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THE CLASSICAL
CREATION AND ANNIHILATION OPERATORS
IN COMBINATORICS

CREATION OPERATOR : X ( = multiplication by X))

ANNIHILATION OPERATOR : D ( = differentiation wir to X))

These operators do not commute!

[D,X]=DX-XD =1



1

DX — XD




Creation-annihilation in the context of combinatorial classes
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THEORY OF COMBINATORIAL SPECIES
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Subject of the present talk :

Creation-annihilation in the context of ordinary species

Translation:

The combinatorial calculus of operators of the form

Q(X, D)

where Q(X,T) is a ( possibly weighted and/or complex ) species
on two sorts, X and 7, of elements in their underlying structures.



# of leaves

THE CLASS OF ROOTED TREES WEIGHTED BY [

o, B, 7 0, &0, T, T,m,p,¥

\V

relabelling
(transporting)
along ©

=

O = <a’ b’ = d’ e’ﬁ & h’ L k> isomorphism

weight = ¢! weight = ¢!

Isomorphic structures




THE CLASS OF ROOTED TREES ON TWO SORTS OF ELEMENTS
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WHAT IS A COMBINATORIAL SPECIES ?

Informal definition :

A species is a class of weighted combinatorial structures
built on arbitrary finite sets made of various « sorts » of
elements.

The class must be closed under arbitrary weight and sort
preserving bijections between the underlying sets of
elements of its structures.

We assume that the weight of a structure is a monomial in
some « weight variables ».



WHAT IS A COMBINATORIAL SPECIES ?

Formal (and more precise) definition :

A species is a functor F: (BxBx---) == —— Sets i1 weighted
where B is the category of finite sets and bijections and

Sets ymmable weighted 1S @ Category of summable weighted sets.

Weights are assumed to be monomials in some weight variables {,u,7,,7,1,,...

3 (Ul ’U2 > ) |ﬁ F[Ul ’U2 ’e ] € Setssummable weighted

An element s e F[U,,U,,...] is called a F—structure on (U,,U,,...)

An element u; eU; 1s called a singleton of sort i




GRAPHICAL CONVENTION -1
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An F-structure on

{a, b, c, d, e}

-

N

F

/

An F-structure on

a S-element set



GRAPHICAL CONVENTION - 2
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An F-structure on

{a,c,e|d, b}
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An F-structure on

a (3, 2)-element set



BASIC OPERATIONS ON SPECIES -1
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(F+G) — structure

-
-

F.-G — structure

FxG — structure




BASIC OPERATIONS ON SPECIES - 2

4 N

- ¥

D F— structure

((DF)-G)-DG



C,, (A(X),G,(X+T))



Cycle index series

o, 0, O
xl 1x22x33...

0y 0y ~ 172%3,~
220  oeS "o, 127?0,!13 70, !

F — Z; 1s compatible with the combinatorial operations

Zp(x,0,0,...)=F(x) weights (or counts) labelled structures

Z i (x, x2, x? L) = F (x) weights (or counts) unlabelled structures

o, O T,.T
xl 1x22...t11t22...

Q(X,T) > ZQ(XI,.XZ,...; tl,tz,...) = 2 I’l'lk‘ 2 WCIghtFlXF[G,T]
n,k=0

: 0-1 0-2 Tl 1'2 '
(0,7)€S, 1o, 12720, ... 1 g, 1227, 1



X = the species of @ - singletons

T = the species of [JJJ- singletons

Q= QX.T)

X" = the species of n—lists of singletons

X°— structure: ®—>e—>e—>e—>e

More generally, let < S, then we can consider the species
X"/H

of 7 - lists of singletons modulo H



EXAMPLE of X" /H Let H = ((1,2,3)) < S,

| Ne e O
[ | Ne [ Nox
0T e | Ne

X°/((1,2,3)) = C;(X)

So that the species C =C(X) of cyclic permutations can be written as
X + X’ +et Xt +

(1,2))  {(1,2,3)) (1,2,3,...,n))

THIS IS A GENERAL FACT

C(X)= X+



EXAMPLE : The species of (weighted) rooted trees

+ +\/+ +\J/+\j|- \J +
®
st t> st? _ st? s°t

1t 12

+ " EE +W+ y + X + " EE
8t3 82t2 82t2

MOLECULAR EXPANSION :

X+1X*+1°XE, + StX° + 1O XE + st X°Ey + (st” + "X + - +(s” + 251X E, + -+

3 4 4 5

X X
X+X2 4+ X +17 2+ 52 +(st2+SPOXE+ o+ (510 +25717)
Sl,2 Sl,3 Sl,1,2 Sl,1,1,2

+ ...




