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DISCRETE HOLOMORPHICITY

Let G be a planar graph embedded in R2, e.g. a square lattice.
F(zij) a c-v function defined at midpoints zij of edge (ij).
Then F is discretely holomorphic on G if

∑

(ij)∈F
F(zij)(zj − zi) = 0.

F is a face of G.
A discrete version of a contour integral.
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DISCRETE HOLOMORPHICITY

On Z2 it becomes

F(z12) + iF(z23) + i2F(z34) + i3F(z41) = 0.

We have one eqn. per face of G. This is usually less than the
number of unknowns, one for each edge.

These equns. don’t determine F(zij). without more info.

Approaching the continuum, we approximate the integral∫
C F(z)dz arb. closely by the sum over faces tiling C (interior).

This vanishes for all reasonable contours C and from Morera’s
theorem if F(z) is continuous then it is analytic.
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APPLICATION TO LATTICE MODELS

One looks for an observable that satisfies discrete
holomorphicity.

Such observables connect to Conformal Field Theories as the
discrete precursors of so-called parafermions.

Discrete holomorphicity appears to hold only when Boltzmann
weights of the model lie on the integrable critical manifold.

That is, they satisfy the Yang-Bxter equation.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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Figure: The figure shows the domain of width T and height
2L. Walks start at point a and finish internally, or on the α, β
or ε (ε̄) wall.
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Sum (p− v)F(p) + (q− v)F(q) + (r − v)F(r) = 0,
a local identity, over all vertices in the domain.

The inner mid-edges don’t contribute.

The domain has a N-S symmetry

The winding number of walks hitting the boundary is known

cos
(

3π
8

)
AT,L(xc) + BT,L(xc) + cos

(π
4

)
ET,L(xc) = 1.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann



MIN2Col

Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = zc.

!

"

# $

α β

ε

ε̄

a
2L

T

Sum (p− v)F(p) + (q− v)F(q) + (r − v)F(r) = 0,
a local identity, over all vertices in the domain.

The inner mid-edges don’t contribute.

The domain has a N-S symmetry

The winding number of walks hitting the boundary is known

cos
(

3π
8

)
AT,L(xc) + BT,L(xc) + cos

(π
4

)
ET,L(xc) = 1.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann



MIN2Col

Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = zc.

!

"

# $

α β

ε

ε̄

a
2L

T

Sum (p− v)F(p) + (q− v)F(q) + (r − v)F(r) = 0,
a local identity, over all vertices in the domain.

The inner mid-edges don’t contribute.

The domain has a N-S symmetry

The winding number of walks hitting the boundary is known

cos
(

3π
8

)
AT,L(xc) + BT,L(xc) + cos

(π
4

)
ET,L(xc) = 1.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann



MIN2Col

Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = zc.

!

"

# $

α β

ε

ε̄

a
2L

T

Sum (p− v)F(p) + (q− v)F(q) + (r − v)F(r) = 0,
a local identity, over all vertices in the domain.

The inner mid-edges don’t contribute.

The domain has a N-S symmetry

The winding number of walks hitting the boundary is known

cos
(

3π
8

)
AT,L(xc) + BT,L(xc) + cos

(π
4

)
ET,L(xc) = 1.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann



MIN2Col

Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = zc.

!

"

# $

α β

ε

ε̄

a
2L

T

Sum (p− v)F(p) + (q− v)F(q) + (r − v)F(r) = 0,
a local identity, over all vertices in the domain.

The inner mid-edges don’t contribute.

The domain has a N-S symmetry

The winding number of walks hitting the boundary is known

cos
(

3π
8

)
AT,L(xc) + BT,L(xc) + cos

(π
4

)
ET,L(xc) = 1.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann



MIN2Col

Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = zc.

By first letting L→∞, then T →∞, D-C/S showed that the ogf
of half-plane SAW diverges at xc, establishing that
µ ≥

√
2 +
√

2.

Then by considering bridges they showed that the ogf for
half-plane SAW is finite for x < xc, and so µ ≤

√
2 +
√

2.

Hence µ =
√

2 +
√

2.
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REMARKABLE NATURE OF THE RESULT

Letting L→∞, it follows that ET(xc) = 0.
Then in a strip of width T we have

cos
(

3π
8

)
AT(xc) + BT(xc) = 1.

