Journées X. G. Viennot

28 et 29 juin 2012, LaBRI / U. Bordeaux, France

Ω (creation, annihilation)

Gilbert Labelle, LaCIM / UQAM

Université du Québec à Montréal

Département de mathématiques Case postale 8888, Succursale Centre-Ville Montréal (Québec) H3C 3P8

THE CLASSICAL CREATION AND ANNIHILATION OPERATORS IN COMBINATORICS

CREATION OPERATOR: X (= multiplication by X)

ANNIHILATION OPERATOR: D (= differentiation w/r to X)

These operators do not commute!

$$[D,X] \equiv DX - XD = 1$$

DX - XD = 1

Creation-annihilation in the context of combinatorial classes

P. Blasiak and P. Flajolet, *Combinatorial models of creation-annihilation*, Journal électronique du Séminaire Lotharingien de Combinatoire, No. 65, Article B65c (2011).

+ many others (including Xavier)

THEORY OF COMBINATORIAL SPECIES

Introduced by André Joyal,

LaCIM, 1981

André Joyal, Une théorie combinatoire des séries formelles, Advances in Mathematics 42:1-82 (1981)

Followed by publications by many authors including,

Differential equations in the context of *linear* species

- **P. Leroux and G. Viennot**, *Combinatorial resolution of systems of differential equations*, I: *Ordinary differential equations*, dans Combinatoire énumerative, UQAM 1985, Proceedings, Lecture Notes in Mathematics, vol. 1234, Springer-Verlag, 1986, 210-245.
- **P.** Leroux et G.X. Viennot, Résolution combinatoire des systèmes d'équations différentielles, II: Calcul intégral combinatoire, Ann. Sci. Math. Qué. Vol. 12 (1988), 233-253.
- **P. Leroux et X.G. Viennot**, A combinatorial approach to non linear functional expansions: An introduction with an example, Theoretical Computer Science, 79 (1991), 179-193.
- **P.** Leroux et G.X. Viennot, Combinatorial resolution of systems of differential equations, IV: Separation of variables, Discrete Math. 72 (1988), 237-250.

Differential equations in the context of ordinary species

- **G. Labelle,** Éclosions combinatoires appliquées l'inversion multidimensionnelle des séries formelles. J. Comb. Theory-A, 39, no. 1, (1985), 52-82.
- **G. Labelle,** On Combinatorial Differential Equations, J. of Math. Analysis and Applications, 113, no.2, (1986), pp. 344-381.
- G. Labelle, Dérivées directionnelles et développements de Taylor combinatoires, Discrete Mathematics 79, (1989/90), 279-297.
- **Y. Chiricota et G. Labelle,** Familles de solutions combinatoires de l'équation différentielle $Y' = 1 + Y^2$, Y(0) = 0 et des équations différentielles autonomes, Discrete Mathematics 115 (1993) 77-93.
- **G. Labelle and C. Lamathe,** *General Combinatorial Differential Operators*, Journal électronique du Séminaire Lotharingien de Combinatoire numéro spécial à la mémoire de Pierre Leroux, No. 61A, Article B61Ag (2009).

Subject of the present talk:

Creation-annihilation in the context of *ordinary* species

Translation:

The combinatorial calculus of operators of the form

$$\Omega(X,D)$$

where $\Omega(X,T)$ is a (possibly weighted and/or complex) species on two sorts, X and T, of elements in their underlying structures.

THE CLASS OF ROOTED TREES WEIGHTED BY $t^{ extit{\# of leaves}}$

weight =
$$t^7$$
 weight = t^7

Isomorphic structures

THE CLASS OF ROOTED TREES ON TWO SORTS OF ELEMENTS (inner nodes and leaves) WEIGHTED BY

 $t_0^{\#}$ elements of degree $0 \cdot t_1^{\#}$ elements of degree $1 \cdot t_2^{\#}$ elements of degree $2 \dots$

weight =
$$t_1^7 \cdot t_2 \cdot t_3^5$$

weight =
$$t_1^7 \cdot t_2 \cdot t_3^5$$

WHAT IS A COMBINATORIAL SPECIES?

