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The shape of a permutation

Let w = wq,...,w, a permutation.
We take the convention wy = w11 =0, i.e. w =0, wy,..., wp,0.
Let x = o(i), then x is called a :

» peakif o(i—1) <o(i)>o(i+1),

> valley if o(i —1) > o(i) < o(i + 1),

» double descent if o(i — 1) > o(i) > o(i + 1),
» double ascent if o(i — 1) < (i) < o(i + 1),

The shape of a permutation is the partition of {1,...,n— 1} in
four subsets : { peaks }, { valleys }, { double descents }, { double
ascents }.

(n is always a peak.)



If o = (0)13254(0),then : 1 is a double ascent, 2 is a valley, 3 is a
peak, 4 is a double descent.

The shape can be encoded in a Dyck path.
Start from 7, and for x from 1 to n,

» add 7 7 if x is a valley,

» add A\ if x is a double ascent,

» add N\ " if x is a double descent,

> add \\ if x is a peak,
and add a Y\, at the end.

If o = (0)13254(0), this gives :
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Théoreme (Frangon - Viennot)

Let D a Dyck path, the number of permutations of shape D is :

I1 [h/2].

" from height h—1 to h

For the pathg the permutations are 13254

and 15423.

The proof is a bijection between permutations and subdivided
Laguerre histories.



So

EY 1T [h/2].

D of length 2n * from height h—1 to h

In the combinatorial theory of continued fractions and orthogonal
polynomials [Flajolet - Viennot], this gives a proof of

E nlz" =

n>0 1—
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Excursions in Young's lattice

Let < be the cover relation of young diagrams, i.e. p<< A if u C A
and |u| +1=|Al.
Let

UM =3p ad D=1

u>A <A

For example,

o) - B o) -Brm
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Let f\ = #SYT()), then :

U'g = Z A, D"\ = A, D"U" = Z f2o = nlw.
[A=n [Al=n

(D’E’Hj = ?3|>




Let £, = #SYT(A), then :
U'g = Z A, D"\ = A, D"U" = Z f2o = nlw.

[A=n [Al=n
2]
(D’ HH = & 3|>
An oscillating tableau is a sequence A(©, ... X2" such that

MO = X2 = & and either A() > X\(+1) or X() < \(+1) The
number of such tableaux is

(B,(D+U)"2)=2n—1)1 =1x3x---x(2n—1).
A vacillating tableau is a sequence A9, ... A" sych that
MO =A@ = g and : XD < \0FD) or A() = A\(+1) (p odd),
A > A0+ or X() = X\(+1) (5 even). The number of such
tableaux is
(@,(U+1)(D+1))"@) = B,. (Bell numbers)



Let i a real measure, P, its orthogonal polynomials, and
mp, = [ x"dp the moments.

» If P, are the Hermite polynomials, my, = (2n — 1)!1.
» If P, are the Charlier polynomials, m, = B, (Bell number).
» If P, are the Laguerre polynomials, m, = n!.
This is explained by Viennot's combinatorial theory of orthogonal
polynomials.
Compare with :
» Oscillating tableaux : (@, (D + U)*"@) = (2n — 1)!!
» Vacillating tableaux : (&, (U + 1) (D + 1))"@) = B,
» Pairs of standard tableaux : (@, D"U"@) = n!
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But D"U" is not the nth power of an operator!

Is there an expression X in D and U such that (&, X"@) = n!?



In the context of the PASEP model, the partition function can
obtained by computing (F + E)N where :

FE—EF = F+E.

Viennot showed that from this relation, the partition function has a
combinatorial interpretation in terms of alternative tableaux (in
bijection with permutations).

From the relation DU — UD = I, we can check that :

F=D(U+I),
E=D(U+ U,

satisfy FE — EF = F + E.
It follows that (@, (F + E)"@) = (@, (D(U + 1)?)"a) = (n+ 1)!.



Stammering tableaux

Définition
A stammering tableau of size n is a sequence AO NG sych
that A(©) = \Gn) = & and :
» ifi=0,1 mod 3 then either \() < A(+1) or \() = \(i+1),
» ifi=2 mod 3 then A\() » \(7+1).

For example,

@,D,ED;D,ED,HH;H,H,H;D,D,D; %)
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The Dyck path associated with a stammering tableau is as follows.
Start from 7, then read the tableau from A0 to \BM and

» add a step 7 if A < \(H1),
> add a step \ if A = \(+1)
and add a step \ at the end.

For example,

@,D,ED;D,ED,H];ED,ED,H];H,H,H;|:|,|:|,|:|;@

gives the path
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Théoreme

Let D a Dyck path of length 2n. Then the number of permutations

wi,...,w, of shape D is the number of stammering tableaux
A0 NB=3) of shape D.
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A first bijection

Let 29, the “double staircase”, i.e. the Young diagram with row
lengths 2n,2n —2,...,2.

A rook placement is a filling with es, with : exactly one e in each
row, at most one e in each column.

The bijection between stammering tableaux and rook placements is
done either with Fomin’s growth diagrams, Schensted insertion, or
Viennot's shadow lines.
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The same bijection, using shadow lines.
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The Dyck path associated with a stammering tableau is apparent
in the rook placement :




A second bijection :
From rook placements to chain of Dyck paths.



The Japanese notation for Young diagrams :

The staircase partition is §, = (n,n —1,...,1).
A Dyck path is a skew shape §,/\ where A C §,_1.
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Définition

A skew shape is called a ribbon if it is connected and contains no
2 x 2 square. Let D and E be two Dyck paths of respective length
2n and 2n 4 2. We then denote D C E and say that E is obtained
from D by addition of a ribbon if D C E and the difference E/D is
a ribbon.

Proposition

Let T a rook placement in the double staircase with n rows, and
T' obtained by removing the bottom row. Let D, D' the Dyck
paths associated with T and T'. Then D is obtained from D' by
addition of a ribbon.

20/28






Définition

A n-chain of Dyck paths is a sequence D1 D, CC - -- D, where
D; is a Dyck path of length 2i, obtained by addition of a ribbon to
Di_1. The biggest path D,, is called the shape of the chain.

Proposition

From a rook placement T in the double staircase of n — 1 rows, we
define a n-chain D1 — D> C --- C D, so that D; is the Dyck path
associated with the rook placement obtained by keeping the i — 1
first rows of T.

This defines a bijection between rook placements and n-chains of
Dyck paths.
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A third bijection :
From chain of Dyck paths to subdivided Laguerre histories.
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Définition
A subdivided Laguerre history of shape D is obtained from the

Dyck path D by choosing a cell in each column below a step 7.

The number of cells in a column is [h/2] if the step 7 is from
height h — 1 to h, so the number of histories of shape D is

II [h/2].

" from height h—1 to h
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The bijection is done by putting a dot in the left extremity of each
ribbon.
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The chains of Dyck paths present some similarities with Dyck
tableaux [Aval, Boussicault, Dasse-Hartaut], which are also
equivalent to subdivided Laguerre histories and used to study the
3-parameter PASEP partition function.

Some statistics from the PASEP can be read in the rook
placements, for example the deformed relation DU — qUD leads to
count “inversions” and gives the product || Hh/ﬂ]q.

But the more general combinatorial results about this partition
function still go through the alternative tableaux or permutation
tableaux.
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Merci Xavier!
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