Consider a strip of width 0, i.e. a spine. Then

AT(x) =
2x3

1− x2 , BT(x) =
2x2

1− x2 .

Then solve

cos
(

3π
8

)
AT(x) + BT(x) = 1.

The solution is xc = 1/
√

2 +
√

2.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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SURFACE INTERACTIONS

Take the same domain ST,L, but add weights to the vertices on the β
boundary:

where p, q, r are the three mid-edges adjacent to an arbitrary v ∈ V (Ω).
In Section 2.1 we outlined the proof by Duminil-Copin and Smirnov [30] that the growth constant

of the self-avoiding walk is equal to x−1
c = (2 cos(π/8)) =

�
2 +

√
2. Recall that the proof involved

a special domain ST,L (see Figure 2.3) and generating functions of SAW ending on the different
sides of this domain.

Here we generalise their construction to include a boundary weight. As shown in Figure 4.2,
we will identify the surface with the β boundary of ST,L.

α β

�+

�−

a
2L

T

Figure 4.2: Finite patch S3,1 of the hexagonal lattice with a boundary. Contours, possibly closed,
of the O(n) model run from mid-edge to mid-edge acquiring a weight x for each step, and a weight
y for each contact (shown as a black disc) with the right hand side boundary. The SAW component
of a loop configuration starts on the central mid-edge of the left boundary (shown as a).

Let us define the following generating functions:

AT,L(x, y) :=
�

γ⊂ST,L
a→α\{a}

x�(γ)yν(γ)nc(γ),

BT,L(x, y) :=
�

γ⊂ST,L
a→β

x�(γ)yν(γ)nc(γ),

ET,L(x, y) :=
�

γ⊂ST,L

a→�+∪�−

x�(γ)yν(γ)nc(γ),

where the sums are over all configurations for which the SAW component runs from a to the α, β
or �+, �− boundaries respectively. Furthermore define the special generating function

CT,L(x, y) :=
�

γ⊂ST,L
a→a

x�(γ)yν(γ)nc(γ)

which sums over configurations comprising only closed loops inside ST,L; that is, configurations
whose self-avoiding walk component is the empty walk a → a.

122

Then we find (y∗ = 1 +
√

2 (Batchelor/Yung ’95 yc = y∗)

1 = cos
(

3π
8

)
AT,L(xc, y) + cos

(π
4

)
ET,L(xc, y) +

y∗ − y
y(y∗ − 1)

BT,L(xc, y)

where y index counts visits to the β boundary.
A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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Safe to take L→∞: (so we have a strip)

1 = cos
(

3π
8

)
AT(xc, y) + cos

(π
4

)
ET(xc, y) +

y∗ − y
y(y∗ − 1)

BT(xc, y)

Straightforward to show
ET(xc, y) = 0 for 0 ≤ y < y∗

yc ≥ y∗

limT AT(xc, y) = A(xc, y) = A(xc) is constant for 0 ≤ y < y∗

So write
cos(3π/8)A(xc, y) = 1− δ

Then the identity reduces to

B(xc, y) = lim
T

BT(xc, y) =
δy(y∗ − 1)

y∗ − y

and in particular
B(xc, 1) = δ

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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PROOF OF THE CRITICAL FUGACITY

Proposition

If δ = 0 then yc = y∗.

Proof uses a decomposition of AT walks into BT walks:
T

T − 1

AT(xc, y)− AT−1(xc, 1) ≤ xcBT−1(xc, 1)BT(xc, y),

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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The proof of δ = 0 is complicated! (Very probabilistic.)

Use renewal theory to show δ−1 is the expected height of an
irreducible bridge

Show E[height] <∞⇒ E[width] <∞
Show E[width] <∞ leads to a contradiction

Due to Hugo Duminil-Copin.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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Figure: Finite patch S3,1 of the honeycomb lattice with a
boundary. The SAW starts at a, ends at a mid-edge z,
acquiring a weights x for each step, and y for each contact
(filled circle) with the right hand side boundary.
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There is no corresponding equation for SAW on other lattices.

