```
Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = z
0
000
```


Jim Propp, LUi-MÊME


```
Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = z
OO
000
```


Jim Propp

```
Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = z
OO
000
```


Jim Propp

Jim Propp

Jim Propp

Jim Propp

A generalised identity for SAW on the honeycomb lattice

Tony Guttmann. Joint work with Nick Beaton, Mireille Bousquet-Mélou, Jan de Gier, Hugo Duminil-Copin, Andrew Elvey Price, Iwan Jensen and Alex Lee

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems
Department of Mathematics and Statistics
The University of Melbourne, Australia

Bordeaux, Viennotfest, June 2012

```
Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = z

\section*{DISCRETE HOLOMORPHICITY}

- Let \(\mathcal{G}\) be a planar graph embedded in \(\mathbb{R}^{2}\), e.g. a square lattice.
- \(F\left(z_{i j}\right)\) a c-v function defined at midpoints \(z_{i j}\) of edge \((i j)\)
- Then \(F\) is discretely holomorphic on \(\mathcal{G}\) if


\section*{DISCRETE HOLOMORPHICITY}

- Let \(\mathcal{G}\) be a planar graph embedded in \(\mathbb{R}^{2}\), e.g. a square lattice.
- \(F\left(z_{i j}\right)\) a c-v function defined at midpoints \(z_{i j}\) of edge \((i j)\).
- Then \(F\) is discretely holomorphic on \(\mathcal{G}\) if

- A discrete version of a contour integral.

\section*{DISCRETE HOLOMORPHICITY}

- Let \(\mathcal{G}\) be a planar graph embedded in \(\mathbb{R}^{2}\), e.g. a square lattice.
- \(F\left(z_{i j}\right)\) a c-v function defined at midpoints \(z_{i j}\) of edge \((i j)\).
- Then \(F\) is discretely holomorphic on \(\mathcal{G}\) if
\[
\sum_{(i j) \in \mathcal{F}} F\left(z_{i j}\right)\left(z_{j}-z_{i}\right)=0
\]
\(\mathcal{F}\) is a face of \(\mathcal{G}\).

\section*{DISCRETE HOLOMORPHICITY}

- Let \(\mathcal{G}\) be a planar graph embedded in \(\mathbb{R}^{2}\), e.g. a square lattice.
- \(F\left(z_{i j}\right)\) a c-v function defined at midpoints \(z_{i j}\) of edge \((i j)\).
- Then \(F\) is discretely holomorphic on \(\mathcal{G}\) if
\[
\sum_{(i j) \in \mathcal{F}} F\left(z_{i j}\right)\left(z_{j}-z_{i}\right)=0
\]
\(\mathcal{F}\) is a face of \(\mathcal{G}\).
- A discrete version of a contour integral.

\section*{DISCRETE HOLOMORPHICITY}
- On \(\mathbb{Z}^{2}\) it becomes
\[
F\left(z_{12}\right)+i F\left(z_{23}\right)+i^{2} F\left(z_{34}\right)+i^{3} F\left(z_{41}\right)=0 .
\]
- We have one eqn. per face of \(\mathcal{G}\). This is usually less than the number of unknowns, one for each edge.
- These equis. don't determine \(F\left(z_{i j}\right)\). without more info.
- Approaching the continuum, we approximate the integral \(\int_{C} F(z) d z\) arb. closely by the sum over faces tiling \(C\) (interior).