Informal definition:

A species is a class of weighted combinatorial structures built on arbitrary finite sets made of various « sorts » of elements.

The class must be closed under arbitrary weight and sort preserving bijections between the underlying sets of elements of its structures.

We assume that the weight of a structure is a monomial in some « weight variables ».

WHAT IS A COMBINATORIAL SPECIES?

Formal (and more precise) definition:

A species is a functor $F: (\mathbf{B} \times \mathbf{B} \times \cdots)_{\text{weak}} \longrightarrow \mathbf{Sets}_{\text{summable weighted}}$ where B is the category of finite sets and bijections and $\mathbf{Sets}_{\text{summable weighted}}$ is a category of summable weighted sets.

Weights are assumed to be monomials in some weight variables t,u,t_0,t_1,t_2,\dots

$$(\mathbf{B} \times \mathbf{B} \times \cdots)_{\text{weak}} \ni (U_1, U_2, \dots) \longmapsto_F F[U_1, U_2, \dots] \in \mathbf{Sets}_{\text{summable weighted}}$$

An element $s \in F[U_1, U_2,...]$ is called a F – structure on $(U_1, U_2,...)$

An element $u_i \in U_i$ is called a singleton of sort i

GRAPHICAL CONVENTION - 1

An F-structure on $\{a, b, c, d, e\}$

An *F*-structure on a 5-element set

GRAPHICAL CONVENTION - 2

An F-structure on $\{a, c, e \mid d, b\}$

An *F*-structure on a (3, 2)-element set

BASIC OPERATIONS ON SPECIES - 1

(F+G) – structure

 $F \cdot G$ – structure

 $F \times G$ – structure

BASIC OPERATIONS ON SPECIES - 2

 $F \circ G$ – structure

DF- structure

 $C_{alt,t}(A_s(X),G_r(X+T))$

Cycle index series

$$F(X) \mapsto Z_F(x_1, x_2, x_3, \dots) = \sum_{n \ge 0} \frac{1}{n!} \sum_{\sigma \in S_n} \text{weight Fix} F[\sigma] \frac{x_1^{\sigma_1} x_2^{\sigma_2} x_3^{\sigma_3} \dots}{1^{\sigma_1} \sigma_1! 2^{\sigma_2} \sigma_2! 3^{\sigma_3} \sigma_3! \dots}$$

 $F \mapsto Z_F$ is compatible with the combinatorial operations

 $Z_F(x, 0, 0, ...) = F(x)$ weights (or counts) labelled structures

 $Z_F(x, x^2, x^3, ...) = \tilde{F}(x)$ weights (or counts) unlabelled structures

$$\Omega(X,T) \mapsto Z_{\Omega}(x_{1},x_{2},...;t_{1},t_{2},...) = \sum_{n,k\geq 0} \frac{1}{n!k!} \sum_{(\sigma,\tau)\in S_{n,k}} \text{weight Fix} F[\sigma,\tau] \frac{x_{1}^{\sigma_{1}}x_{2}^{\sigma_{2}}\cdots t_{1}^{\tau_{1}}t_{2}^{\tau_{2}}\cdots}{1^{\sigma_{1}}\sigma_{1}!2^{\sigma_{2}}\sigma_{2}!\cdots 1^{\tau_{1}}t_{1}!2^{\tau_{2}}\tau_{2}!\cdots}$$

T =the species of \blacksquare - singletons

 $\Omega = \Omega(X,T)$

 X^n = the species of n – lists of singletons

 X^5 - structure : $\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet$

More generally, let $H \le S_n$ then we can consider the species

 X^n/H

of n - lists of singletons modulo H

EXAMPLE of X^n/H Let $H = \langle (1,2,3) \rangle \leq S_3$

So that the species C = C(X) of cyclic permutations can be written as

$$C(X) = X + \frac{X^2}{\langle (1,2) \rangle} + \frac{X^3}{\langle (1,2,3) \rangle} + \dots + \frac{X^n}{\langle (1,2,3,\dots,n) \rangle} + \dots$$

