The Journées Xavier G. Viennot

Around a curious q-analogue of Hermite polynomials ${ }^{1}$

Jiang Zeng
Université Claude Bernard Lyon 1

Bordeaux, June 28, 2012
${ }^{1}$ Based on a Joint work with Johann Cigler

Plan of talk

1 Some well-known facts from Viennot's UQAM Lecture Notes
2 Hermite polynomials
3 Three known q-analogues through Viennot's looking glass
4 Cigler's question-a curious q-analogue
5 Al-Salam-Chihara polynomials
6 First proof (by brute force) of the continued fraction formula
7 Connection with non commutative operators
8 Inversion formula
9 A simple proof of the formula
10 Connection with A.A. Kirillov's formula
11 Connection with Rogers' formulae

Some well-known facts from Viennot's UQAM Lecture Notes

Given an OPS $\left\{p_{n}(x)\right\}$ satisfying the three term recurrence relation

$$
\begin{equation*}
p_{n+1}(x)=\left(x-b_{n}\right) p_{n}(x)-\lambda_{n} p_{n-1}(x) \tag{1}
\end{equation*}
$$

with initial values $p_{0}(x)=1$ and $p_{-1}(x)=0$.
Define the connection coefficients $a(n, k)$ by

$$
\begin{equation*}
\sum_{k=0}^{n} a(n, k) p_{k}(x)=x^{n} \tag{2}
\end{equation*}
$$

These are characterized by the Stieltjes tableau:

$$
\begin{aligned}
& a(0, k)=\delta_{k, 0} \\
& a(n, 0)=b_{0} a(n-1,0)+\lambda_{1} a(n-1,1) \\
& a(n, k)=a(n-1, k-1)+b_{k} a(n-1, k)+\lambda_{k+1} a(n-1, k+1)
\end{aligned}
$$

Moments

Define a linear functional $\mathcal{F}: K[x] \rightarrow K$ by $\mathcal{F}\left(p_{n}(x)\right)=\delta_{n, 0}$. Then

$$
\mathcal{F}\left(x^{n}\right)=a(n, 0) \quad(\text { Moments })
$$

The generating function of the moments has the continued fraction expansion

$$
\begin{equation*}
\sum_{n \geq 0} \mathcal{F}\left(x^{n}\right) z^{n}=\frac{1}{1-b_{0} z-\frac{\lambda_{1} z^{2}}{1-b_{1} z-\frac{\lambda_{2} z^{2}}{1-\cdots}}} \tag{3}
\end{equation*}
$$

The Hankel determinants for the moments are

$$
\begin{equation*}
d(n, 0)=\operatorname{det}\left(\mathcal{F}\left(z^{i+j}\right)\right)_{i, j=0}^{n-1}=\prod_{i=1}^{n-1} \prod_{k=1}^{i} \lambda_{k} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
d(n, 1)=\operatorname{det}\left(\mathcal{F}\left(z^{i+j+1}\right)\right)_{i, j=0}^{n-1}=d(n, 0)(-1)^{n} p_{n}(0) . \tag{5}
\end{equation*}
$$

Motzkin paths

Consider the following Motzkin path γ

The weight is $w(\gamma)=b_{0} b_{1} b_{2} \lambda_{1} \lambda_{2}$.

$$
a(n, k)=\sum_{\gamma:(0,0) \rightarrow(n, k)} w(\gamma) .
$$

Hermite polynomials

The rescaled Hermite polynomials $H_{n}(x, s)=s^{n / 2} H_{n}(x / \sqrt{s}, 1)$

$$
\begin{equation*}
H_{n+1}(x, s)=x H_{n}(x, s)-s n H_{n-1}(x, s) . \tag{6}
\end{equation*}
$$