- This vanishes for all reasonable contours \(C\) and from Morera's theorem if \(F(z)\) is continuous then it is analytic.

\section*{DISCRETE HOLOMORPHICITY}
- On \(\mathbb{Z}^{2}\) it becomes
\[
F\left(z_{12}\right)+i F\left(z_{23}\right)+i^{2} F\left(z_{34}\right)+i^{3} F\left(z_{41}\right)=0 .
\]
- We have one eqn. per face of \(\mathcal{G}\). This is usually less than the number of unknowns, one for each edge.
- These equns. don't determine \(F\left(z_{i j}\right)\). without more info.
- Approaching the continuum, we approximate the integral \(\int_{C} F(z) d z\) arb. closely by the sum over faces tiling \(C\) (interio). - This vanishes for all reasonable contours \(C\) and from Morera's theorem if \(F(z)\) is continuous then it is analytic.

\section*{DISCRETE HOLOMORPHICITY}
- On \(\mathbb{Z}^{2}\) it becomes
\[
F\left(z_{12}\right)+i F\left(z_{23}\right)+i^{2} F\left(z_{34}\right)+i^{3} F\left(z_{41}\right)=0 .
\]
- We have one eqn. per face of \(\mathcal{G}\). This is usually less than the number of unknowns, one for each edge.
- These equns. don't determine \(F\left(z_{i j}\right)\). without more info.
- Approaching the continuum, we approximate the integral \(\int_{C} F(z) d z\) arb. closely by the sum over faces tiling \(C\) (interior). - This vanishes for all reasonable contours \(C\) and from Morera's theorem if \(F(z)\) is continuous then it is analytic.

\section*{DISCRETE HOLOMORPHICITY}
- On \(\mathbb{Z}^{2}\) it becomes
\[
F\left(z_{12}\right)+i F\left(z_{23}\right)+i^{2} F\left(z_{34}\right)+i^{3} F\left(z_{41}\right)=0 .
\]
- We have one eqn. per face of \(\mathcal{G}\). This is usually less than the number of unknowns, one for each edge.
- These equns. don't determine \(F\left(z_{i j}\right)\). without more info.
- Approaching the continuum, we approximate the integral \(\int_{C} F(z) d z\) arb. closely by the sum over faces tiling \(C\) (interior).
- This vanishes for all reasonable contours \(C\) and from Morera's theorem if \(F(z)\) is continuous then it is analytic.

\section*{DISCRETE HOLOMORPHICITY}
- On \(\mathbb{Z}^{2}\) it becomes
\[
F\left(z_{12}\right)+i F\left(z_{23}\right)+i^{2} F\left(z_{34}\right)+i^{3} F\left(z_{41}\right)=0 .
\]
- We have one eqn. per face of \(\mathcal{G}\). This is usually less than the number of unknowns, one for each edge.
- These equns. don't determine \(F\left(z_{i j}\right)\). without more info.
- Approaching the continuum, we approximate the integral \(\int_{C} F(z) d z\) arb. closely by the sum over faces tiling \(C\) (interior).
- This vanishes for all reasonable contours \(C\) and from Morera's theorem if \(F(z)\) is continuous then it is analytic.
```

Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = zcc

ApPLICATION TO LATTICE MODELS

- One looks for an observable that satisfies discrete holomorphicity.
- Such observables connect to Conformal Field Theories as the discrete precursors of so-called parafermions.
- Discrete holomorphicity appears to hold only when Boltzmann weights of the model lie on the integrable critical manifold.
- That is, they satisfy the Yang-Bxter equation.

```
Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = z

\section*{Application to lattice models}
- One looks for an observable that satisfies discrete holomorphicity.
- Such observables connect to Conformal Field Theories as the discrete precursors of so-called parafermions.
- Discrete holomorphicity appears to hold only when Boltzmann weights of the model lie on the integrable critical manifold.
- That is they satisfy the Yang-Bxter equation.
- One looks for an observable that satisfies discrete holomorphicity.
- Such observables connect to Conformal Field Theories as the discrete precursors of so-called parafermions.
- Discrete holomorphicity appears to hold only when Boltzmann weights of the model lie on the integrable critical manifold.
- That is, they satisfy the Yang-Bxter equation.
- One looks for an observable that satisfies discrete holomorphicity.
- Such observables connect to Conformal Field Theories as the discrete precursors of so-called parafermions.
- Discrete holomorphicity appears to hold only when Boltzmann weights of the model lie on the integrable critical manifold.
- That is, they satisfy the Yang-Bxter equation.

\section*{REFERENCES}
- The critical fugacity for surface adsorption of SAW on the honeycomb lattice is \(1+\sqrt{2}\). arXiv 1109.0358 Commun. Math. Phys, (shortly to be replaced with a version with a correct proof!).
- A numerical adaptation of SAW identities from the honeycomb to other two-dimensional lattices. arXiv 1110.1141, J. Phys. A
- Two-dimensional SAW and polymer adsorption: Critical fugacity estimates. arXiv 1110.6695, J Phys A
- Off-critical partition functions and the winding angle distribution of the \(\mathrm{O}(n)\) model. arXiv 1203.2959, J Phys A


Figure: The figure shows the domain of width \(T\) and height \(2 L\). Walks start at point \(a\) and finish internally, or on the \(\alpha, \beta\) or \(\varepsilon(\bar{\varepsilon})\) wall.

Let
\[
F(p) \equiv F(t, \alpha ; p)=\sum_{\omega: a \rightsquigarrow p \text { in } D} t^{|\omega|} e^{i \alpha W(\omega)}
\]

If \(p, q\) and \(r\) are the 3 mid-edges around a vertex \(v\) of the honeycomb lattice, taken in counterclockwise order, then, for \(t=t_{c}\) and \(\alpha=-5 / 8\),
\[
F(p)+j F(q)+j^{2} F(r)=0
\]
where \(j=e^{2 i \pi / 3}\), or, more symmetrically,
\[
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
\]


\(\operatorname{Sum}(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0\), a local identity, over all vertices in the domain.
- The inner mid-edges don't contribute.
- The domain has a N-S symmetry
- The winding number of walks hitting the boundary is known


\(\operatorname{Sum}(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0\), a local identity, over all vertices in the domain.
- The inner mid-edges don't contribute.
- The domain has a N-S symmetry
- The winding number of walks hitting the boundary is known


\(\operatorname{Sum}(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0\), a local identity, over all vertices in the domain.
- The inner mid-edges don't contribute.
- The domain has a N-S symmetry
- The winding number of walks hitting the boundary is known


\(\operatorname{Sum}(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0\), a local identity, over all vertices in the domain.
- The inner mid-edges don't contribute.
- The domain has a N-S symmetry
- The winding number of walks hitting the boundary is known


\(\operatorname{Sum}(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0\),
a local identity, over all vertices in the domain.
- The inner mid-edges don't contribute.
- The domain has a N-S symmetry
- The winding number of walks hitting the boundary is known
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T, L}\left(x_{c}\right)+B_{T, L}\left(x_{c}\right)+\cos \left(\frac{\pi}{4}\right) E_{T, L}\left(x_{c}\right)=1 .
\]