THIS IS A GENERAL FACT

EXAMPLE: The species of (weighted) rooted trees

MOLECULAR EXPANSION:

$$X + tX^2 + t^2XE_2 + stX^3 + t^3XE_3 + st^2X^2E_2 + (st^2 + s^2t)X^4 + \cdots + (st^3 + 2s^2t^2)X^3E_2 + \cdots$$

=

$$X + tX^{2} + t^{2} \frac{X^{3}}{S_{1,2}} + stX^{3} + t^{3} \frac{X^{4}}{S_{1,3}} + st^{2} \frac{X^{4}}{S_{1,1,2}} + (st^{2} + s^{2}t)X^{4} + \cdots + (st^{3} + 2s^{2}t^{2}) \frac{X^{5}}{S_{1,1,1,2}} + \cdots$$

MOLECULAR EXPANSION OF ANY SPECIES

Every species F(X) can be written uniquely (up to natural equivalence) as a linear combination of species of the form X^n/H , $H \leq S_n$:

$$F(X) = \sum_{n \ge 0} \sum_{s \in F[n]/S_n} \text{weight}(s) \frac{X^n}{\text{Stab}(s)}$$
$$= \sum_{n \ge 0} \sum_{H \le S_n} f_H \frac{X^n}{H}$$

where H runs over a system of representatives of the conjugacy classes of subgroups of S_n and f_H are linear combinations of weight monomials.

The species X^n/H are called *molecular species* (irreducible over sum)

MOLECULAR EXPANSION OF ANY 2-SORT SPECIES

Every species $\Omega(X,T)$ can be written uniquely (up to natural equivalence) as a linear combination of species of the form $X^n T^k / H$, $H \leq S_{n,k}$:

$$\Omega(X,T) = \sum_{n, k \ge 0} \sum_{s \in \Omega[n, k]/S_{n,k}} \text{weight}(s) \frac{X^n T^k}{\text{Stab}(s)}$$

$$= \sum_{n, k \ge 0} \sum_{H \le S_{n,k}} \omega_H \frac{X^n T^k}{H}$$

where H runs over a system of representatives of the conjugacy classes of the subgroups of $S_{n,k}$ and ω_H are linear combinations of weight monomials. $S_n \times S_k \cong S_{n,k} \leq S_{n+k}$

Similar expansions hold for species on an arbitrary number of sorts of singletons

ATOMIC EXPANSION OF ANY SPECIES

(Yeh's Theorem 1986) Every molecular species X^n / H can be written uniquely (up to natural equivalence) as a commutative product

$$\frac{X^n}{H} = \frac{X^{n_1}}{H_1} \cdot \frac{X^{n_2}}{H_2} \cdots \frac{X^{n_k}}{H_k}$$

of atomic species X^{n_i}/H_i (i.e., also irreducible under product).

Consequence: Up to natural equivalence, every species is an element of the α big α half-ring (under α and α)

N[[weight variables, atomic species]]

which is also equipped with extra operations (\times , \circ , D, etc.).

Similar expansions hold for species on any number of sorts of singletons.

Yeh and Joyal have extended the half-rings

 $\mathbb{N}[[\text{weight variables, atomic species}]]$

to more general rings of the form

```
\mathbb{Z}[[\text{weight variables, atomic species}]] (weighted virtual species)
```

C[[weight variables, atomic species]] (weighted complex species)

and extended the extra operations (\times , \circ , D, etc).

From now on, the word « species » means weighted complex species.

UNLABELLING NODES

Convention: labelled nodes are colored, unlabelled nodes are not colored (white).