MOLECULAR EXPANSION OF ANY SPECIES

Every species F(X) can be written uniquely (up to natural equivalence)
as a linear combination of species of the form X" /H, H< S, :

Xn
F(X) = Z Z weight(s)
n>0 seF[n]/S, Stab(s)
Xn
=2 2 Sy
n=0 H§ S,

where H runs over a system of representatives of the conjugacy

classes of subgroups of S, and f, are linear combinations of
weight monomials.

The species X' /H are called molecular species (irreducible over sum)



MOLECULAR EXPANSION OF ANY 2-SORT SPECIES

Every species (2(X,7) can be written uniquely (up to natural equivalence)
as a linear combination of species of the form X"T*/H, H < Su

| X"k
Z Z weight(s) Stab(s)

n, k20 seQn,k]/S,

npk
2 Z a)HXT

n,kz0 HSS, |

Q(X,T)

where H runs over a system of representatives of the conjugacy
classes of the subgroups of §, ;, and @, are linear combinations

of weight monomials. S, XS =8, 1 8,4

Similar expansions hold for species on an arbitrary number of sorts of singletons



ATOMIC EXPANSION OF ANY SPECIES

(Yeh’s Theorem 1986) Every molecular species X" /H can be
written uniquely (up to natural equivalence) as a commutative product

H H, H, H,

of atomic species Xni /Hl ( i.e., also irreducible under product )-

Consequence : Up to natural equivalence, every species is an
element of the « big » half-ring (under + and -)

N[[weight variables, atomic species]]

which is also equipped with extra operations ( X, o, D, etc).



Similar expansions hold for species on any number of sorts of
singletons.

Yeh and Joyal have extended the half-rings
N[[weight variables, atomic species]]

to more general rings of the form
Z[[weight variables, atomic species]|] (weighted virtual species)
C[[weight variables, atomic species]] (weighted complex species)

and extended the extra operations ( X, o, D, etc).

From now on, the word « species » means weighted complex species.



UNLABELLING NODES

Convention: Ilabelled nodes are colored,
unlabelled nodes are not colored (white ).

/

,//

S

Q\

O
O
I:I

Q(X,T)- structure Q(1,1)- structure

Q(1,T) - structure



DEFINITION OF Q(X,D)

To any 2-sort species, ((X,7), we associate a combinatorial
differential operator, (2(X,D), acting on species F(X) as follows :

%ég T:=1 %
—
F F
7/ o X [ : T unlabelled o X
QX,T)%r F(X+T) Q(X,D)F(X)
That is : QX,D)F(X) = QUX,T) Xy F(X+T)|r.—



1 - EXAMPLES OF Q(X,D)

0o: T unlabelled

Q(X,D)F(X)

DF(X) D*F(X)

C(D)F(X)

C(X + D)F(X)



2 - EXAMPLES OF Q(X,D)

e o %F
[ : T unlabelled o X
Q(X,D)F(X) XDF(X) = F*(X) (pointing)
=n @
%& . M
e |7 | TT—a—,

A(XD)F(X) FMX)  (A-pointing)



3 - EXAMPLES OF Q(X,D)

] : T unlabelled o X

Q(X,D)F(X) A(X,D)C(X) E(L 3 (X)D)C(X)

Octopuses



{1 o0

C(X + XE,(D))L(X)

E(G.(X)D)F(X) = FGX)) if GX)=X+G.(X)



KISS PRODUCT of SPECIES

[]
L

F(X + XD)G(X)

F(X)XxG(X)

kiss product

G(X + XD)F(X)

The kiss product « interpolates » between Cauchy and Hadamard products :

F(X)G(X) ¢ F(X)XxG(X) F(X)XxG(X) ¢ F(X)xG(X)