The explicit formula

$$
H_{n}(x, s)=\sum_{k=0}^{n}\binom{n}{2 k}(-s)^{k}(2 k-1)!!x^{n-2 k} .
$$

Let $D=\frac{d}{d x}$. Then

$$
D H_{n}(x, s)=n H_{n-1}(x, s),
$$

and

$$
\begin{aligned}
& H_{n}(x, s)=(x-s D)^{n} \cdot 1 \\
& H_{n}(x+s D, s) \cdot 1=x^{n}
\end{aligned}
$$

Connection coefficients

The generating function

$$
\sum_{n \geq 0} H_{n}(x, s) \frac{t^{n}}{n!}=e^{x t-s t^{2} / 2}
$$

implies that

$$
e^{s t^{2} / 2} \sum_{n \geq 0} H_{n}(x, s) \frac{t^{n}}{n!}=e^{x t}
$$

Comparing the coefficients of $t^{n} / n!$:

$$
\begin{align*}
& x^{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n!s^{k}}{2^{k} k!(n-2 k)!} H_{n-2 k}(x, s) \tag{7}\\
& H_{n}(x, s)=\sum_{k=0}^{n} \frac{n!(-s)^{k}}{2^{k} k!(n-2 k)!} x^{n-2 k}
\end{align*}
$$

Let $p_{n}(z, x, s)=H_{n}(z-x,-s)$. Then

$$
\begin{equation*}
p_{n+1}(z, x, s)=(z-x) p_{n}(z, x, s)+n s \cdot p_{n-1}(z, x, s) \tag{8}
\end{equation*}
$$

with initial values $p_{0}(z, x, s)=1$ and $p_{-1}(z, x, s)=0$. Let $\mathcal{F}: \mathbb{C}[z] \rightarrow \mathbb{C}$ be the linear functional defined by

$$
\mathcal{F}\left(p_{n}(z, x, s)\right)=\delta_{n, 0} .
$$

Since the moments μ_{n} of the Hermite polynomials are

$$
\mu_{2 n}=(2 n-1)!!, \quad \text { and } \quad \mu_{2 n+1}=0,
$$

we have

$$
\begin{equation*}
\mathcal{F}\left(z^{n}\right)=(\sqrt{-s})^{n} \sum_{k=0}^{n}\binom{n}{k}(x / \sqrt{-s})^{n-k} \mu_{k}=H_{n}(x, s) . \tag{9}
\end{equation*}
$$

This is equivalent to the following continued fraction expansion:

$$
\sum_{n \geq 0} H_{n}(x, s) z^{n}=\frac{1}{1-x z+\frac{s z^{2}}{1-x z+\frac{2 s z^{2}}{1-x z+\frac{3 s z^{2}}{1-\cdots}}}} .
$$

Their Hankel determinants are

$$
\begin{aligned}
& d(n, 0)=\operatorname{det}\left(H_{i+j}(x, s)\right)_{i, j=0}^{n-1}=(-s)^{\binom{n}{2}} \prod_{j=0}^{n-1} j! \\
& d(n, 1)=\operatorname{det}\left(H_{i+j+1}(x, s)\right)_{i, j=0}^{n-1}=(-1)^{n} H_{n}(-x,-s)(-s)^{\binom{n}{2}} \prod_{j=0}^{n-1} j!.
\end{aligned}
$$

Three known q-analogues through Viennot's looking glass

We first introduce some standard q-notations. For $n \geq 1$ let

$$
[n]_{q}=\frac{1-q^{n}}{1-q}, \quad[n]_{q}!=\prod_{k=1}^{n}[k]_{q}, \quad[2 n-1]_{q}!!=\prod_{k=1}^{n}[2 k-1]_{q},
$$

and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

for $0 \leq k \leq n$ and zero otherwise, with
$(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ and

$$
(a, b ; q)_{n}=(a ; q)_{n}(b ; q)_{n} .
$$

crossings and nestings

If α is a perfect matching of the complete graph K_{n} on $\{1, \ldots, n\}$, a pair of edges (e, f) of α with $e=\{i, j\}, f=\{k, l\}$

■ forms a crossing if $i<k<j<I$,

- forms a nesting if $i<k<l<j$.