- By first letting \(L \rightarrow \infty\), then \(T \rightarrow \infty\), D-C/S showed that the ogf of half-plane SAW diverges at \(x_{c}\), establishing that \(\mu \geq \sqrt{2+\sqrt{2}}\).
- Then by considering bridges they showed that the ogf for half-plane SAW is finite for \(x<x_{c}\), and so \(\mu \leq \sqrt{2+\sqrt{2}}\).
- Hence \(\mu=\sqrt{2+\sqrt{2}}\).
- By first letting \(L \rightarrow \infty\), then \(T \rightarrow \infty\), D-C/S showed that the ogf of half-plane SAW diverges at \(x_{c}\), establishing that \(\mu \geq \sqrt{2+\sqrt{2}}\).
- Then by considering bridges they showed that the ogf for half-plane SAW is finite for \(x<x_{c}\), and so \(\mu \leq \sqrt{2+\sqrt{2}}\).
- By first letting \(L \rightarrow \infty\), then \(T \rightarrow \infty\), D-C/S showed that the ogf of half-plane SAW diverges at \(x_{c}\), establishing that \(\mu \geq \sqrt{2+\sqrt{2}}\).
- Then by considering bridges they showed that the ogf for half-plane SAW is finite for \(x<x_{c}\), and so \(\mu \leq \sqrt{2+\sqrt{2}}\).
- Hence \(\mu=\sqrt{2+\sqrt{2}}\).

\section*{REMARKABLE NATURE OF THE RESULT}
- Letting \(L \rightarrow \infty\), it follows that \(E_{T}\left(x_{c}\right)=0\).
- Then in a strip of width \(T\) we have
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}\right)+B_{T}\left(x_{c}\right)=1
\]
- Consider a strip of width 0, i.e. a spine. Then

- Then solve


\section*{REMARKABLE NATURE OF THE RESULT}
- Letting \(L \rightarrow \infty\), it follows that \(E_{T}\left(x_{c}\right)=0\).
- Then in a strip of width \(T\) we have
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}\right)+B_{T}\left(x_{c}\right)=1
\]
- Consider a strip of width 0 , i.e. a spine. Then
\[
A_{T}(x)=\frac{2 x^{3}}{1-x^{2}}, \quad B_{T}(x)=\frac{2 x^{2}}{1-x^{2}}
\]
- Then solve


\section*{REMARKABLE NATURE OF THE RESULT}
- Letting \(L \rightarrow \infty\), it follows that \(E_{T}\left(x_{c}\right)=0\).
- Then in a strip of width \(T\) we have
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}\right)+B_{T}\left(x_{c}\right)=1
\]
- Consider a strip of width 0 , i.e. a spine. Then
\[
A_{T}(x)=\frac{2 x^{3}}{1-x^{2}}, \quad B_{T}(x)=\frac{2 x^{2}}{1-x^{2}}
\]
- Then solve
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}(x)+B_{T}(x)=1
\]

\section*{REMARKABLE NATURE OF THE RESULT}
- Letting \(L \rightarrow \infty\), it follows that \(E_{T}\left(x_{c}\right)=0\).
- Then in a strip of width \(T\) we have
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}\right)+B_{T}\left(x_{c}\right)=1
\]
- Consider a strip of width 0 , i.e. a spine. Then
\[
A_{T}(x)=\frac{2 x^{3}}{1-x^{2}}, \quad B_{T}(x)=\frac{2 x^{2}}{1-x^{2}}
\]
- Then solve
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}(x)+B_{T}(x)=1
\]
- The solution is \(x_{c}=1 / \sqrt{2+\sqrt{2}}\).

\section*{SURFACE INTERACTIONS}

Take the same domain \(S_{T, L}\), but add weights to the vertices on the \(\beta\) boundary:


Then we find \(\left(y *=1+\sqrt{2}\right.\) (Batchelor/Yung '95 \(y_{c}=y *\) )
\[
1=\cos \left(\frac{3 \pi}{8}\right) A_{T, L}\left(x_{\mathrm{c}}, y\right)+\cos \left(\frac{\pi}{4}\right) E_{T, L}\left(x_{\mathrm{c}}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{T, L}\left(x_{\mathrm{c}}, y\right)
\]
where \(y\) index counts visits to the \(\beta\) boundary.

Safe to take \(L \rightarrow \infty\) : (so we have a strip)
\[
1=\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{\mathrm{c}}, y\right)+\cos \left(\frac{\pi}{4}\right) E_{T}\left(x_{\mathrm{c}}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{T}\left(x_{\mathrm{c}}, y\right)
\]

Straightforward to show
- \(E_{T}\left(x_{\mathrm{c}}, y\right)=0\) for \(0 \leq y<y^{*}\)
- \(y_{\mathrm{c}} \geq y^{*}\)
- \(\lim _{T} A_{T}\left(x_{\mathrm{c}}, y\right)=A\left(x_{\mathrm{c}}, y\right)=A\left(x_{\mathrm{c}}\right)\) is constant for \(0 \leq y<y^{*}\)

So write
\[
\cos (3 \pi / 8) A\left(x_{\mathrm{c}}, y\right)=1-\delta
\]

Then the identity reduces to
\[
B\left(x_{\mathrm{c}}, y\right)=\lim _{T} B_{T}\left(x_{\mathrm{c}}, y\right)=\frac{\delta y\left(y^{*}-1\right)}{y^{*}-y}
\]
and in particular
\[
B\left(x_{\mathrm{c}}, 1\right)=\delta
\]

\section*{PROOF OF THE CRITICAL FUGACITY}

\section*{Proposition}
\[
\text { If } \delta=0 \text { then } y_{\mathrm{c}}=y^{*} .
\]