DEFINITION OF $\Omega(X,D)$

To any 2-sort species, $\Omega(X,T)$, we associate a combinatorial differential operator, $\Omega(X,D)$, acting on species F(X) as follows :

That is: $\Omega(X,D)F(X) \equiv \Omega(X,T) \times_T F(X+T)|_{T:=1}$

1 - EXAMPLES OF $\Omega(X,D)$

 $\Omega(X,D)F(X)$

DF(X)

 $D^4F(X)$

C(X+D)F(X)

2 - EXAMPLES OF $\Omega(X,D)$

3 - EXAMPLES OF $\Omega(X,D)$

 $\Omega(X,D)F(X)$

A(X,D)C(X)

 $E(L_{\geq 2}(X)D)C(X)$

Octopuses

 $C(X + XE_2(D))L(X)$

$$E(G_*(X)D)F(X)$$

$$= F(G(X))$$

$$F(G(X))$$
 if $G(X) = X + G_*(X)$

KISS PRODUCT of SPECIES

$$F(X+XD)G(X) = F(X)\dot{\times}G(X) = G(X+XD)F(X)$$

$$kiss\ product$$

The kiss product « interpolates » between Cauchy and Hadamard products:

$$F(X)G(X) \subseteq F(X) \dot{\times} G(X)$$
 $F(X) \times G(X) \subseteq F(X) \dot{\times} G(X)$

GENERALIZED LEIBNIZ RULE

Notation

$$\frac{X^n D^k}{K} F(X) = \frac{X^n F^{(k)}(X)}{K}$$

where $K \leq S_{n,k}$.

Theorem We have

$$\frac{X^{n}D^{k}}{K}F(X)G(X) = \sum_{i+j=k} \sum_{L: S_{n,i,j}} {K \choose L} \frac{X^{n}F^{(i)}(X)G^{(j)}(X)}{L}$$

where $L: S_{n,i,j}$ means that L runs through a complete system of representatives of the conjugacy classes of subgroups of $S_{n,i,j}$ and the coefficients $\binom{K}{L}$ are defined by the "addition formula"

$$X^{n}(T_{1}+T_{2})^{k}/K = \sum_{i+j=k} \sum_{L:S_{n,i,j}} {K \choose L} X^{n} T_{1}^{i} T_{2}^{j}/L$$

MOLECULAR EXPANSION OF ANY COMBINATORIAL DIFFERENTIAL OPERATOR

Since we have a unique molecular expansion

$$\Omega(X,T) = \sum_{n, k \ge 0} \sum_{H \le S_{n,k}} \omega_H \frac{X^n T^k}{H},$$

then every combinatorial differential operator $\Omega(X,D)$ has a canonical molecular expansion of the form

$$\Omega(X,D) = \sum_{n, k \ge 0} \sum_{H \le S_{n,k}} \omega_H \frac{X^n D^k}{H}$$

 X^nD^k/H is called molecular (or atomic) if X^nT^k/H is molecular (or atomic)

TABLES of ATOMIC

 $\frac{X^nD^k}{H}$

n+k=1: two operators X and D (generating the Weyl algebra under + and \odot)

n+k=2: two operators $X^2/\langle (12) \rangle$ and $D^2/\langle (12) \rangle$

n + k = 3: 4 operators $X^3 / \langle (123) \rangle, X^3 / \langle (132), (12) \rangle, D^3 / \langle (123) \rangle, D^3 / \langle (132), (12) \rangle$

n+k=4: 13 operators

$$X^4 / < (13)(24) >$$
 $X^4 / < (14)(23), (13)(24) >$
 $X^2 D^2 / \langle (12)(34) \rangle$
 $X^4 / < (12)(34), (1324) >$
 $X^2 D^2 / \langle (12)(34) \rangle$
 $X^4 / < (12)(34), (1324) >$
 $X^4 / < (13)(24), (14)(23), (12) >$
 $X^4 / < (13)(24), (14)(23), (12) >$
 $X^4 / < (13)(24), (14)(23), (243) >$
 $X^4 / < (13)(24), (14)(23), (243) >$
 $X^4 / < (13)(24), (14)(23), (243) >$
 $X^4 / < (13)(24), (14)(23), (243), (12) >$

