ,y) has no pole at 0 either

⇒ I (x) and J (y) are trivial.



Two known pairs ofK -invariants (from Part I)

• Recall:

I0(x) = x̄ + x/t − x2, J0(x) =I0(y),

I1(x) = tQ (x ,0)− x/t + x2, J1(y) = −ȳ − tQ (0,y) + tQ (0,0).
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Trivial invariants for reverse Kreweras’ steps

Conclusion:

I2(x) =
(
2tU(x ,0) + 2x − 1

t

)2
= 4

(
tQ (x ,0)− x/t + x2

)
+ cst ,

J2(y) = ∆(y)
(
yD(y) +

1
t

)2
= 4(−ȳ − tQ (0,y) + tQ (0,0)) + cst ,

with ∆(y) = (1− ty)2 −4t ȳ .

The constant can be determined by specializing y to the unique root
of ∆(y) that is a power series in t .



The GF of Kreweras walks in three quadrants [mbm]

•Walks ending on the negative x-axis: series U(x ,0), with

1
2

(
2tU(x ,0) + 2x − 1

t

)2
=

(1− Z3)3/2

Z2
+ (1− xZ)2

( 1
Z2
− 1
x

)
+

(
x̄ + Z − 2x

Z

)√
1− Z 4 + Z3

4
x +

Z2

4
x2.

•Walks ending on the diagonal: series D(x), with

∆(x)

2

(
xD(x) +

1
t

)2
=

(1− Z3)3/2

Z2
+ (1− xZ)2

( 1
Z2
− 1
x

)
−
(
x̄ + Z − 2x

Z

)√
1− Z 4 + Z3

4
x +

Z2

4
x2.

where ∆(x) = (1− tx)2 −4t x̄ and Z = t(2 + Z3).

• All walks in three quadrants:

xy(1− t(x̄ + ȳ + xy))C(x ,y) = xy − tU(x̄ ,0)− tU(ȳ ,0).

(Algebraicity of excursions proved by [Elvey Price, FPSAC 20])
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Asymptotics and harmonic function [mbm]

• Number of n-step walks ending at (i , j) in the three quadrant plane:

ci ,j (n) ∼ −
Hi ,j

Γ (−3/4)
3nn−7/4 (for n + i + j ≡ 0 mod 3)

• The generating function

H (x ,y) :=
∑

j≥0,i≤j
Hi ,jx

j−iy j ,

is algebraic of degree 16, given by(
1 + xy2 + x2y −3xy

)
H (x ,y) =H−(x) +

1
2

(
2 + xy2 −3xy

)
Hd (y)

where

H−(x) :=
∑
i>0

H−i ,0x
i

=
9x
2

√
1 + 2x
1− x

√
4− x
1− x

+ 2,

Hd (y) :=
∑
i≥0

Hi ,iy
i

=
9

(1− y)
√
y(4− y)

√
1 + 2y
1− y

√
4− y
1− y

−2.

[Trotignon 19(a)]



Asymptotics and harmonic function [mbm]

• Number of n-step walks ending at (i , j) in the three quadrant plane:

ci ,j (n) ∼ −
Hi ,j

Γ (−3/4)
3nn−7/4 (for n + i + j ≡ 0 mod 3)

• The generating function

H (x ,y) :=
∑

j≥0,i≤j
Hi ,jx

j−iy j ,

is algebraic of degree 16, given by(
1 + xy2 + x2y −3xy

)
H (x ,y) =H−(x) +

1
2

(
2 + xy2 −3xy

)
Hd (y)

where

H−(x) :=
∑
i>0

H−i ,0x
i

=
9x
2

√
1 + 2x
1− x

√
4− x
1− x

+ 2,

Hd (y) :=
∑
i≥0

Hi ,iy
i

=
9

(1− y)
√
y(4− y)

√
1 + 2y
1− y

√
4− y
1− y

−2.

[Trotignon 19(a)]



Asymptotics and harmonic function [mbm]

• Number of n-step walks ending at (i , j) in the three quadrant plane:

ci ,j (n) ∼ −
Hi ,j

Γ (−3/4)
3nn−7/4 (for n + i + j ≡ 0 mod 3)

• The generating function

H (x ,y) :=
∑

j≥0,i≤j
Hi ,jx

j−iy j ,

is algebraic of degree 16, given by(
1 + xy2 + x2y −3xy

)
H (x ,y) =H−(x) +

1
2

(
2 + xy2 −3xy

)
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Other three-quadrant models with small steps

Two new ingredients:
x/y-symmetry of the step set (for the functional equation)
A decoupling identity of the form

y = p(x ,y)G(y) + F(x) +K(x ,y)H(x ,y)

/ C � B .

The use of invariants solves these 3 models, proving algebraicity:

Kreweras Reverse Double
Kreweras Kreweras

D-finite: [Raschel-Trotignon 19]



Other three-quadrant models with small steps

Two new ingredients:
x/y-symmetry of the step set (for the functional equation)
A decoupling identity of the form

y = p(x ,y)G(y) + F(x) +K(x ,y)H(x ,y)

/ C � B .

The use of invariants solves these 3 models, proving algebraicity:

Kreweras Reverse Double Gessel
Kreweras Kreweras TO DO



What’s next?

• Gessel’s step set (algebraicity of excursions [Budd 20])

• [Beyond finite groups] Another x/y-symmetric model with an
infinite group but a “weak” invariant

(D-algebraic [Dreyfus-Trotignon 20(a)])

• [Beyond purely algebraic solutions] Revisit some solved D-finite
cases, e.g. NSEW walks, where the crux is to prove the algebraicity of
the series A(x ,y) defined by:

xy(1− t(x + x̄ + y + ȳ))A(x ,y) =
1
3

(2xy + x̄y + xȳ)

− txA−(x̄)− tyA−(ȳ).

[mbm 16], [mbm-Wallner 21]
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Partial classification of three quadrant walks

three-quadrant models: 74

|G |<∞: 23

D-finite?

3 (4 ?)

algebraic

3 (19 ?)

DF transc.

|G |=∞: 51

Not D-finite

1 (9 ?)

D-alg.

3 (42 ?)

not D-alg.

+ results for excursions [Budd 20, Elvey Price 20]

/ C � B .

algebraic [mbm]
DF transc. [mbm 16, Raschel-Trotignon 19, mbm-Wallner 21]
Non-D-finite [Mustapha 19]
D-alg./not D-alg [Dreyfus-Trotignon 20(a)]


