Tableaux for the enumeration of permutations according to their shape

Matthieu Josuat-Vergès

Université de Marne-la-Vallée

Journées Viennot, 29 juin 2012

The shape of a permutation

Let $w = w_1, \ldots, w_n$ a permutation. We take the convention $w_0 = w_{n+1} = 0$, i.e. $w = 0, w_1, \ldots, w_n, 0$. Let $x = \sigma(i)$, then x is called a :

- peak if $\sigma(i-1) < \sigma(i) > \sigma(i+1)$,
- valley if $\sigma(i-1) > \sigma(i) < \sigma(i+1)$,
- double descent if $\sigma(i-1) > \sigma(i) > \sigma(i+1)$,
- double ascent if $\sigma(i-1) < \sigma(i) < \sigma(i+1)$,

The *shape* of a permutation is the partition of $\{1, ..., n-1\}$ in four subsets : { peaks }, { valleys }, { double descents }, { double ascents }.

(*n* is always a peak.)

If $\sigma = (0)13254(0)$, then : 1 is a double ascent, 2 is a valley, 3 is a peak, 4 is a double descent.

The shape can be encoded in a Dyck path. Start from \nearrow , and for x from 1 to n,

- add $\nearrow \nearrow$ if x is a valley,
- add \nearrow if x is a double ascent,
- add $\searrow \nearrow$ if x is a double descent,

• add
$$\searrow \searrow$$
 if x is a peak,

and add a \searrow at the end.

If $\sigma = (0)13254(0)$, this gives :

If $\sigma = (0)13254(0)$, then : 1 is a double ascent, 2 is a valley, 3 is a peak, 4 is a double descent.

The shape can be encoded in a Dyck path. Start from \nearrow , and for x from 1 to n,

- add $\nearrow \nearrow$ if x is a valley,
- add \nearrow if x is a double ascent,
- add $\searrow \nearrow$ if x is a double descent,

• add
$$\searrow \searrow$$
 if x is a peak,

and add a \searrow at the end.

If $\sigma = (0)13254(0)$, this gives :

Théorème (Françon - Viennot)

Let D a Dyck path, the number of permutations of shape D is :

The proof is a bijection between permutations and *subdivided Laguerre histories*.

So

$$n! = \sum_{D \text{ of length } 2n} \prod_{\text{ from height } h-1 \text{ to } h} \lceil h/2 \rceil.$$

In the combinatorial theory of continued fractions and orthogonal polynomials [Flajolet - Viennot], this gives a proof of

$$\sum_{n \ge 0} n! z^n = \frac{1}{1 - \frac{z}{1 - \frac{z}{1 - \frac{2z}{1 - \frac{z}{1 - \frac{$$

Excursions in Young's lattice

Let \lessdot be the cover relation of young diagrams, i.e. $\mu \lessdot \lambda$ if $\mu \subset \lambda$ and $|\mu|+1=|\lambda|.$ Let

For example,

Let
$$f_{\lambda} = \# \operatorname{SYT}(\lambda)$$
, then :
 $U^{n} \varnothing = \sum_{|\lambda|=n} f_{\lambda} \lambda, \qquad D^{n} \lambda = f_{\lambda} \varnothing, \qquad D^{n} U^{n} = \sum_{|\lambda|=n} f_{\lambda}^{2} \varnothing = n! \varnothing.$
 $\left(\Box, \Box, \Box, \Box \iff \boxed{2} 1 3 \right)$

Let
$$f_{\lambda} = \# \operatorname{SYT}(\lambda)$$
, then :
 $U^{n} \varnothing = \sum_{|\lambda|=n} f_{\lambda} \lambda, \qquad D^{n} \lambda = f_{\lambda} \varnothing, \qquad D^{n} U^{n} = \sum_{|\lambda|=n} f_{\lambda}^{2} \varnothing = n! \varnothing.$
 $\left(\Box, \Box, \Box, \Box \iff \boxed{2}{13} \right)$

An oscillating tableau is a sequence $\lambda^{(0)}, \ldots, \lambda^{(2n)}$ such that $\lambda^{(0)} = \lambda^{(2n)} = \emptyset$, and either $\lambda^{(i)} > \lambda^{(i+1)}$ or $\lambda^{(i)} < \lambda^{(i+1)}$. The number of such tableaux is

$$\langle \varnothing, (D+U)^{2n} \varnothing \rangle = (2n-1)!! = 1 \times 3 \times \cdots \times (2n-1).$$

