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Some well-known facts from Viennot’s UQAM Lecture Notes

Given an OPS {pn(x)} satisfying the three term recurrence relation

pn+1(x) = (x − bn)pn(x)− λnpn−1(x) (1)

with initial values p0(x) = 1 and p−1(x) = 0.
Define the connection coefficients a(n, k) by

n∑
k=0

a(n, k)pk(x) = xn. (2)

These are characterized by the Stieltjes tableau:

a(0, k) = δk,0,

a(n, 0) = b0a(n − 1, 0) + λ1a(n − 1, 1),
a(n, k) = a(n − 1, k − 1) + bka(n − 1, k) + λk+1a(n − 1, k + 1).



Moments

Define a linear functional F : K [x ]→ K by F(pn(x)) = δn,0. Then

F(xn) = a(n, 0) (Moments).

The generating function of the moments has the continued fraction
expansion ∑

n≥0

F(xn)zn =
1

1− b0z −
λ1z2

1− b1z −
λ2z2

1− · · ·

. (3)

The Hankel determinants for the moments are

d(n, 0) = det(F(z i+j))n−1
i ,j=0 =

n−1∏
i=1

i∏
k=1

λk , (4)

and

d(n, 1) = det(F(z i+j+1))n−1
i ,j=0 = d(n, 0)(−1)npn(0). (5)



Motzkin paths

Consider the following Motzkin path γ
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The weight is w(γ) = b0 b1b2 λ1 λ2.

a(n, k) =
∑

γ:(0,0)→(n,k)

w(γ).



Hermite polynomials

The rescaled Hermite polynomials Hn(x , s) = sn/2Hn(x/
√
s, 1)

Hn+1(x , s) = xHn(x , s)− snHn−1(x , s). (6)

The explicit formula

Hn(x , s) =
n∑

k=0

(
n
2k

)
(−s)k(2k − 1)!!xn−2k .

Let D = d
dx . Then

D Hn(x , s) = nHn−1(x , s),

and

Hn(x , s) = (x − sD)n · 1,
Hn(x + sD, s) · 1 = xn.



Connection coefficients

The generating function∑
n≥0

Hn(x , s)
tn

n!
= ext−st2/2

implies that

est2/2
∑
n≥0

Hn(x , s)
tn

n!
= ext .

Comparing the coefficients of tn/n!:

xn =

b n
2c∑

k=0

n!sk

2kk!(n − 2k)!
Hn−2k(x , s). (7)

Hn(x , s) =
n∑

k=0

n!(−s)k

2kk!(n − 2k)!
xn−2k .



Let pn(z , x , s) = Hn(z − x ,−s). Then

pn+1(z , x , s) = (z − x)pn(z , x , s) + ns · pn−1(z , x , s) (8)

with initial values p0(z , x , s) = 1 and p−1(z , x , s) = 0.
Let F : C[z ]→ C be the linear functional defined by

F(pn(z , x , s)) = δn,0.

Since the moments µn of the Hermite polynomials are

µ2n = (2n − 1)!!, and µ2n+1 = 0,

we have

F(zn) = (
√
−s)n

n∑
k=0

(
n
k

)
(x/
√
−s)n−kµk = Hn(x , s). (9)



This is equivalent to the following continued fraction expansion:

∑
n≥0

Hn(x , s)zn =
1

1− xz +
sz2

1− xz +
2sz2

1− xz +
3sz2

1− · · ·

.

Their Hankel determinants are

d(n, 0) = det(Hi+j(x , s))n−1
i ,j=0 = (−s)(

n
2)

n−1∏
j=0

j!,

d(n, 1) = det(Hi+j+1(x , s))n−1
i ,j=0 = (−1)nHn(−x ,−s)(−s)(

n
2)

n−1∏
j=0

j!.