Let $\operatorname{cros}(\alpha)$ be the crossing number of α, and nest (α) be the nesting number of α. For instance, if
$\alpha=\{1,7\}-\{2,8\}-\{3,5\}-\{4,6\}:$

$$
\begin{aligned}
& \operatorname{cros}(\alpha)=2 \\
& \operatorname{nest}(\alpha)=4
\end{aligned}
$$

Continued fraction for crossings and nestings

$$
\begin{aligned}
& \text { Let }[n]_{p, q}=\left(p^{n}-q^{n}\right) /(p-q) \text { and } \\
& \qquad \mu_{n}(p, q)=\sum_{\alpha \in M_{2 n}} p^{\operatorname{cros} \alpha} q^{\mathrm{nest} \alpha}
\end{aligned}
$$

where M_{n} is the set of perfect matchings of [n]. Then

$$
\begin{equation*}
\sum_{n \geq 0} \mu_{n}(p, q) t^{n}=\frac{1}{1-\frac{1 \cdot t^{2}}{1-\frac{[2]_{p, q} \cdot t^{2}}{\ddots}}} . \tag{10}
\end{equation*}
$$

Continuous q-Hermite polynomials

Consider the moment sequence

$$
\mu_{n}(q, 1)=\sum_{\alpha \in M_{n}} q^{\operatorname{cros} \alpha}
$$

It follows that $\mu_{2 n+1}(q, 1)=0$ and the Touchard-Riordan formula

$$
\mu_{2 n}(q, 1)=\frac{1}{(1-q)^{n}} \sum_{k=-n}^{n}\binom{2 n}{n+k}(-1)^{k} q^{\binom{k}{2}}
$$

Moments of the rescaled continuous q-Hermite polynomials

$$
\begin{equation*}
H_{n+1}(x \mid q)=2 x H_{n}(x \mid q)-\left(1-q^{n}\right) H_{n-1}(x \mid q) . \tag{11}
\end{equation*}
$$

(rescaled)

$$
\hat{H}_{n+1}(x \mid q)=x \hat{H}_{n}(x \mid q)-[n]_{q} \hat{H}_{n-1}(x \mid q) .
$$

the generating function $(x=\cos \theta)$

$$
\begin{equation*}
\sum_{n \geq 0} H_{n}(x \mid q) \frac{t^{n}}{(q ; q)_{n}}=\frac{1}{\left(t e^{i \theta}, t e^{-i \theta} ; q\right)_{\infty}} \tag{12}
\end{equation*}
$$

Discrete q-Hermite polynomials

Let

$$
\mu_{n}\left(q, q^{2}\right)=\sum_{\alpha \in M_{n}} q^{\operatorname{cros} \alpha+2 \operatorname{nest} \alpha} .
$$

Then $\mu_{2 n+1}=0$ and $\mu_{2 n}=[2 n-1]_{q}[2 n-3]_{q} \cdots[1]_{q}$.
Moments of (rescaled) discrete q-Hermite polynomials

$$
H_{n+1}(x ; q)=x H_{n}(x ; q)-q^{n-1}\left(1-q^{n}\right) H_{n-1}(x ; q)
$$

(rescaled)

$$
\hat{H}_{n+1}(x ; q)=x \hat{H}_{n}(x ; q)-q^{n-1}[n]_{q} \hat{H}_{n-1}(x ; q)
$$

The generating function is

$$
\begin{gather*}
\sum_{n=0}^{\infty} H_{n}(x ; q) \frac{t^{n}}{(q ; q)_{n}}=\frac{\left(t^{2} ; q^{2}\right)_{\infty}}{(x t ; q)_{\infty}} \tag{13}\\
H_{n}(x ; q)=\sum_{k=0}^{n / 2}\left[\begin{array}{c}
n \\
2 k
\end{array}\right]_{q}\left(q ; q^{2}\right)_{k}(-1)^{k} q^{k(k-1)} x^{n-2 k} \tag{14}
\end{gather*}
$$

