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Some well-known facts from Viennot's UQAM Lecture Notes

Given an OPS {pn(x)} satisfying the three term recurrence relation

Pnt1(x) = (x = bn)pn(x) = Anpn-1(x) (1)
with initial values pg(x) =1 and p_1(x) = 0.
Define the connection coefficients a(n, k) by

n

S a(n, k)pi(x) = x". 2)

k=0
These are characterized by the Stieltjes tableau:
a(0, k) = 6k 0,

a(n,0) = bpa(n — 1,0) + \a(n — 1,1),
a(n,k)=a(n—1,k — 1)+ bga(n—1,k) + A\ 1a(n—1,k+1).



Moments

Define a linear functional F : K[x] — K by F(pn(x)) = 6n0. Then
F(x")=a(n,0) (Moments).

The generating function of the moments has the continued fraction

expansion
1
Z F(x")z" = 5 : (3)
Az
n>0 1-— boZ — 5
Aoz
1-— b]_Z - 1_...
The Hankel determinants for the moments are
n—1 i
d(n,0) = det(F(z") 2 =TT [ Moo (4)
i=1 k=1

and
d(n,1) = det(F(z"7))" L) = d(n,0)(—1)"pa(0). - (5)



Motzkin paths

Consider the following Motzkin path ~y

1| b/ X
1b0
00 1 2 3 45 6 7 89

The weight is w(y) = bg b1b2 A1 2.

alm k)= > w(y).

7:(0,0)—(nk)



Hermite polynomials

The rescaled Hermite polynomials H,(x,s) = s"/?Hu(x//5,1)

Hnt1(x,s) = xHn(x,s) — snHp_1(x, s). (6)

The explicit formula

D Hn(x,s) = nHp—1(x, s),

and

Hn(x,s) = (x —sD)"- 1,
Hp(x +sD,s) -1 =x".



Connection coefficients

The generating function
t" xt—st? /2
Z Hn(x, s)ﬁ =e
n>0
implies that
st2/2 t" xt
e ZH,,(X,S)H = e*.
n>0
Comparing the coefficients of t”/nl:
L] nlsk
Xn — ZmHn_2k(X’s). (7)

k=0

_ . n!(_s)k n—2k
Halx,s) = ;) oKki(n— 2k



Let pn(z,x,s) = Hp(z — x, —s). Then

pn+1(27X7s) = (Z - X)pn(Z,X’ S) +ns- pnfl(ZaXa S) (8)

with initial values po(z,x,s) =1 and p_1(z,x,s) = 0.
Let F : C[z] — C be the linear functional defined by

f(pn(Z,X,S)) = 6'770'
Since the moments i, of the Hermite polynomials are
pan = (2n =11, and  p2pg1 =0,

we have

n

F&) = V3 ()5 = es) )

k=0



This is equivalent to the following continued fraction expansion:

1
Z Hp(x,s)z" = 5
n>0 1—xz+ 52
1 N 2572
— XZ
] N 35272
Xz 1
Their Hankel determinants are
n—1
d(n,0) = det(Hiy(x, $))7% = (=)@ T 4,
j=0
n—1

d(n, 1) = det(Hi1j11(x, )Y = (—1)"Ha(—x, —s)(—s)&) T .

Jj=0



Three known g-analogues through Viennot's looking glass

We first introduce some standard g-notations. For n > 1 let

1—q"
[”]q—?q

, [nlg! = H[k]qa [2n — 1|1t = H[2k —1]q,
k=1 k=1

-0
klg Lkl (@ 9)i(q @)nx
for 0 < k < n and zero otherwise, with

(a3;q)n = (1 — a)(1 — ag) -~ (1 — ag"1) and

(a,b;9)n = (3 q)n(b; q)n-

and




crossings and nestings

If « is a perfect matching of the complete graph K, on {1,...,n},
a pair of edges (e, f) of a with e = {i,j}, f = {k, I}

m forms a crossing if i < k < j < I,

m forms a nesting if i < k </ <.