Three known q-analogues through Viennot’s looking glass

We first introduce some standard q-notations. For n ≥ 1 let

[n]q =
1− qn

1− q
, [n]q! =

n∏
k=1

[k]q, [2n − 1]q!! =
n∏

k=1

[2k − 1]q,

and [
n
k

]
q

=

[
n
k

]
=

(q; q)n
(q; q)k(q; q)n−k

for 0 ≤ k ≤ n and zero otherwise, with
(a; q)n = (1− a)(1− aq) · · · (1− aqn−1) and

(a, b; q)n = (a; q)n(b; q)n.



crossings and nestings

If α is a perfect matching of the complete graph Kn on {1, . . . , n},
a pair of edges (e, f ) of α with e = {i , j}, f = {k , l}

forms a crossing if i < k < j < l ,
forms a nesting if i < k < l < j .

Let cros(α) be the crossing number of α, and nest(α) be the
nesting number of α. For instance, if
α = {1, 7} − {2, 8} − {3, 5} − {4, 6}:
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cros(α) = 2
nest(α) = 4



Continued fraction for crossings and nestings

Let [n]p,q = (pn − qn)/(p − q) and

µn(p, q) =
∑
α∈M2n

pcrosαqnestα,

where Mn is the set of perfect matchings of [n]. Then

∑
n≥0

µn(p, q)tn =
1

1−
1 · t2

1−
[2]p,q · t2

. . .

1−
[n]p,q · t2

· · ·

. (10)



Continuous q-Hermite polynomials

Consider the moment sequence

µn(q, 1) =
∑
α∈Mn

qcrosα.

It follows that µ2n+1(q, 1) = 0 and the Touchard-Riordan formula

µ2n(q, 1) =
1

(1− q)n

n∑
k=−n

(
2n

n + k

)
(−1)kq(k

2).

Moments of the rescaled continuous q-Hermite polynomials

Hn+1(x |q) = 2xHn(x |q)− (1− qn)Hn−1(x |q). (11)

(rescaled) Ĥn+1(x |q) = xĤn(x |q)− [n]qĤn−1(x |q).

the generating function (x = cos θ)∑
n≥0

Hn(x |q)
tn

(q; q)n
=

1
(te iθ, te−iθ; q)∞

. (12)



Discrete q-Hermite polynomials

Let
µn(q, q2) =

∑
α∈Mn

qcrosα+2nestα.

Then µ2n+1 = 0 and µ2n = [2n − 1]q[2n − 3]q · · · [1]q.
Moments of (rescaled) discrete q-Hermite polynomials

Hn+1(x ; q) = xHn(x ; q)− qn−1(1− qn)Hn−1(x ; q).

(rescaled) Ĥn+1(x ; q) = xĤn(x ; q)− qn−1[n]qĤn−1(x ; q).

The generating function is
∞∑

n=0

Hn(x ; q)
tn

(q; q)n
=

(t2; q2)∞
(xt; q)∞

. (13)

Hn(x ; q) =

n/2∑
k=0

[
n
2k

]
q
(q; q2)k(−1)kqk(k−1)xn−2k . (14)



A strange q-Hermite polynomials (V. V. Borzov)

Let

{n}q =
q−n − qn

q−1 − q
.

The rescaled q-Hermite polynomials have the moment sequence

µn =
∑
α∈Mn

qcrosα−nestα = ?.

The three term recurrence

HHn+1(x ; q) = xHHn(x ; q)− (q−n − qn)HHn−1(x ; q). (15)

(rescaled) ĤHn+1(x ; q) = xĤHn(x ; q)− {n}qĤHn−1(x ; q).

Almost nothing is known about these polynomials!



Cigler’s question–a curious q-analogue

Let
Dqf (x) =

f (qx)− f (x)

(q − 1)x
.

What can we say about

Hn(x , s|q) = (x − s Dq)
n · 1?

The first terms of the sequence Hn(x , s|q) are

1, x , −s + x2,

− (2 + q)sx + x3,

(1 + q + q2)s2 − (3 + 2q + q2)sx2 + x4,

(3 + 4q + 4q2 + 3q3 + q4)s2x − (4 + 3q + 2q2 + q3)sx3 + x5.