A strange q-Hermite polynomials (V. V. Borzov)

Let

$$
\{n\}_{q}=\frac{q^{-n}-q^{n}}{q^{-1}-q} .
$$

The rescaled q-Hermite polynomials have the moment sequence

$$
\mu_{n}=\sum_{\alpha \in M_{n}} q^{\operatorname{cros} \alpha-\text { nest } \alpha}=?
$$

The three term recurrence

$$
\begin{equation*}
H H_{n+1}(x ; q)=x H H_{n}(x ; q)-\left(q^{-n}-q^{n}\right) H H_{n-1}(x ; q) \tag{15}
\end{equation*}
$$

(rescaled)

$$
\hat{H} H_{n+1}(x ; q)=x \hat{H} H_{n}(x ; q)-\{n\}_{q} \hat{H} H_{n-1}(x ; q) .
$$

Almost nothing is known about these polynomials!

Cigler's question-a curious q-analogue

Let

$$
D_{q} f(x)=\frac{f(q x)-f(x)}{(q-1) x}
$$

What can we say about

$$
H_{n}(x, s \mid q)=\left(x-s D_{q}\right)^{n} \cdot 1 ?
$$

The first terms of the sequence $H_{n}(x, s \mid q)$ are

$$
\begin{aligned}
& 1, \quad x, \quad-s+x^{2} \\
& -(2+q) s x+x^{3} \\
& \left(1+q+q^{2}\right) s^{2}-\left(3+2 q+q^{2}\right) s x^{2}+x^{4} \\
& \left(3+4 q+4 q^{2}+3 q^{3}+q^{4}\right) s^{2} x-\left(4+3 q+2 q^{2}+q^{3}\right) s x^{3}+x^{5}
\end{aligned}
$$

Theorem (Ex-conjecture of Cigler)

Let $H_{n}(x, s \mid q)=\left(x-s D_{q}\right)^{n} \cdot 1$, then

$$
\begin{equation*}
\sum_{n \geq 0} H_{n}(x, s \mid q) t^{n}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{\ddots}}}, \tag{16}
\end{equation*}
$$

where

$$
b_{n}=q^{n} x, \quad \lambda_{n}=-[n]_{q} s .
$$

This means that $H_{n}(x, s \mid q)$'s are moments.

Al-Salam-Chihara polynomials

The Al-Salam-Chihara polynomials $Q_{n}(x):=Q_{n}(x ; \alpha, \beta)$ satisfy the three term recurrence:
$Q_{n+1}(x)=\left(2 x-(\alpha+\beta) q^{n}\right) Q_{n}(x)-\left(1-q^{n}\right)\left(1-\alpha \beta q^{n-1}\right) Q_{n-1}(x)$,
with $Q_{0}(x)=1$ and $Q_{-1}(x)=0$. They have the following explicit formulas:

$$
Q_{n}(x ; \alpha, \beta \mid q)=\frac{(\alpha \beta ; q)_{n}}{a^{n}} 3 \phi_{2}\left(\begin{array}{ccc}
q^{-n}, & \alpha e^{i \theta}, & \alpha e^{-i \theta} \mid q ; q \tag{17}\\
& \alpha \beta, & 0
\end{array}\right),
$$

where $x=\cos \theta$.

A rescaled version

From a combinatorial point of view it is more convenient to take the following rescaled version:

$$
\begin{align*}
P_{n+1}(x ; a, b, c) & =\left(x-a q^{n}\right) P_{n}(x ; a, b, c) \\
& -\left(c+b q^{n-1}\right)[n]_{q} P_{n-1}(x ; a, b, c) \tag{18}
\end{align*}
$$

with initial values $P_{-1}(x ; a, b, c)=0$ and $P_{0}(x ; a, b, c)=1$.