TABLES of ATOMIC

```
\frac{X^nD^k}{H}
```

```
n+k=5: 14 operators \cdots X^3D^2/\langle (132), (12)(45)\rangle, X^2D^3/\langle (12)(34), (354)\rangle\cdots
```

```
n+k=6: 73 operators n+k=7: 70 operators n+k=8: 453 operators
```

Sample from Hugo Tremblay's Tables for n + k = 8:

```
... X^6D^2/\langle (3\ 4)(5\ 6), (1\ 2)(3\ 5)(4\ 6)(7\ 8)\rangle
	X^6D^2/\langle (3\ 4)(5\ 6)(7\ 8), (1\ 2)(3\ 5)(4\ 6)\rangle
	X^6D^2/\langle (1\ 2\ 3)(4\ 5\ 6), (1\ 4)(2\ 6)(3\ 5)(7\ 8)\rangle
	X^6D^2/\langle (2\ 3)(5\ 6)(7\ 8), (1\ 2)(4\ 5)(7\ 8)\rangle
	X^6D^2/\langle (1\ 2)(3\ 4)(5\ 6)(7\ 8), (1\ 3\ 5)(2\ 4\ 6)\rangle
	X^6D^2/\langle (5\ 6)(7\ 8), (3\ 4)(7\ 8), (1\ 2)(3\ 5)(4\ 6)(7\ 8)\rangle
	X^6D^2/\langle (5\ 6), (3\ 4), (1\ 2)(3\ 5)(4\ 6)(7\ 8)\rangle
	X^6D^2/\langle (3\ 4)(5\ 6), (3\ 5\ 4\ 6)(7\ 8), (1\ 2)(5\ 6)(7\ 8)\rangle
	X^6D^2/\langle (3\ 4)(5\ 6), (3\ 5\ 4\ 6)(7\ 8), (1\ 2)(5\ 6)(7\ 8)\rangle
	X^6D^2/\langle (3\ 4)(5\ 6), (3\ 5\ 4\ 6)(7\ 8), (1\ 2)(5\ 6)(7\ 8)\rangle
	X^6D^2/\langle (5\ 6)(7\ 8), (3\ 5\ 4\ 6)(7\ 8), (1\ 2)(5\ 6)(7\ 8)\rangle
```

2, 2, 4, 13, 14, 73, 70, 453, 546, 3302, ...

$$\Omega(X,D) = \sum_{n, k \ge 0} \sum_{H \le S_{n,k}} \omega_H \frac{X^n D^k}{H}$$

Restricting H to run through trivial subgroups $\{id_{n,k}\} \leq S_{n,k}$, this contains, as a special case :

The Equivalence Principle of Blasiak and Flajolet

$$\eta = \sum_{r, s} w_{r, s} X^r D^s$$

$$\eta^{\odot n} = \sum_{n,a,b} c_{n,a,b} X^a D^b$$

COMPOSITION OF DIFFERENTIAL OPERATORS

$$\Omega_2(X,D)\odot\Omega_1(X,D)=\Omega_3(X,D)$$

 $\Omega_3(X,T) = \Omega_2(X,T) \odot \Omega_1(X,T) := \Omega_2(X,T+T_0) \times_{T_0} \Omega_1(X+T_0,T)|_{T_0:=1}$

MONOÏDAL ACTION

$$\left[\Omega_2(X,D) \odot \Omega_1(X,D)\right] F(X) = \Omega_2(X,D) \left[\Omega_1(X,D) F(X)\right]$$

$$(XD)^{\odot n} = \sum_{v \le n} \begin{Bmatrix} n \\ v \end{Bmatrix} X^{v} D^{v}$$

 $\begin{Bmatrix} n \\ v \end{Bmatrix}$ = Stirling number of the second kind (well-known)

Define
$$P_n(x) = \sum_{v \le n} \begin{Bmatrix} n \\ v \end{Bmatrix} x^v$$
.