GENERALIZED LEIBNIZ RULE

Notation
X" Dk x"F®) (x)
F(X) =
K K
where K < §,, .
Theorem We have
X" DF K\ X"FO(X)GY (X)
FX)GX) = >, D,
K Lk Lis, \L L
I+ J= < On,i,j

where L : §,; ; means that L runs through a complete system of

representatives of the conjugacy classes of subgroups of S, ; ; and the

K
L

X"(Mi+D)fk =Y Y (f)X”Tlisz/L

i+ j=k L3Sn,i,j

coefficients ( ) are defined by the ”addition formula”



MOLECULAR EXPANSION OF ANY
COMBINATORIAL DIFFERENTIAL OPERATOR

Since we have a unique molecular expansion

x'T*

QX,T)= Y

n, k=0 gH< S

o "N,k

then every combinatorial differential operator ((X,D) has a

canonical molecular expansion of the form

QX,D)= Y, D, o,

n, k=0 gH< S

e "Nk

X D" / H is called molecular (or atomic) if X"T" | H is molecular (or atomic)



X" D
H

TABLES of ATOMIC

n+k=1: two OperatOI‘S X and D ( generating the Weyl algebra under + and G))

n+k=2 : twooperators X /((12)) and D*/((12))

n+k=3 : 4 operators X’ /{(123)), X’ /{(132),(12)), D’ /{(123)), D’ /{(132),(12))

n+k=4 : 13 operators
X*/ < (13)(24) > D*/ < (13)(24) >
X"/ < (14)(23), (13)(24) > X*D*/{(12)(34)) D*/ < (14)(23), (13)(24) >
X'/ < (12)(34), (1324) > (self adjoint) D*/ < (12)(34), (1324) >
X*/ < (13)(24), (14)(23), (12) > D*/ < (13)(24), (14)(23), (12) >
X*/ < (13)(24), (14)(23), (243) > D*/ < (13)(24), (14)(23), (243) >
X*/ < (13)(24), (14)(23), (243), (12) > D*/ < (13)(24), (14)(23), (243), (12) >




TABLES of ATOMIC

X" DF

H
n+k=5 : 14 operators --- X’D* /{(132),(12)(45)), X°D’/{(12)(34),(354)) ---
n+k=6 : 73 operators||n+k="7 : 70 operators||n+ k=8 : 453 operators

Sample from Hugo Tremblay’s Tables for n» + k=8 :

.« X°D2/((34)(56),(12)(35)(46)(78))
X°®D?/((34)(56)(78),(12)(35)(46))
X°D?/{(123)(456),(14)(26)(35)(78))
X°D?/{(23)(56)(78),(12)(45)(78))
X°D?/((12)(34)(56)(78),(135)(246))

X6D2/((5 6)

8),(34)(78),(12)(35)(46)(7

X°D?/((56),(34),(12)(35)(46)(78))

X6D2/((3 4)
X6D2/((5 6)(7
X6D2/((3 4)
X6D2/((5 6)(7

/-\AA/\

{

{

{

e
X°D2/((56)(7 8),(34)(7 8), (1 2)(7 8))

(5 6)(7 (

{

{

{

{

{

56), (354 6)(7 8), (1 2)(5 6))

8),(34)(78),(12)(35)(406))
56),(35 4 6)(7 8),(12)(5 6)(7 8))

8),(12)(34),(13)(24)(78)). ..

8))

2,2,4,13,14,73,70,453, 546, 3302, ...




k

X"D
QX,D)= >, Y

H
n, k=0 H% Sn,k

Restricting H to run through trivial subgroups {id, ;}<S, , , this

contains, as a special case :

The Equivalence Principle of Blasiak and Flajolet
r \)
n =2 w, XD
r,s

—

n®n = 2 Cn,a,bXan

n,a,b



COMPOSITION OF DIFFERENTIAL OPERATORS

Q2(X7D)@QI(X7D> — Q3(X7D)

/\

A

°:
H:
/\:

unlabelled

NN X

Q3(X,T) =X, T) 0Q(X,T) :=Q0(X,T+T1To) X1, Qi (X + 10, T )| 1:=1



MONOIDAL ACTION

Q) (X,D)OQ(X,D) |F(X) = Q,)(X,D)[Q(X,D)F(X))

' oo > D

[ _b “‘\ s’/,'r

e e 0JOO 0OOO
|
. 0,\ [>[>D DDD




(XD)QFL _ Z{Z}XVDV

v<n

{ Z } = Stirling number of the second kind (well-known)

Define P (x)= Z{Z}xv

Then, P (x) =1 and P _,(x) = (x+xdi)Pn(x) (also well-known).
X

But what is the canonical expression for E, (XD)°" ?