Definition

Let $\mathcal{F}_{a, b, c}$ be the linear functional on the polynomials in z which satisfy

$$
\begin{equation*}
\mathcal{F}_{a, b, c}\left(P_{n}(z ; a, b, c)\right)=\delta_{n, 0} . \tag{19}
\end{equation*}
$$

q-Hermite polynomials

Note that the continuous q-Hermite polynomials are

$$
\begin{equation*}
\tilde{H}_{n}(x, s \mid q)=P_{n}(x ; 0,0, s) \tag{20}
\end{equation*}
$$

and are also the moments

$$
\begin{equation*}
\tilde{H}_{n}(x, s \mid q)=\mathcal{F}_{x,-s, 0}\left(z^{n}\right) . \tag{21}
\end{equation*}
$$

The discrete q-Hermite polynomials I are

$$
\begin{equation*}
\tilde{h}_{n}(x, s ; q)=P_{n}(x ; 0,(1-q) s, 0) \tag{22}
\end{equation*}
$$

The discrete q-Hermite polynomials II are

$$
\begin{equation*}
\tilde{h}_{n}(x ; q)=(-i)^{n} \tilde{h}_{n}\left(i x, 1 ; q^{-1}\right) . \tag{23}
\end{equation*}
$$

The curious q-analogue of Hermite polynomials

The new q-Hermite polynomials are defined by

$$
\begin{equation*}
H_{n}(x, s \mid q):=\mathcal{F}_{x, 0,-s}\left(z^{n}\right) . \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{n}(x, s ; q):=P_{n}(0 ;-x, 0, s)=q^{\binom{n}{2}} s^{n / 2} \tilde{h}_{n}(x / \sqrt{s} ; q) . \tag{25}
\end{equation*}
$$

A proof by brute force

Let $f(n, x)=H_{n}(x,(q-1) s \mid q)=\left(x+(1-q) s \mathcal{D}_{q}\right)^{n} \cdot 1$. Then

$$
f(n, x)=\left(x+\frac{s}{x}\right) f(n-1, x)-\frac{s}{x} f(n-1, q x) .
$$

Hence $G(x, t)=\sum_{n \geq 0} f(n, x) t^{n}$ satisfies the functional equation:

$$
\begin{equation*}
\left(1-\frac{x^{2}+s}{x} t\right) G(x, t)=1-\frac{s}{x} t G(q x, t) . \tag{26}
\end{equation*}
$$

Suppose that

$$
G(x, t)=\frac{1}{1-\frac{\left(g_{1}-1\right) A t}{1-\frac{\left(g_{2}-1\right) g_{1} A t}{1-\frac{\left(g_{3}-1\right) g_{2} A t}{1-\ddots}}}},
$$

where $A:=A(x)=-\frac{x^{2}+s}{x}$ and $g_{i}:=g_{i}(x)$.

Solving this using Wall's formula we obtain Let $L_{n}(x):=h_{n}(x,(1-q) s ; q)$. Then

$$
\begin{equation*}
\sum_{n \geq 0} H_{n}(x,(q-1) s \mid q) t^{n}=\frac{1}{1-\frac{c_{1} t}{1-\frac{c_{n} t}{1-\cdots}}}, \tag{27}
\end{equation*}
$$

where $c_{1}=x, c_{2}=(1-q) s / x$ and

$$
\begin{align*}
c_{2 n} & =\left(1-q^{n}\right) s \frac{L_{n-1}(x)}{L_{n}(x)}, \quad \text { for } n \geq 1 ; \tag{28}\\
c_{2 n+1} & =\frac{L_{n+1}(x)}{L_{n}(x)}, \quad \text { for } n \geq 0
\end{align*}
$$

where $L_{n}(x):=h_{n}(x,(1-q) s ; q)$. The theorem follows then by applying the contraction formula, which transforms a S-continued fraction to a J-continued fraction.