Then,
$$P_0(x) = 1$$
 and $P_{n+1}(x) = \left(x + x \frac{d}{dx}\right) P_n(x)$ (also well-known).

But what is the canonical expression for $E_2(XD)^{\odot n}$?

$$E_{2}(XD)^{\odot n} = \sum_{v_{1}+2v_{2} \leq 2n} \left\{ {n \atop v_{1},v_{2}} \right\} X^{v_{1}} D^{v_{1}} E_{2}(XD)^{v_{2}}$$

$$\left(\frac{X^2D^2}{\langle (1,2)(3,4)\rangle}\right)^{\circ n} = \sum_{v_1+2v_2 \leq 2n} {n \brace v_1,v_2} X^{v_1}D^{v_1} \cdot \left(\frac{X^{2v_2}D^{2v_2}}{\langle (1,2)(2v_2+1,2v_2+2),\dots,(2v_2-1,2v_2)(4v_2-1,4v_2)\rangle}\right)$$

Define
$$P_n(x,y) = \sum_{v_1+2v_2 \le 2n} \begin{Bmatrix} n \\ v_1,v_2 \end{Bmatrix} x^{v_1} y^{v_2}.$$

Then, $P_0(x,y) = 1$ and

$$P_{n+1}(x,y) = \left(y + x^2 \frac{\partial}{\partial x} + (x^3 + y) \frac{\partial}{\partial y} + x^2 \frac{\partial^2}{\partial x^2} + x^3 \frac{\partial^2}{\partial x \partial y} + x^4 \frac{\partial^2}{\partial y^2}\right) P_n(x,y).$$

CYCLE INDEX SERIES

Proposition Let $G(X) := \Omega(X, D)F(X)$, then

$$Z_G(x_1,x_2,x_3,\ldots)=Z_{\Omega}(x_1,x_2,x_3,\ldots;\frac{\partial}{\partial x_1},2\frac{\partial}{\partial x_2},3\frac{\partial}{\partial x_3},\ldots)Z_F(x_1,x_2,x_3,\ldots).$$

Proposition

$$Z_{\Omega_2 \odot \Omega_1} = \sum_{n_1, n_2, \dots} \frac{\left(\left(\frac{\partial}{\partial t_1} \right)^{n_1} \left(2 \frac{\partial}{\partial t_2} \right)^{n_2} \dots Z_{\Omega_2} \right) \left(\left(\frac{\partial}{\partial x_1} \right)^{n_1} \left(2 \frac{\partial}{\partial x_2} \right)^{n_2} \dots Z_{\Omega_1} \right)}{1^{n_1} n_1! 2^{n_2} n_2! \dots}$$

Convention. Write all the t_j 's to the right of all the x_i 's in $Z_{\Omega}(x_1, x_2, \dots, t_1, t_2, \dots)$.

BILINEAR FORM AND ADJOINT OPERATORS

$$\langle F(X), G(X) \rangle \equiv F(X) \times_X G(X)|_{X:=1}$$

total weight (or number) of all unlabelled $F \times G$ – structures

$$<\Omega(X,D)F(X),G(X)> = < F(X),\Omega(D,X)G(X)>$$

i.e. $(\Omega(X,D))^* := \Omega(D,X)$ is the adjoint operator of $\Omega(X,D)$

In particular $D^* = X$ as usual ...