A vacillating tableau is a sequence $\lambda^{(0)}, \ldots, \lambda^{(2n)}$ such that $\lambda^{(0)} = \lambda^{(2n)} = \emptyset$, and $\lambda^{(i)} \leq \lambda^{(i+1)}$ or $\lambda^{(i)} = \lambda^{(i+1)}$ (n odd), $\lambda^{(i)} \geq \lambda^{(i+1)}$ or $\lambda^{(i)} = \lambda^{(i+1)}$ (n even). The number of such tableaux is

$$\langle \varnothing, ((U+I)(D+I))^n \varnothing \rangle = B_n.$$
 (Bell numbers)

Let μ a real measure, P_n its orthogonal polynomials, and $m_n = \int x^n d\mu$ the moments.

- If P_n are the Hermite polynomials, $m_{2n} = (2n 1)!!$.
- ▶ If P_n are the Charlier polynomials, $m_n = B_n$ (Bell number).
- If P_n are the Laguerre polynomials, $m_n = n!$.

This is explained by Viennot's combinatorial theory of orthogonal polynomials.

Compare with :

- Oscillating tableaux : $\langle \varnothing, (D+U)^{2n} \varnothing \rangle = (2n-1)!!$
- Vacillating tableaux : $\langle \varnothing, ((U+I)(D+I))^n \varnothing \rangle = B_n$
- Pairs of standard tableaux : $\langle \emptyset, D^n U^n \emptyset \rangle = n!$

Let μ a real measure, P_n its orthogonal polynomials, and $m_n = \int x^n d\mu$ the moments.

- If P_n are the Hermite polynomials, $m_{2n} = (2n 1)!!$.
- ▶ If P_n are the Charlier polynomials, $m_n = B_n$ (Bell number).
- If P_n are the Laguerre polynomials, $m_n = n!$.

This is explained by Viennot's combinatorial theory of orthogonal polynomials.

Compare with :

- Oscillating tableaux : $\langle \varnothing, (D+U)^{2n} \varnothing \rangle = (2n-1)!!$
- Vacillating tableaux : $\langle \varnothing, ((U+I)(D+I))^n \varnothing \rangle = B_n$
- Pairs of standard tableaux : $\langle \emptyset, D^n U^n \emptyset \rangle = n!$

But $D^n U^n$ is not the *n*th power of an operator !

Is there an expression X in D and U such that $\langle \emptyset, X^n \emptyset \rangle = n!$?

In the context of the PASEP model, the partition function can obtained by computing $(F + E)^N$ where :

$$FE - EF = F + E.$$

Viennot showed that from this relation, the partition function has a combinatorial interpretation in terms of *alternative tableaux* (in bijection with permutations).

From the relation DU - UD = I, we can check that :

$$F = D(U+I),$$

$$E = D(U+I)U,$$

satisfy FE - EF = F + E. It follows that $\langle \emptyset, (F + E)^n \emptyset \rangle = \langle \emptyset, (D(U + I)^2)^n \emptyset \rangle = (n + 1)!$.

Stammering tableaux

Définition

A stammering tableau of size n is a sequence $\lambda^{(0)}, \ldots, \lambda^{(3n)}$, such that $\lambda^{(0)} = \lambda^{(3n)} = \emptyset$, and :

• if $i \equiv 0, 1 \mod 3$ then either $\lambda^{(i)} \leq \lambda^{(i+1)}$ or $\lambda^{(i)} = \lambda^{(i+1)}$,

• if
$$i \equiv 2 \mod 3$$
 then $\lambda^{(i)} > \lambda^{(i+1)}$.

For example,

The Dyck path associated with a stammering tableau is as follows. Start from \nearrow , then read the tableau from $\lambda^{(0)}$ to $\lambda^{(3n)}$ and

• add a step \nearrow if $\lambda^{(i)} \lessdot \lambda^{(i+1)}$,

• add a step
$$\searrow$$
 if $\lambda^{(i)} = \lambda^{(i+1)}$

and add a step \searrow at the end.

For example,

Théorème

Let D a Dyck path of length 2n. Then the number of permutations w_1, \ldots, w_n of shape D is the number of stammering tableaux $\lambda^{(0)}, \ldots, \lambda^{(3n-3)}$ of shape D.

A first bijection

Let $2\delta_n$ the "double staircase", i.e. the Young diagram with row lengths $2n, 2n - 2, \ldots, 2$. A rook placement is a filling with \bullet s, with : exactly one \bullet in each row, at most one \bullet in each column.

The bijection between stammering tableaux and rook placements is done either with *Fomin's growth diagrams*, *Schensted insertion*, or *Viennot's shadow lines*.