E2 (XD)QVZ — 2 { Vll’fvz }XV1DV1E2 (XD)V2

vi+2vy <2n

X2D2 on i X2V2D2V2
= X"D"
(((1,2)(3,4))) 222{12} [<(1,2)(2v2 +1,2v,+2),....2v, = 1,2v,)(4v, — 1,4@))

Define P (x,y) = Z {Vlljvz}xvlyvz.

Vi+2vy £2n

Then, P (x,y) = 1 and

P_(x,y) = (y+x2i+(x3+y)—+x a—+x



CYCLE INDEX SERIES

Proposition Let G(X) := Q(X,D)F(X), then
Jd . d _d

Z(;(xl,xz,X3, . ) = Zg(xl,X2,X3, cees axl ,28x2,3ax3 ) .)ZF(xl,X2,X3, .. )

Proposition

20,00, = Z ((a_

ni,ng,...

Convention. Write all the #;’s to the right of all the x;’s in Zq(x1,x2,...,t1,%2,...).



BILINEAR FORM AND ADJOINT OPERATORS

<FX),GX)> = FX)xxGX)|x:=1

— total weight (or number) of all unlabelled F x G — structures

<Q(X,D)F(X),G(X)> = <F(X),Q(D,X)G(X) >

ie. (QX,D))" :=Q(D,X) is the adjoint operator of Q(X,D)

In particular D* = X asusual ...




X"D* x"
H

COMPUTATION OF

XmDFX" _ XMTE X+ 1)
K H K " H T

H Z Z wHw™1 ﬂSn_k,k

k=0 w&€ Sn—_k k\Sn/H

Xa,Tk Xka Z Xa—l—ka

X
A "' B x¢ BT
re(mA\S/(m2B) Sk

XeT* X
A T.—1 ’7'('114



COMMUTATORS, ETC
Make tables and study the commutators
[A(X,D),B(X,D)] = A(X,D)OB(X,D)—- B(X,D)OA(X,D)

[Q*, Q] = Q*QQ-QOQ* =7
DOX—-—XOD =1 ( specialcase with Q = X )

X‘D" x°D“ |
T - } = ?  (molecular expansions )

Find new combinatorial models for equations such as

[P,Q] = P+Q etc



SOME CURIOUS IDENTITIES BETWEEN
DIFFERENTIAL OPERATORS

E(aXD)O EMbBLXD) = E((a+b+ab)XD)
E(—XD)O E(—XD) = E(—XD) (idempotence )
E(-2XD)OE(-2XD) =1 (selfinverse)

E(-3XD)O E(-XD) = E(-XD) (no effect!)

etc



SPECIAL CASES
Qz (X, D) @ Ql (X, D) noncommutative

1. Combinatorial Hammond differential operator Q(X,D) = ©(D)
@2(D)®®1 (D) = @2- @1 (D) commutative

2. Multiplication operator Q(X,D) = G(X)
G2 (X)@GI(X) — G2' GI(X) commutative

3. Finite differences operator Q(X,D)=®(X,A), A=E" (D)
D, (X,A)OD(X,A) noncommutative

4. Pointing operator Q(X,D) = A(XD)
A2 (XD)@ AI(XD) — A2 XAI(XD) commutative

etc



1)

2)

3)
4)

o)
6)

FUTURE EXPLORATIONS

Study the atomic expansion of Q(X,D)®" given that of Q(X,D)

( Xavier Viennot theory of « empilements » may be useful here).

Find necessary and/or sufficient conditions for the existence, non-existence,
multiplicity of solutions of equations of the form Q(X,D)F(X)=G(X)

and devise methods for solving such equations.

Analyze connections between the operators £2(X, D) and physics

Find new combinatorial identities and species involving the operations
+, 5, X, 9, Q’ Xa Da Q(XaD)’ *9 X..=1 > [AaB]a etc

Extend the above to partial differential operators Q(X;,X,,...,0;,0,,...)

Implement the above on computer algebra systems (Maple, Sage, etc)

7) Extend existing tables
8) Etc



BONNE RETRAITE
XAVIER

2

cos (v)
cos (v)

xr = cos (u
y = sin (u
z = |cos (u) cos (v)| + sin (v)

N—

de Gibert et Héelene