$$\langle F(X), G(X) \rangle$$

$$<\Omega(X,D)F(X),G(X)> = < F(X),\Omega(D,X)G(X)> = < F(X),\Omega$$

COMPUTATION OF $\frac{X^mD^k}{K}\frac{X^n}{H}$

$$\frac{X^m D^k}{K} \frac{X^n}{H} = \frac{X^m T^k}{K} \times_T \frac{(X+T)^n}{H} |_{T:=1}$$

$$\frac{(X+T)^n}{H} = \sum_{k=0}^n \sum_{\omega \in S_{n-k,k} \setminus S_n/H} \frac{X^{n-k}T^k}{\omega H \omega^{-1} \cap S_{n-k,k}}$$

$$\frac{X^a T^k}{A} \times_T \frac{X^b T^k}{B} = \sum_{\tau \in (\pi_2 A) \setminus S_k / (\pi_2 B)} \frac{X^{a+b} T^k}{A \times_{S_k} B^{\tau}}$$

$$\left[\frac{X^a T^k}{A}\right]_{T:-1} = \frac{X^a}{\pi_1 A}$$

COMMUTATORS, ETC

Make tables and study the commutators

$$[A(X,D),B(X,D)] = A(X,D) \odot B(X,D) - B(X,D) \odot A(X,D)$$
$$[\Omega^*,\Omega] = \Omega^* \odot \Omega - \Omega \odot \Omega^* = ?$$
$$D \odot X - X \odot D = 1 \quad (\text{special case with } \Omega = X)$$

$$\left[\frac{X^a D^b}{H}, \frac{X^c D^d}{K}\right] = ? \quad \text{(molecular expansions)}$$

Find new combinatorial models for equations such as

$$[P,Q] = P+Q$$
 etc

SOME CURIOUS IDENTITIES BETWEEN DIFFERENTIAL OPERATORS

$$E(aXD) \odot E(bXD) = E((a+b+ab)XD)$$

$$E(-XD) \odot E(-XD) = E(-XD) \quad \text{(idempotence)}$$

$$E(-2XD) \odot E(-2XD) = 1 \quad \text{(self inverse)}$$

$$E(-\frac{1}{2}XD) \odot E(-XD) = E(-XD) \quad \text{(no effect!)}$$

SPECIAL CASES
$$\Omega_2(X,D) \odot \Omega_1(X,D)$$

noncommutative

1. Combinatorial Hammond differential operator $\Omega(X, D) = \Theta(D)$

$$\Theta_2(D) \odot \Theta_1(D) = \Theta_2 \cdot \Theta_1(D)$$
 commutative

2. Multiplication operator $\Omega(X, D) = G(X)$

$$G_2(X) \odot G_1(X) = G_2 \cdot G_1(X)$$
 commutative

3. Finite differences operator $\Omega(X,D) = \Phi(X,\Delta), \quad \Delta = E^+(D)$

$$\Phi_2(X,\Delta) \odot \Phi_1(X,\Delta)$$
 noncommutative

4. Pointing operator $\Omega(X, D) = \Lambda(XD)$

$$\Lambda_2(XD) \odot \Lambda_1(XD) = \Lambda_2 \dot{\times} \Lambda_1(XD)$$
 commutative

FUTURE EXPLORATIONS

- 1) Study the atomic expansion of $\Omega(X,D)^{\odot n}$ given that of $\Omega(X,D)$ (Xavier Viennot theory of « empilements » may be useful here).
- **2)** Find necessary and/or sufficient conditions for the existence, non-existence, multiplicity of solutions of equations of the form $\Omega(X,D)F(X) = G(X)$ and devise methods for solving such equations.
- **3)** Analyze connections between the operators $\Omega(X,D)$ and physics
- 4) Find new combinatorial identities and species involving the operations

$$+, \cdot, \times, \circ, \odot, X, D, \Omega(X,D), *, |_{X_i=1}, [A,B], \text{ etc}$$

- **5)** Extend the above to partial differential operators $\Omega(X_1, X_2, ..., \partial_1, \partial_2, ...)$
- 6) Implement the above on computer algebra systems (Maple, Sage, etc)
- **7)** Extend existing tables
- **8)** Etc

BONNE RETRAITE XAVIER

$$x = \cos(u)\cos(v)^{2}$$

$$y = \sin(u)\cos(v)$$

$$z = |\cos(u)\cos(v)| + \sin(v)$$

de Gilbert et Hélène