	٠							
		٠						
٠								
					•			
							•	
				٠				

	۲							
		٠						
•								
					•			
							2	
				1				

	۲							
		٠						
•								
					3			
							2	
				1				

	٠							
		٠						
4								
					3			
							2	
				1				

	•							
		5						
4								
					3			
							2	
				1				

	6							
		5						
4								
					3			
							2	
				1				

_		1						
	6	۷						
		5			_			
4								
					3			
							2	
				1				

	>—	>						
	6		>					
		5						
4								
					3			
							2	
				1				

	>—	>							
	6		>—	≻					
		5							
4									
						3			
								2	
					1				

	>—	>							
	6		>—	>					
		5		↓		_			
4									
						3			
								2	
					1				

_	~	1							
	6	↓	>—	> 1					
		5			>				
4									
						3			
								2	
					1				

—	<u>} </u>	, I							
	6	\	>—	<u>></u>					
		5			→—	>			
4									
						3			
								2	
					1				

Ø

ø,4

Ø, 4, 46; 4, 45

Ø, 4, 46; 4, 45, 45

Ø, 4, 46; 4, 45, 45; 4

Ø, 4, 46; 4, 45, 45; 4, 4

Ø, 4, 46; 4, 45, 45; 4, 4, 1; 1, 13, 13; 1, 1, 12

 $\varnothing, 4, 46; 4, 45, 45; 4, 4, 1; 1, 13, 13; 1, 1, 12;$ 1, 1, 1; \varnothing . The same bijection, using shadow lines.

•									
		•							
			•						
	٠								
				•					
						٠			
					٠				

The Dyck path associated with a stammering tableau is apparent in the rook placement :

A second bijection : From rook placements to chain of Dyck paths.
The Japanese notation for Young diagrams :

The staircase partition is $\delta_n = (n, n-1, ..., 1)$. A Dyck path is a skew shape δ_n / λ where $\lambda \subset \delta_{n-1}$.

A skew shape is called a ribbon if it is connected and contains no 2×2 square. Let D and E be two Dyck paths of respective length 2n and 2n + 2. We then denote $D \sqsubset E$ and say that E is obtained from D by addition of a ribbon if $D \subset E$ and the difference E/D is a ribbon.

Proposition

Let T a rook placement in the double staircase with n rows, and T' obtained by removing the bottom row. Let D, D' the Dyck paths associated with T and T'. Then D is obtained from D' by addition of a ribbon.

A n-chain of Dyck paths is a sequence $D_1 \sqsubset D_2 \sqsubset \cdots \sqsubset D_n$ where D_i is a Dyck path of length 2*i*, obtained by addition of a ribbon to D_{i-1} . The biggest path D_n is called the shape of the chain.

Proposition

From a rook placement T in the double staircase of n-1 rows, we define a n-chain $D_1 \sqsubset D_2 \sqsubset \cdots \sqsubset D_n$ so that D_i is the Dyck path associated with the rook placement obtained by keeping the i-1 first rows of T.

This defines a bijection between rook placements and n-chains of Dyck paths.

A third bijection : From chain of Dyck paths to subdivided Laguerre histories.

A subdivided Laguerre history of shape D is obtained from the Dyck path D by choosing a cell in each column below a step \nearrow .

The number of cells in a column is $\lceil h/2 \rceil$ if the step \nearrow is from height h-1 to h, so the number of histories of shape D is

$$\prod_{\text{$\overrightarrow{}$ from height $h=1$ to h}} \lceil h/2 \rceil.$$

A subdivided Laguerre history of shape D is obtained from the Dyck path D by choosing a cell in each column below a step \nearrow .

The number of cells in a column is $\lceil h/2 \rceil$ if the step \nearrow is from height h-1 to h, so the number of histories of shape D is

$$\prod_{\text{$\overrightarrow{}$ from height $h=1$ to h}} \lceil h/2 \rceil.$$

The bijection is done by putting a dot in the left extremity of each ribbon.

The chains of Dyck paths present some similarities with Dyck tableaux [Aval, Boussicault, Dasse-Hartaut], which are also equivalent to subdivided Laguerre histories and used to study the 3-parameter PASEP partition function.

Some statistics from the PASEP can be read in the rook placements, for example the deformed relation DU - qUD leads to count "inversions" and gives the product $\prod \left[\left\lceil h/2 \right\rceil \right]_{a}$.

But the more general combinatorial results about this partition function still go through the alternative tableaux or permutation tableaux.

Merci Xavier!