Connection with non commutative operators

A. Varvak (2005): if

$$
D U-q U D=1
$$

then (Normal ordering)

$$
(D+U)^{n}=\sum_{m, k \geq 0}\left\{\begin{array}{c}
n \\
m
\end{array}\right\}_{k, q} U^{n-m-k} D^{m-k} .
$$

where

$$
\left\{\begin{array}{c}
n \\
m
\end{array}\right\}_{k, q}=\left[\begin{array}{c}
n-2 k \\
m-k
\end{array}\right]_{q} \cdot \sum_{\alpha \in M(n, n-2 k)} q^{c(\alpha)+\operatorname{cros}(\alpha)}
$$

where $M(n, k)$ is the set of matchings of [n] with k isolated points and

$$
c(\alpha)=\sum_{\text {a:isolated vertices }} \mid\{\text { edges } i<j: i<a<j\} \mid .
$$

Varvak proved an equivalent form of the following result.

Proposition

We have

$$
\begin{aligned}
& \sum_{n \geq 0} t^{n} \sum_{\sigma \in M(n)} x^{\operatorname{fix}(\sigma)} q^{\mathrm{c}(\sigma)+\operatorname{cr}(\sigma)} \\
& =\frac{1}{1-x t-\frac{t^{2}}{1-q x t-\frac{[2]_{q} t^{2}}{1-q^{2} x t-\frac{[3]_{q} t^{2}}{\cdots}}}} .
\end{aligned}
$$

where fix (σ) is the number of fixed points of σ.

Varvak's proof has three steps:

- Interpreting the normal order coefficients as the number of non-taking rook placements in some tableau,
- Passing from rook placements to involutions,

■ Encoding involutions by weighted Motzkin paths (Flajolet, Viennot's theory).
Varvak did not give a formula for the polynomial

$$
\sum_{\sigma \in M(n)} x^{\mathrm{fix}(\sigma)} q^{\mathrm{c}(\sigma)+\operatorname{cr}(\sigma)} \text { or } H_{n}(x, s \mid q)
$$

which would generalize Touchard-Riordan's formula when $x=0$. Corteel, Josuat-Vergès, Prellberg, Rubey (2009): PASEP,

Let

$$
H_{n}(x, s \mid q)=\left(x-s D_{q}\right)^{n} \cdot 1=\sum_{k} c(n, k, q) x^{k}(-s)^{\frac{n-k}{2}},
$$

and the continuous q-Hermite polynomials

$$
\begin{equation*}
\tilde{H}_{n}(x, s \mid q)=\sum_{k} b(n, k, q) x^{k}(-s)^{\frac{n-k}{2}} \tag{29}
\end{equation*}
$$

Theorem (Cigler-Z.)

The matrices $(c(i, j, q))_{i, j=0}^{n-1}$ and $\left(b(i, j, q)(-1)^{\frac{i-j}{2}}\right)_{i, j=0}^{n-1}$ are mutually inverse.

Proof.

We first show by induction that

$$
\begin{equation*}
\tilde{H}_{n}\left(x+s \mathcal{D}_{q}, s \mid q\right) 1=x^{n} \tag{30}
\end{equation*}
$$

On the other hand we have

$$
\begin{aligned}
\tilde{H}_{n}\left(x+s \mathcal{D}_{q}, s \mid q\right) 1 & =\sum_{k=0}^{n} b(n, k, q)(-s)^{\frac{n-k}{2}}\left(x+s \mathcal{D}_{q}\right)^{k} 1 \\
& =\sum_{j=0}^{n} s^{\frac{n-j}{2}} x^{j} \sum_{k=j}^{n} b(n, k, q)(-1)^{\frac{n-k}{2}} c(k, j, q) .
\end{aligned}
$$