For the square lattice, Cardy and Ikhlef found a similar
(parafermionic) observable, but the model describes osculating
SAW with asymmetric weights.

Arguing that the scaling limit of all two-dimensional SAW
models should be identical, “something similar" should be true
for SAW on other lattices.

That is to say, an identity similar to the above should hold in the
limit T →∞.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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Figure: Bad picture with nice inset of cαAT(x) + B(x) for
honeycomb lattice walks in a strip of width 1, · · · , 10.
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Figure: Square lattice cαAT(x) + B(x) for walks in a strip of
width 1, · · · , 15.
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Conjecture (best estimates of xc):

1 = cA(T)AT(xc) + cB(T)BT(xc),

Successive widths (T,T + 1) give cA(T) and cB(T).
(Square lattice T ≤ 15, triangular lattice T ≤ 11).
Extrapolate:

lim
T→∞

cA(T)

cB(T)
= cos

(
3π
8

)

to 6 sig. digits. Hence

cos
(

3π
8

)
AT(xc) + BT(xc) = const.+ correction

In fact 1.02497(1− 0.14/T2), similarly for the triang. lattice.
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More generally, assume

cA(T)AT(xc)+cB(T)BT(xc) = cA(T +1)AT+1(xc)+cB(T +1)BT+1(xc)

Successive triples give

cA(T), cB(T), xc(T).

Extrapolate xc(T) and find
xc(sq) = 0.37905228(1) and xc(tr) = 0.240917575(10).
(Since used for honeycomb NASAW).
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Figure: Finite patch with a boundary. The SAW acquires
weights x, y for each step/contact.

cos
(

3π
8

)
AT(xc, y) + cos

(π
4

)(yc − y
y

)
BT(xc, y) = 1.
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At y = yc we have

cos
(

3π
8

)
AT(xc, y) = 1.

So for the honeycomb lattice T = 1 and T = 2 results are
enough to calculate xc and yc!

Other lattices?

Vertex or site interaction?

Honeycomb all vertices interaction ?

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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a

z

Figure: The figure shows the two types of surface sites on
the honeycomb lattice as indicated by solid and shaded
circles.
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Figure: Square lattice with surface site interactions.
AT(xc, y) versus y for T = 1 . . . 15. Inset shows the
intersection region in finer scale.
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We denote by yc(T) the point of intersection of AT(xc, y) and
AT+1(xc, y).

We observe that the sequence {yc(T)} is a monotone function of
T. The argument above implies that limT→∞ yc(T) = yc.

This then suggests a new numerical approach to estimating yc.

One first calculates the generating functions AT(xc, y), for all
strip widths T = 0, 1, 2, . . .Tmax.

Then use these to calculate yc(T) for T = 0, 1, 2, . . .Tmax−1.

Then extrapolate this monotone sequence by a variety of
standard sequence extrapolation methods.
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Table: Estimated critical fugacity yc for surface adsorption.

Lattice Site weighting Edge weighting
Honeycomb 1.46767

√
1 +
√

2
Square 1.77564 2.040135
Triangular 2.144181 2.950026

For the square lattice these are at least 1000 times more accurate than
other methods. Other results are new.
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EXTEND OFF-CRITICALITY

We redefine the parafermionic operator (σ̄ = 1 + σ) as

F(x) = F(a, x, z, σ̄) =
∑

γ⊂Ω:a→x

eσ̄W(γ)z|γ|.

In terms of this redefined operator, the D-C/S result is
∑

γ⊂Ω:a→x

ei 3
8 W(γ)z|γ|c = 1.

where the sum is over all walks starting at a and ending at x, on
the boundary of Ω.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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Theorem
For z ≤ zc

∑

γ:a→x∈∂Ω

e
3i
8 W(γ)z|γ| + (1− z/zc)

∑

γ:a→x∈Ω\∂Ω

e
3i
8 W(γ)z|γ| = 1.