+several conjectures...



Theorem (Ex-conjecture of Cigler)

Let Hn(x , s|q) = (x − sDq)
n · 1, then

∑
n≥0

Hn(x , s|q)tn =
1

1− b0t −
λ1t2

1− b1t −
λ2t2

. . .

, (16)

where
bn = qnx , λn = −[n]qs.

This means that Hn(x , s|q)’s are moments.



Al-Salam-Chihara polynomials

The Al-Salam-Chihara polynomials Qn(x) := Qn(x ;α, β) satisfy the
three term recurrence:

Qn+1(x) = (2x − (α+ β)qn)Qn(x)− (1− qn)(1− αβqn−1)Qn−1(x),

with Q0(x) = 1 and Q−1(x) = 0. They have the following explicit
formulas:

Qn(x ;α, β|q) =
(αβ; q)n

an 3φ2

(
q−n, αe iθ, αe−iθ

αβ, 0
|q; q

)
, (17)

where x = cos θ.



A rescaled version

From a combinatorial point of view it is more convenient to take
the following rescaled version:

Pn+1(x ; a, b, c) = (x − aqn)Pn(x ; a, b, c)

− (c + bqn−1)[n]qPn−1(x ; a, b, c) (18)

with initial values P−1(x ; a, b, c) = 0 and P0(x ; a, b, c) = 1.

Definition

Let Fa,b,c be the linear functional on the polynomials in z which
satisfy

Fa,b,c(Pn(z ; a, b, c)) = δn,0. (19)



q-Hermite polynomials

Note that the continuous q-Hermite polynomials are

H̃n(x , s|q) = Pn(x ; 0, 0, s) (20)

and are also the moments

H̃n(x , s|q) = Fx ,−s,0(zn). (21)

The discrete q-Hermite polynomials I are

h̃n(x , s; q) = Pn(x ; 0, (1− q)s, 0). (22)

The discrete q-Hermite polynomials II are

h̃n(x ; q) = (−i)nh̃n(ix , 1; q−1). (23)



The curious q-analogue of Hermite polynomials

The new q-Hermite polynomials are defined by

Hn(x , s|q) := Fx ,0,−s(zn). (24)

and

hn(x , s; q) := Pn(0;−x , 0, s) = q(n
2)sn/2h̃n(x/

√
s; q). (25)



A proof by brute force

Let f (n, x) = Hn(x , (q − 1)s|q) = (x + (1− q)sDq)
n · 1. Then

f (n, x) = (x +
s
x
)f (n − 1, x)− s

x
f (n − 1, qx).

Hence G (x , t) =
∑

n≥0 f (n, x)tn satisfies the functional equation:(
1− x2 + s

x
t
)
G (x , t) = 1− s

x
tG (qx , t). (26)

Suppose that

G (x , t) =
1

1−
(g1 − 1)At

1−
(g2 − 1)g1At

1−
(g3 − 1)g2At

1− . . .

,

where A := A(x) = − x2+s
x and gi := gi (x).



Solving this using Wall’s formula we obtain Let
Ln(x) := hn(x , (1− q)s; q). Then∑

n≥0

Hn(x , (q − 1)s|q)tn =
1

1−
c1t

1−
cnt

1− · · ·

, (27)

where c1 = x , c2 = (1− q)s/x and

c2n = (1− qn)s
Ln−1(x)

Ln(x)
, for n ≥ 1; (28)

c2n+1 =
Ln+1(x)

Ln(x)
, for n ≥ 0.

where Ln(x) := hn(x , (1− q)s; q). The theorem follows then by
applying the contraction formula, which transforms a S-continued
fraction to a J-continued fraction.