A new approach

It's equivalent to compute the coefficients $C_{n, k}$ in

$$
x^{n}=\sum_{k \geq 0} C_{n, k} H_{n-2 k}(x \mid q) .
$$

We will deduce the coefficients in two steps:

$$
x^{n}=\sum_{k \geq 0} b_{n, k} U_{n-2 k}(x),
$$

and

$$
U_{n}(x)=\sum_{k \geq 0} a_{n, k} H_{n-2 k}(x \mid q)
$$

Tchebychev polynomials

The Tchebychev polynomials $U_{n}(x)=\frac{\sin (n+1) \theta}{\sin \theta}, x=\cos \theta$ have
1 Recurrence

$$
U_{n+1}(x)=2 x U_{n}(x)-U_{n-1}(x) \quad(n \geq 0)
$$

with $U_{-1}(x)=0$ and $U_{0}(x)=1$.
2 Generating function

$$
\sum_{n \geq 0} U_{n}(x) w^{n}=\frac{1}{1-2 x w+w^{2}}
$$

3 Explicit formula

$$
U_{n}(x)=\sum_{k \geq 0}(-1)^{k}\binom{n-k}{k}(2 x)^{n-2 k}
$$

Now

$$
(2 x)^{n}=\sum_{k=0}^{\lfloor n / 2\rfloor} b_{n, k} U_{n-2 k}(x)
$$

where $b_{n, k}$ is the number of Dyck paths from $(0,0)$ to $(n, n-2 k)$. Using André's reflection principle we see that

$$
b_{n, k}=\binom{n}{k}-\binom{n}{k-1}, \quad 0 \leq k \leq \frac{n}{2} .
$$

Lemma

We have

$$
\begin{align*}
H_{n}(x \mid q) & =\sum_{k=0}^{\lfloor n / 2\rfloor}\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}-\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{q}\right) U_{n-2 k}(x), \tag{31}\\
U_{n}(x) & =\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} q^{\binom{k+1}{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]_{q} H_{n-2 k}(x \mid q) . \tag{32}
\end{align*}
$$

Remark. A killing involution can be established to prove the above identities. When $q=1, H_{n}(x \mid 1)=(2 x)^{n}$. Tchebyshev inverse relation:

$$
b_{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k} a_{n-2 k} \Longleftrightarrow a_{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[\binom{n}{k}-\binom{n}{k-1}\right] b_{n-2 k} .
$$

It follows that

$$
(2 x)^{n}=\sum_{l \geq 0} H_{n-2 l}(x \mid q) \sum_{j=0}^{l}(-1)^{j} q^{\binom{j+1}{2}} b_{n, l-j}\left[\begin{array}{c}
n-2 l+j \tag{33}\\
j
\end{array}\right]_{q} .
$$

Clearly the coefficient of $H_{0}(x \mid q)$ is 0 if n is odd, if n is even, replacing n by $2 n$ we see that the corresponding coefficient is

$$
\begin{equation*}
T_{n}(q)(1-q)^{n}=\sum_{j=0}^{n}(-1)^{j} q^{\binom{j+1}{2}} b_{2 n, n-j} . \tag{34}
\end{equation*}
$$

This is the Touchard-Riordan formula.

We derive the following result. An equivalent form of this result has been obtained with different means by Corteel, Josuat-Vergès, Prellberg, Rubey (2009).

Theorem

If $k \equiv n(\bmod 2)$ then

$$
\begin{aligned}
c(n, k, q)= & \sum_{\alpha \in M(n, k)} q^{c(\alpha)+\operatorname{cr}(\alpha)} \\
= & (1-q)^{-\frac{n-k}{2}} \sum_{j \geq 0}\left(\binom{n}{\frac{n-k-2 j}{2}}-\binom{n}{\frac{n-k-2 j-2}{2}}\right) \\
& \times(-1)^{j} q^{\binom{j+1}{2}}\left[\begin{array}{c}
k+j \\
k
\end{array}\right] .
\end{aligned}
$$

Remarks

- When $k=0$, we recover a formula of Touchard-Riordan:

$$
\begin{aligned}
c(2 n, 0, q) & =\sum_{\alpha \in M(2 n, 0)} q^{\operatorname{cros}(\alpha)} \\
& =\frac{1}{(1-q)^{n}} \sum_{k=0}^{n}\left(\binom{2 n}{n-k}-\binom{2 n}{n-k-1}\right) q^{\frac{k(k+1)}{2}} .
\end{aligned}
$$

- Peanud (1995) gave a combinatorial proof of this formula. Corteel-Rubey conjectured their formula by generalizing Penaud's method.