The first sum is over all walks that finish at the surface of the domain,
while the second sum is over all walks that finish strictly in the
interior of the domain.
We do this for the n-vector model n ∈ [−2, 2]. The r.h.s. becomes a
loop generating function, and F has an extra parameter that counts
loops.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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SKETCH OF PROOF

Lemma For a given vertex v with mid-edges p, q and r, and z below
the critical value zc, the observable FH(z) satisfies

(p− v)FH(p) + (q− v)FH(q) + (r − v)FH(r) = (1− z
zc

)FV(v)

where

FV(v) := (p− v)FH(p; v) + (q− v)FH(q; v) + (r − v)FH(r; v)

and FH(p; v) only includes configurations where there is a walk
terminating at the mid-edge p which precedes the vertex v. Now sum
over all vertices, using this lemma, and the result follows, after
invoking symmetries, and some simplifications.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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EXPONENT INEQUALITIES

In a strip, we obtain

cos
(

3π
8

)
AT(z) + BT(z) + (1− z/zc)GT(z) = 1.

As T →∞, AT(z)→ χ11(z), BT(z)→ 0, and GT(z) ≤ χ1.

It immediately follows that

γ11 ≤ γ1 − 1.

(Numerically, 73
64 ≥ 1.)

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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WINDING ANGLE CALCULATION

Now to obtain the winding angle distribution function directly from
the off-critical generating function identity.
Define

Gθ,Ω(x) =
∑

γ:a→z∈Ω\∂Ω
W(γ)=θ

x|γ|nc(γ)

(contributions to GΩ(x) that involve walks with winding angle θ.
Also

FΩ(x) =
∑

γ:a→z∈∂Ω

eσ̃iW(γ)x|γ|nc(γ),

the ogf of “walks" that end on a domain boundary.
(To simplify the notation, γ now describes a walk and a configuration
of loops.)
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The key identity becomes

FΩ(x) + (1− x/xc)
∑

θ

eσ̃iθGθ,Ω(x) = CΩ(x)

Normalise, so that F∗Ω(x) =
FΩ(x)

CΩ(x)
and G∗θ,Ω(x) =

Gθ,Ω(x)

CΩ(x)
.

For x < xc define F∗(x) and G∗θ(x) to be F∗Ω(x) and G∗θ,Ω(x)
respectively as Ω approaches the half plane. So

F∗(x) + (1− x/xc)
∑

θ

eσ̃iθG∗θ(x) = 1. (1)

We assume the existence of two critical exponents, γ11 for loops, and
γ1 for walks attached to a surface.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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F∗(x) ∼ 1 + const.(1− x/xc)
−γ11 ;

∑

θ

G∗θ(x) ∼ const.(1− x/xc)
−γ1 .

From equation (1) we obtain

∑

θ

eσ̃iθG∗θ(x) =
1− F∗(x)

1− x/xc
∼ C(1− x/xc)

−γ11−1. (2)

Let G∗θ(x) =

∞∑

j=0

aθ(j)xj.

Then ∑

θ

aθ(j) ∼ const.x−j
c jγ1−1, and

∑

θ

eσ̃iθaθ(j) ∼ Cx−j
c jγ11 .

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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∑

θ

aθ(j) ∼ const.x−j
c jγ1−1, and

∑

θ

eσ̃iθaθ(j) ∼ Cx−j
c jγ11 .

Let bθ(j) =
aθ(j)∑
θ aθ(j)

.

∑

θ

eσ̃iθbθ(j) ∼ const.jγ11−γ1+1

Now bθ is just the probability distribution function P(θ), so

∑

θ

eσ̃iθbθ(j) ≈
∫ ∞

−∞
eσ̃iθP(θ)dθ ∝ j−ω.

So
1 + γ11 − γ1 = −ω.
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This gives the winding angle distribution exponent for all O(n)
models with n ∈ [−2, 2] in terms of exponents γ1 and γ11.

From the existing physics literature, one has (CFT)

γ1 =
κ2 + 12κ− 12

8κ(4− κ)
, γ11 = −2(3− κ)

κ(4− κ)
,

and thus

1 + γ11 − γ1 = −9
8

(2− κ)2

κ(4− κ)
.

A generalised identity for SAW on the honeycomb lattice Tony Guttmann
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WINDING ANGLE DISTRIBUTION

Obtained by Duplantier and Saleur for the O(n) model. We have
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Note that for SAW (κ = 8/3) this gives ω = σ̃2 = 9
64 .

There are several other calculations that we can make with this
identity, and that is work in progress.

THE END – Thank you
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