Connection with non commutative operators

A. Varvak (2005): if
DU − qUD = 1

then (Normal ordering)

(D + U)n =
∑

m,k≥0

{ n
m

}
k,q

Un−m−kDm−k .

where { n
m

}
k,q

=

[
n − 2k
m − k

]
q
·

∑
α∈M(n,n−2k)

qc(α)+cros(α).

where M(n, k) is the set of matchings of [n] with k isolated points
and

c(α) =
∑

a:isolated vertices

|{edges i < j : i < a < j}|.



Varvak proved an equivalent form of the following result.

Proposition

We have ∑
n≥0

tn
∑

σ∈M(n)

xfix(σ)qc(σ)+cr(σ)

=
1

1− xt −
t2

1− qxt −
[2]qt2

1− q2xt −
[3]qt2

· · ·

.

where fix(σ) is the number of fixed points of σ.



Varvak’s proof has three steps:
Interpreting the normal order coefficients as the number of
non-taking rook placements in some tableau,
Passing from rook placements to involutions,
Encoding involutions by weighted Motzkin paths (Flajolet,
Viennot’s theory).

Varvak did not give a formula for the polynomial∑
σ∈M(n)

xfix(σ)qc(σ)+cr(σ) or Hn(x , s|q),

which would generalize Touchard-Riordan’s formula when x = 0.
Corteel, Josuat-Vergès, Prellberg, Rubey (2009): PASEP, .....



Let

Hn(x , s|q) = (x − sDq)
n · 1 =

∑
k

c(n, k , q)xk(−s)
n−k

2 ,

and the continuous q-Hermite polynomials

H̃n(x , s|q) =
∑
k

b(n, k , q)xk(−s)
n−k

2 . (29)

Theorem (Cigler-Z.)

The matrices (c(i , j , q))n−1
i ,j=0 and (b(i , j , q)(−1)

i−j
2 )n−1

i ,j=0 are
mutually inverse.



Proof.

We first show by induction that

H̃n(x + sDq, s|q)1 = xn. (30)

On the other hand we have

H̃n(x + sDq, s|q)1 =
n∑

k=0

b(n, k , q)(−s)
n−k

2 (x + sDq)
k1

=
n∑

j=0

s
n−j
2 x j

n∑
k=j

b(n, k , q)(−1)
n−k

2 c(k , j , q).



A new approach

It’s equivalent to compute the coefficients Cn,k in

xn =
∑
k≥0

Cn,kHn−2k(x |q).

We will deduce the coefficients in two steps:

xn =
∑
k≥0

bn,kUn−2k(x),

and
Un(x) =

∑
k≥0

an,kHn−2k(x |q).



Tchebychev polynomials

The Tchebychev polynomials Un(x) = sin(n+1)θ
sin θ , x = cos θ have

1 Recurrence

Un+1(x) = 2xUn(x)− Un−1(x) (n ≥ 0),

with U−1(x) = 0 and U0(x) = 1.
2 Generating function∑

n≥0

Un(x)wn =
1

1− 2xw + w2 .

3 Explicit formula

Un(x) =
∑
k≥0

(−1)k
(
n − k
k

)
(2x)n−2k .



Now

(2x)n =

bn/2c∑
k=0

bn,kUn−2k(x),

where bn,k is the number of Dyck paths from (0,0) to (n, n − 2k).
Using André’s reflection principle we see that

bn,k =

(
n
k

)
−
(

n
k − 1

)
, 0 ≤ k ≤ n

2
.



Lemma

We have

Hn(x |q) =

bn/2c∑
k=0

([
n
k

]
q
−
[

n
k − 1

]
q

)
Un−2k(x), (31)

Un(x) =

bn/2c∑
k=0

(−1)kq(k+1
2 )
[
n − k
k

]
q
Hn−2k(x |q). (32)

Remark. A killing involution can be established to prove the above
identities. When q = 1, Hn(x |1) = (2x)n. Tchebyshev inverse
relation:

bn =

b n
2c∑

k=0

(−1)k
(
n − k
k

)
an−2k ⇐⇒ an =

b n
2c∑

k=0

[(
n
k

)
−
(

n
k − 1

)]
bn−2k .