Connection with A.A. Kirillov's formula

Let $A_{n}\left(\mathcal{F}_{q}\right)$ be the set of solutions to the equation

$$
X^{2}=0
$$

in the $n \times n$ upper-triangular matrices with elements from \mathcal{F}_{q}. Denote by $A_{n}(q)$ the cardinality of this set. Let $A_{n}^{r}(q)$ be the number of solutions consisting of matrices of a given rank r. Then $A_{n}(q)=\sum_{r \geq 0} A_{n}^{r}(q)$. Kirillov proved

$$
(2 z)^{n}=\sum_{r} A_{n}^{r}(q) \cdot q^{r(r-n)} \cdot H_{n-2 r}\left(z \mid q^{-1}\right)
$$

Kirillov and Melnikov (1996?) made several conjectures about $A_{n}(q)=\sum_{r>0} A_{n}^{r}(q)$, one of which was proved by Ekhad and Zeilberger (1996), Krattenthaler, Warnaar, Cigler $\longrightarrow>$ Rogers (1893).

Connection to Rogers' formulae

Gegenbauer polynomials $C_{n}^{\nu}(x)$ may be defined by the generating function

$$
\begin{equation*}
\left(1-2 x t+t^{2}\right)^{-\nu}=\sum_{n=0}^{\infty} C_{n}^{\nu}(x) t^{n} \tag{35}
\end{equation*}
$$

Set $(x)_{n}=x(x+1) \cdots(x+n-1)$ for any non negative integer n. Then

$$
\begin{equation*}
C_{n}^{\nu}(x)=\sum_{k \geq 0} \frac{(-1)^{k}(\nu)_{n-k}(2 x)^{n-2 k}}{k!(n-2 k)!} \tag{36}
\end{equation*}
$$

The inversion of (36) is given by the following relation

$$
\begin{equation*}
x^{n}=\frac{n!}{2^{n}} \sum_{k \geq 0} \frac{(\nu+n-2 k) C_{n-2 k}^{\nu}(x)}{k!(\nu)_{n+1-k}} . \tag{37}
\end{equation*}
$$

q-ultraspherical polynomials

The generating function is

$$
\sum_{n \geq 0} C_{n}(\cos \theta ; \beta \mid q) t^{n}=\frac{\left(t \beta e^{i \theta}, t \beta e^{-i \theta} ; q\right)_{\infty}}{\left(t e^{i \theta}, t e^{-i \theta} ; q\right)_{\infty}}
$$

Note that

$$
\begin{align*}
\frac{H_{n}(x \mid q)}{(q ; q)_{n}} & =C_{n}(x ; 0 \mid q) \tag{38}\\
U_{n}(x) & =C_{n}(x ; 0 \mid 0)=H_{n}(x \mid 0) \tag{39}\\
T_{n}(x) & =\lim _{\beta \rightarrow 1} \frac{1-q^{n}}{2(1-\beta)} C_{n}(x ; q \mid q) \tag{40}\\
C_{n}^{\nu}(x) & =\lim _{q \rightarrow 1} C_{n}\left(x ; q^{\nu} \mid q\right) \tag{41}
\end{align*}
$$

Roger's connection formula

From

$$
\begin{aligned}
& C_{n}(x ; \gamma \mid q) \\
& =\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{\beta^{k}(\gamma / \beta ; q)_{k}(\gamma ; q)_{n-k}}{(q ; q)_{k}(q \beta ; q)_{n-k}} \frac{\left(1-\beta q^{n-2 k}\right)}{(1-\beta)} C_{n-2 k}(x ; \beta \mid q),
\end{aligned}
$$

one can deduce a connection formula

$$
x^{n}=\sum_{k \geq 0} a(n, k) C_{n-2 k}(x ; \gamma \mid q)
$$

This formula generalizes the previous lemma. PB: A combinatorial analysis?