Let cros(«) be the crossing number of «, and nest(«) be the
nesting number of a.. For instance, if

a={1,7} - {2,8} — {3,5} — {4,6}:

ST ersto)

—92
12345678 nest(a) = 4



Continued fraction for crossings and nestings

Let [n]p.q = (P" — q")/(p — q) and

P, q) Z pcrosa nesta

aeMs,
where M, is the set of perfect matchings of [n]. Then

> pnlp, q)t" = 11 v : (10)

n>0
o [2]p,q -t

nlp.q - t2
U



Continuous g-Hermite polynomials

Consider the moment sequence

(g, 1) = > g7

aceM,
It follows that p2n+1(g, 1) = 0 and the Touchard-Riordan formula

n

a0 = g 3 () 0ra®.

Moments of the rescaled continuous g-Hermite polynomials

Hnt1(x[q) = 2xHn(x[q) — (1 = q")Hn-1(x]q). (11)
(rescaled) Hoi1(x|q) = xHa(x|q) — [nlgHn-1(x|q).
the generating function (x = cosf)
1
Hp( . 12
Z X|q q q (tele te—i0- q)oo ( )

n>0



Discrete g-Hermite polynomials

Let

_ cros a+2nest o
=2 -

aEM,
Then pop41 = 0 and o, = [2n — 1]g[2n — 34 - - - [1] 4.
Moments of (rescaled) discrete g-Hermite polynomials

Hn1(x; @) = xHn(x; ) — "1 (1 = ") Ha-1(x; q).

(rescaled) Hoi1(x;9) = xHo(x; @) — " nlqHa_1(x; q).
The generating function is
( 2. q2)oo
Hp(x; 13
Z q) (a; q)n (Xt q)oo (13)
n/2

Ho(xiq) = [znk]q(q; GP)(—1)kgk=Dxn=2k  (14)

k=0



A strange g-Hermite polynomials (V. V. Borzov)

Let

qfn _ qn
Npg=——.
{n}q T g

The rescaled g-Hermite polynomials have the moment sequence

Ln = § : qcrosafnesta = 7.
OéEMn

The three term recurrence

HHn11(x; q) = xHHy(x; q) = (¢ " — q")HHp-1(x; q). (15)

(rescaled) HHni1(x; q) = xHHa(x; ) = {n}gAH,_1(x; q).

Almost nothing is known about these polynomials!



Cigler's question—a curious g-analogue

Let
f(ax) — F(x)

Dqyf(x) = (a— D)

What can we say about
Hn(x,s]q) = (x —sDg)" - 17
The first terms of the sequence H,(x,s|q) are

1, x, —s+x2,

—(2+ q)sx + x3,

(1+q+¢*)s> — (3+2q+ q*)sx® + x*,

(3+49+4¢>+ 3% + ¢*)s?x — (4 + 39 + 2¢* + ¢°)sx® + x°.

+several conjectures...



Theorem (Ex-conjecture of Cigler)

Let Hn(x,s|q) = (x — sDg)" - 1, then

Z Hn(X75|q)tn =

n>0 1—bot—

)\1 t2 9 (16)

Ao t?
1—b1t—2—

where
B = @', An = —[n]gs.

This means that H,(x, s|q)’s are moments.



Al-Salam-Chihara polynomials

The Al-Salam-Chihara polynomials Q,(x) := Qn(x; c, 3) satisfy the
three term recurrence:

Qni1(x) = (2x = (@ + £)g") Qn(x) — (1 = ¢")(1 — aBq" ) Qn-1(x),

with Qo(x) =1 and Q_1(x) = 0. They have the following explicit
formulas:

. —n i0 —if
Qutria ) = Dy (97 0l 09T igq)

a

where x = cos#.



A rescaled version

From a combinatorial point of view it is more convenient to take
the following rescaled version:

Pni1(x; a, b, c) = (x — aq")Pn(x; a, b, ¢)
- (C+bqn71)[n]qpn—1(x; a, b‘/ C) (]‘8)

with initial values P_1(x; a, b,c) = 0 and Py(x; a, b,c) = 1.