It follows that

(2x)n =
∑
l≥0

Hn−2l (x |q)
l∑

j=0

(−1)jq(j+1
2 )bn,l−j

[
n − 2l + j

j

]
q
. (33)

Clearly the coefficient of H0(x |q) is 0 if n is odd, if n is even,
replacing n by 2n we see that the corresponding coefficient is

Tn(q)(1− q)n =
n∑

j=0

(−1)jq(j+1
2 )b2n,n−j . (34)

This is the Touchard-Riordan formula.



We derive the following result. An equivalent form of this result has
been obtained with different means by Corteel, Josuat-Vergès,
Prellberg, Rubey (2009).

Theorem

If k ≡ n (mod 2) then

c(n, k , q) =
∑

α∈M(n,k)

qc(α)+cr(α)

= (1− q)−
n−k

2
∑
j≥0

((
n

n−k−2j
2

)
−
(

n
n−k−2j−2

2

))

× (−1)jq(j+1
2 )
[
k + j
k

]
.



Remarks

When k = 0, we recover a formula of Touchard-Riordan:

c(2n, 0, q) =
∑

α∈M(2n,0)

qcros(α)

=
1

(1− q)n

n∑
k=0

((
2n

n − k

)
−
(

2n
n − k − 1

))
q

k(k+1)
2 .

Peanud (1995) gave a combinatorial proof of this formula.
Corteel-Rubey conjectured their formula by generalizing
Penaud’s method.



Connection with A.A. Kirillov’s formula

Let An(Fq) be the set of solutions to the equation

X 2 = 0

in the n × n upper-triangular matrices with elements from Fq.
Denote by An(q) the cardinality of this set. Let Ar

n(q) be the
number of solutions consisting of matrices of a given rank r . Then
An(q) =

∑
r≥0 A

r
n(q). Kirillov proved

(2z)n =
∑

r

Ar
n(q) · qr(r−n) · Hn−2r (z |q−1).

Kirillov and Melnikov (1996?) made several conjectures about
An(q) =

∑
r≥0 A

r
n(q), one of which was proved by Ekhad and

Zeilberger (1996), Krattenthaler, Warnaar, Cigler —–> Rogers
(1893).



Connection to Rogers’ formulae

Gegenbauer polynomials C νn (x) may be defined by the generating
function

(1− 2xt + t2)−ν =
∞∑

n=0

C νn (x)tn. (35)

Set (x)n = x(x + 1) · · · (x + n − 1) for any non negative integer n.
Then

C νn (x) =
∑
k≥0

(−1)k(ν)n−k(2x)n−2k

k!(n − 2k)!
. (36)

The inversion of (36) is given by the following relation

xn =
n!
2n

∑
k≥0

(ν + n − 2k)C νn−2k(x)

k!(ν)n+1−k
. (37)



q-ultraspherical polynomials

The generating function is

∑
n≥0

Cn(cos θ;β|q)tn =
(tβe iθ, tβe−iθ; q)∞

(te iθ, te−iθ; q)∞
.

Note that

Hn(x |q)

(q; q)n
= Cn(x ; 0|q), (38)

Un(x) = Cn(x ; 0|0) = Hn(x |0), (39)

Tn(x) = lim
β→1

1− qn

2(1− β)
Cn(x ; q|q), (40)

C νn (x) = lim
q→1

Cn(x ; qν |q). (41)



Roger’s connection formula

From

Cn(x ; γ|q)

=

bn/2c∑
k=0

βk(γ/β; q)k(γ; q)n−k

(q; q)k(qβ; q)n−k

(1− βqn−2k)

(1− β)
Cn−2k(x ;β|q),

one can deduce a connection formula

xn =
∑
k≥0

a(n, k)Cn−2k(x ; γ|q)

This formula generalizes the previous lemma.
PB: A combinatorial analysis?


