Inversions

Philippe Biane

Bordeaux, Journées Viennot

28 june 2012

joint work with Hayat Cheballah

Summary: We use inversions to investigate the connection between

Alternating sign matrices

and

Totally symmetric selfcomplementary plane partitions

.

Alternating sign matrices

▶ Square matrices with coefficients in $\{-1,0,1\}$

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Alternating sign matrices

• Square matrices with coefficients in $\{-1,0,1\}$

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

▶ in each line or column, 1 and −1 alternate, starting and ending with 1.

Dodgson algorithm for determinants (Mills-Robbins-Rumsey)

- Dodgson algorithm for determinants (Mills-Robbins-Rumsey)
- Six vertex model

- ► Dodgson algorithm for determinants (Mills-Robbins-Rumsey)
- Six vertex model
- Fully packed loops.

- Dodgson algorithm for determinants (Mills-Robbins-Rumsey)
- Six vertex model
- Fully packed loops.
- ► Lattice completion of Bruhat order (Lascoux-Schützenberger).

- Dodgson algorithm for determinants (Mills-Robbins-Rumsey)
- Six vertex model
- Fully packed loops.
- Lattice completion of Bruhat order (Lascoux-Schützenberger).
- ▶ Irreducible representations of queer Lie algebra Q(n); gives the 2-enumeration formula

$$\sum_{M \in ASM(n)} 2^{\sharp (-1)(M)} = 2^{n(n-1)/2}$$

- Dodgson algorithm for determinants (Mills-Robbins-Rumsey)
- Six vertex model
- Fully packed loops.
- Lattice completion of Bruhat order (Lascoux-Schützenberger).
- ▶ Irreducible representations of queer Lie algebra Q(n); gives the 2-enumeration formula

$$\sum_{M \in ASM(n)} 2^{\sharp (-1)(M)} = 2^{n(n-1)/2}$$

Rewriting problems, ABBA (by Xavier Viennot)

Enumeration of ASMs

The number of ASM of size *n* is

$$A_n = \prod_{j=0}^{n-1} \frac{(3j+1)!}{(n+j)!}$$

$$A_n = 1 \qquad 2 \qquad 7 \qquad 42 \qquad 429 \qquad 7436 \qquad 218348$$

Conjectured by Mills, Robbins, Rumsey.

Proved by D. Zeilberger (1995).

Other proofs by G. Kuperberg, I. Fischer . . .

Gog triangles

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$2 \qquad 3 \qquad 4 \qquad 7$$

$$2 \qquad 3 \qquad 3$$

Gog triangles=Gelfand-Tsetlin triangles,

Gog triangles

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$2 \qquad 3 \qquad 4 \qquad 7$$

$$2 \qquad 3 \qquad 3$$

- Gog triangles=Gelfand-Tsetlin triangles,
- strictly increasing along lines.

Gog triangles

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$2 \qquad 3 \qquad 4 \qquad 7$$

$$2 \qquad 3 \qquad 3$$

- Gog triangles=Gelfand-Tsetlin triangles,
- strictly increasing along lines.
- ▶ Upper line is 1, 2, 3, ..., n.

Totally symmetric selfcomplementary plane partitions

Plane partitions having hexagonal symmetry, and equal to their complement in the cube.

TSSCPPs can be encoded by non intersecting lattice paths.

One can use the Lindström Gessel Viennot

formula to compute the number of TSSCPPs:

$$B_n = \prod_{j=0}^{n-1} \frac{(3j+1)!}{(n+j)!}$$
= 1 2 7 42 429 7436

$$B_n = 1$$
 2 7 42 429 7436 218348

$$B_n = A_n$$

Problem: find a bijective proof.

VERY DIFFICULT!

Magog triangles

They encode TSSCPPs.

Problem: find a bijection between Gog and Magog triangles.

Gog and Magog trapezoids.

The k right SW-NE diagonals of a Gog (reps. Magog) triangle form a trapezoid.

(5,3) Gog and Magog trapezoids.

By Zeilberger (1995), (n, k) Gog and Magog trapezoids are equienumerated.

Statistics

$$1+1+2+2+4-(1+1+2+3)=3$$

We try to simplify further using a conjecture by C. Krattenthaler.

Completion of Gog triangles

A triangle

$$\begin{array}{ccc}
a & b \\
c & \\
a \le c \le b; & a < b
\end{array}$$

has a minimal completion to a Gog trapezoid of size b

Completion of Magog triangles

A triangle

$$a$$
 b c $a \le c \le b$

has a minimal completion to a Magog trapezoid of size $\max(b, c+1)$

It is easy to find a bijection between triangles of same height, preserving the statistic:

if
$$a < b$$

and

$$\begin{bmatrix} a & b \\ & a \end{bmatrix}$$
 is mapped to $\begin{bmatrix} a & b-1 \\ & b-1 \end{bmatrix}$

The bijection splits into two steps.

Step 1:

Step 2:

Generalization

One can generalize this bijection to more general trapezoids by generalizing the two steps.

Step 1 will lead to investigating inversions.

Step 2 will lead to the *Schützenberger involution*.

Le soleil de Viennot:

Inversions of a Gog triangle

Already defined by Mills Robbins and Rumsey.

Schützenberger involution

Apply the transform to all entries in row i

This gives transform s_i

The Schützenberger involution is

$$S = s_1 s_2 s_3 \dots s_{n-1} s_1 s_2 \dots s_{n-2} \dots s_1 s_2 s_1$$

Schützenberger involution on words

Gelfand-Tsetlin \sim SSYT

Schützenberger involution lifts to words through RSK.

Schützenberger involution on words

Gelfand-Tsetlin~SSYT

- Schützenberger involution lifts to words through RSK.
- ▶ On a word on letters 1, 2, ..., n replace letter i by n + 1 i, then read the word backwards.

Schützenberger involution on words

Gelfand-Tsetlin∼SSYT

- Schützenberger involution lifts to words through RSK.
- ▶ On a word on letters 1, 2, ..., n replace letter i by n + 1 i, then read the word backwards.
- ▶ Beautiful algorithm for RSK due to Viennot, using the sun:

The general idea is to follow two steps:

▶ Step 1: for each inversion, substract 1 from the NE entries.

The general idea is to follow two steps:

▶ Step 1: for each inversion, substract 1 from the NE entries.

The general idea is to follow two steps:

▶ Step 1: for each inversion, substract 1 from the NE entries.

▶ Step 2: Apply the Schützenberger involution.

A (complicated) modification of this procedure works for (n, 2) trapezoids.

Hayat Cheballah, P.B. Gog and Magog Triangles, and the Schützenberger Involution Séminaire Lotharingien de Combinatoire, [B66d] (2012)

GOGAm triangles

A *GOGAm triangle* is the image by the Schützenberger involution of a Magog triangle.

Left trapezoids

The k left most NW-SE diagonals of a Gog triangle form a left Gog trapezoid.

The k left most NW-SE diagonals of a GOGAm triangle form a left GOGAm trapezoid.

Conjecture:

(n, k) Gog and GOGAm trapezoids are equienumerated.

Bijective proof for k = 1, 2.

Remarks:

left Magog trapezoids are less interesting.

Conjecture:

(n, k) Gog and GOGAm trapezoids are equienumerated.

Bijective proof for k = 1, 2.

Remarks:

- left Magog trapezoids are less interesting.
- One can also define Gog and GOGAm rectangles.

Thank you!