Definition
Let F, . be the linear functional on the polynomials in z which
satisfy

fa,b,c(Pn(Z; a, ba C)) = 6",0‘ (19)



g-Hermite polynomials

Note that the continuous g-Hermite polynomials are

Hn(X>S|q) = Pn(X; 07035) (20)

and are also the moments

Ha(x,s|q) = Fx,—s0(2"). (21)
The discrete g-Hermite polynomials | are
hn(x,s;q) = Pa(x; 0, (1 — q)s,0). (22)

The discrete g-Hermite polynomials Il are

hn(x; q) = (=i)"ha(ix, 1; g7 ). (23)



The curious g-analogue of Hermite polynomials

The new g-Hermite polynomials are defined by
Hn(x,s|q) == Fx0,—s(2"). (24)
and

hn(x,s; q) := Pn(0; —x,0,s) = q(g)s”/zﬁn(x/ﬁ; q). (25)



A proof by brute force

Let f(n,x) = Ha(x,(q —1)s|q) = (x + (1 — q)sDq)" - 1. Then
F(n,x) = (x + ;)f(n ~1,x) — ;f(n ~ 1, q%).

Hence G(x,t) =), f(n, x)t" satisfies the functional equation:

2
<1 T 5t> Gix,t) =1 - 2tG(gx, ). (26)
X X
Suppose that
1

G X, t) = )

T T A

L (- DaiAt

(&= DaAt

1—

where A := A(x) = —% and g; := gi(x).



Solving this using Wall's formula we obtain Let
Ly(x) := ha(x,(1 — q)s; q). Then

1
S Halxs g~ Dsla)t" = —————  (27)
n>0 1@
t
I
1—
where ¢; = x, & = (1 — q)s/x and
Ly
con=(1- q”)sLn(l)(:)(), for n > 1; (28)
Ln 1\ X
Cont1 = LJ,:(>(<))’ for n > 0.

where Ly(x) := hp(x, (1 — q)s; q). The theorem follows then by
applying the contraction formula, which transforms a S-continued
fraction to a J-continued fraction.



Connection with non commutative operators

A. Varvak (2005): if
DU —-qUD =1

then (Normal ordering)
n __ n n—m—k npm—k
(D+U)" = Z{m}kqu pm=k.
m, k>0 ’
where
n n— 2k:| Z c(a)+cros(a)
{ m }k,q |:m —k 9 aeM(n,n—2k)

where M(n, k) is the set of matchings of [n] with k isolated points
and
c(a) = Z [{edges i< j: i<a<j}

a:isolated vertices



Varvak proved an equivalent form of the following result.

We have

Ztn Z Xﬁx(a)qc(a)—i—cr(a)

n>0  oeM(n)

1

t2
[2]4t?

3], t2
1—q2xt—i

1— xt—

1— gxt —

where fix(o) is the number of fixed points of o.



Varvak's proof has three steps:

m Interpreting the normal order coefficients as the number of
non-taking rook placements in some tableau,

m Passing from rook placements to involutions,

m Encoding involutions by weighted Motzkin paths (Flajolet,
Viennot's theory).

Varvak did not give a formula for the polynomial

Z Xﬁx(o)qC(U)Jrcr(") or Hp(x,sl|q),
ceM(n)

which would generalize Touchard-Riordan’s formula when x = 0.
Corteel, Josuat-Verges, Prellberg, Rubey (2009): PASEP, .....



Let

Hn(x,s|q) = (x — sDg)" Zc n, k, q)x )%k,
k

and the continuous g-Hermite polynomials

Hn(x,s|q) = ankq —s)"z

(29)

Theorem (Cigler-Z.)

The matrices (c(i,j, q) ,’-'J_Zlo and (b(i’j,Q)(—l)i2 i Lo are
mutually inverse.




Proof.
We first show by induction that

Hn(x 4+ sDg, s|q)1 = x". (30)

On the other hand we have

Ho(x + sDg, s|q)1 = Z b(n, k, q)(—s)"%k(x + sDy)k1
k=0

=35 Y b0k, q)(—1) " (k. ], 9)
j=0 k=j




A new approach

It's equivalent to compute the coefficients C,  in

x" = Z Cn,anf2k(X|q)-
k>0

We will deduce the coefficients in two steps:

x" = Z bn,k Un—2k(X)7

k>0

and

Un(x) = Z an kHn—2k(x|q).

k>0



Tchebychev polynomials

sin(n+1)6

sng X = cos® have

The Tchebychev polynomials U,(x) =

Recurrence
Unt1(x) = 2xUp(x) — Up—1(x) (n>0),
with U_1(x) = 0 and Up(x) = 1.
Generating function
1
2, Unbodw” = T
Explicit formula

Un) = -0 (" a2

k>0



Now

Ln/2]
(2X)n = Z bn,kUn—Zk(X)v
k=0

where by, , is the number of Dyck paths from (0,0) to (n, n — 2k).
Using André's reflection principle we see that

n n
= — < k<

NS



Lemma
We have

Hn(x|q) = L§J ({Z] - [k Z 1] q> Up—2k(x), (31)

k=0
Ln/2] k+1y [0 — k

Un(x) = Z(—l)kq(Z){ ” } Hp—ak(x]q).  (32)
k=0 b

Remark. A killing involution can be established to prove the above
identities. When g = 1, Hp(x|1) = (2x)". Tchebyshev inverse
relation:

3] 5]
kz_:(—l)k<n ; k> Bn ok <> 30 =) [(Z) - <k i 1)] bn_ok-

0 k=0

bn



It follows that

(2x)" = 3" Hya x|q)2 al*)b,5|" "2 L @)

>0 q

Clearly the coefficient of Hy(x|q) is 0 if n is odd, if n is even,
replacing n by 2n we see that the corresponding coefficient is

n

To(@)(1 = q)" = 3 (-1 () ba, . (34)

j=0

This is the Touchard-Riordan formula.



We derive the following result. An equivalent form of this result has
been obtained with different means by Corteel, Josuat-Vergés,
Prellberg, Rubey (2009).

Theorem
If k =n (mod 2) then

c(mk,q)= Y gt

aeM(n,k)

> (R RACH)

x (— 1)fq(’“)[ ;(”]




REMEINS

m When k = 0, we recover a formula of Touchard-Riordan:

c(2n,0,q)= > g7

aeM(2n,0)

o (7))

m Peanud (1995) gave a combinatorial proof of this formula.
Corteel-Rubey conjectured their formula by generalizing
Penaud’s method.




Connection with A.A. Kirillov's formula

Let An(F4) be the set of solutions to the equation
X?=0

in the n x n upper-triangular matrices with elements from Fy.
Denote by A,(q) the cardinality of this set. Let Al(g) be the
number of solutions consisting of matrices of a given rank r. Then

An(q) = 32,50 An(q). Kirillov proved

(22)" =D An(q)-a""" - Hooar(zlg ).

Kirillov and Melnikov (19967) made several conjectures about

An(q) = > ,~0An(q), one of which was proved by Ekhad and

Zeilberger (1996), Krattenthaler, Warnaar, Cigler —> Rogers
(1893).



Connection to Rogers’ formulae

Gegenbauer polynomials CY(x) may be defined by the generating
function

(1 — 2xt + t2) Z C¥(x (35)

Set (x)n = x(x+1)--- (x4 n— 1) for any non negative integer n.
Then

_1\k V). Xn—2k
Gyt =30 {2 (30
k>0

The inversion of (36) is given by the following relation

n n!z(y—i-n 2k)CY 5 (x )

X



g-ultraspherical polynomials

The generating function is

(tBe”, tBe"; q)oc
(te, te= 7, q)os

Z Cn(cosb; B|q)t" =

n>0
Note that

U (xi0la) (38)

Un(x) = Ca(x; 0]0) = Hn(x|0), (39)

Ta(x) = A@lztl__q;)Cn(X: ala), (40)

C(x) = lim Ca(x: 4"]a). (41)



Roger’s connection formula

From

Cn(x:vlq)

— LHE/EJ B(v/B: Q) k(v @) -k (1 — Bg"2K)

(q: 9)k(aB; @)n—«k (1-5)

Cn—2k(X;B’q)>
k=0

one can deduce a connection formula

x" =" a(n, k) Co_ak(x: 71q)

k>0

This formula generalizes the previous lemma.
PB: A combinatorial analysis?