Proof uses a decomposition of \(A_{T}\) walks into \(B_{T}\) walks:


\section*{The proof of \(\delta=0\) is complicated! (Very probabilistic.)}
- Use renewal theory to show \(\delta^{-1}\) is the expected height of an
- Show \(\mathbb{E}[\) height \(]<\infty \Rightarrow \mathbb{E}[\) width \(]<\infty\)
- Show \(\mathbb{E}[\) width \(]<\infty\) leads to a contradiction

\section*{Due to Hugo Duminil-Copin.}

The proof of \(\delta=0\) is complicated! (Very probabilistic.)
- Use renewal theory to show \(\delta^{-1}\) is the expected height of an irreducible bridge
- Show \(\mathbb{E}[\) height \(]<\infty \Rightarrow \mathbb{E}[\) width \(]<\infty\)
- Show \(\mathbb{E}[\) width \(]<\infty\) leads to a contradiction

Due to Hugo Duminil-Copin.


Figure: Finite patch \(S_{3,1}\) of the honeycomb lattice with a boundary. The SAW starts at \(a\), ends at a mid-edge \(z\), acquiring a weights \(x\) for each step, and \(y\) for each contact (filled circle) with the right hand side boundary.
- There is no corresponding equation for SAW on other lattices.
- For the square lattice, Cardy and Ikhlef found a similar (parafermionic) observable, but the model describes osculating SAW with asymmetric weights.
- Arguing that the scaling limit of all two-dimensional SAW models should be identical, "something similar" should be true for SAW on other lattices.
- That is to say, an identity similar to the above should hold in the limit \(T \rightarrow \infty\).
- There is no corresponding equation for SAW on other lattices.
- For the square lattice, Cardy and Ikhlef found a similar (parafermionic) observable, but the model describes osculating SAW with asymmetric weights.
- Arguing that the scaling limit of all two-dimensional SAW models should be identical, "something similar" should be true for SAW on other lattices.
- That is to say, an identity similar to the above should hold in the limit \(T \rightarrow \infty\).
- There is no corresponding equation for SAW on other lattices.
- For the square lattice, Cardy and Ikhlef found a similar (parafermionic) observable, but the model describes osculating SAW with asymmetric weights.
- Arguing that the scaling limit of all two-dimensional SAW models should be identical, "something similar" should be true for SAW on other lattices.
- That is to say, an identity similar to the above should hold in the limit \(T \rightarrow \infty\).
- There is no corresponding equation for SAW on other lattices.
- For the square lattice, Cardy and Ikhlef found a similar (parafermionic) observable, but the model describes osculating SAW with asymmetric weights.
- Arguing that the scaling limit of all two-dimensional SAW models should be identical, "something similar" should be true for SAW on other lattices.
- That is to say, an identity similar to the above should hold in the limit \(T \rightarrow \infty\).


Figure: Bad picture with nice inset of \(c_{\alpha} A_{T}(x)+B(x)\) for honeycomb lattice walks in a strip of width \(1, \cdots, 10\).


Figure: Square lattice \(c_{\alpha} A_{T}(x)+B(x)\) for walks in a strip of width \(1, \cdots, 15\).

\section*{Conjecture (best estimates of \(x_{c}\) ):}
\[
1=c_{A}(T) A_{T}\left(x_{c}\right)+c_{B}(T) B_{T}\left(x_{c}\right),
\]

Successive widths \((T, T+1)\) give \(c_{A}(T)\) and \(c_{B}(T)\).
(Square lattice \(T \leq 15\), triangular lattice \(T \leq 11\) ).
Extrapolate:

to 6 sig. digits. Hence
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}\right)+B_{T}\left(x_{c}\right)=\text { const. }+ \text { correction }
\]

In fact \(1.02497\left(1-0.14 / T^{2}\right)\), similarly for the triang. lattice.

Conjecture (best estimates of \(x_{c}\) ):
\[
1=c_{A}(T) A_{T}\left(x_{c}\right)+c_{B}(T) B_{T}\left(x_{c}\right),
\]

Successive widths \((T, T+1)\) give \(c_{A}(T)\) and \(c_{B}(T)\). (Square lattice \(T \leq 15\), triangular lattice \(T \leq 11\) ).
Extrapolate:

to 6 sig. digits. Hence


In fact \(1.02497\left(1-0.14 / T^{2}\right)\), similarly for the triang. lattice.

Conjecture (best estimates of \(x_{c}\) ):
\[
1=c_{A}(T) A_{T}\left(x_{c}\right)+c_{B}(T) B_{T}\left(x_{c}\right),
\]

Successive widths \((T, T+1)\) give \(c_{A}(T)\) and \(c_{B}(T)\).
(Square lattice \(T \leq 15\), triangular lattice \(T \leq 11\) ).
Extrapolate:
\[
\lim _{T \rightarrow \infty} \frac{c_{A}(T)}{c_{B}(T)}=\cos \left(\frac{3 \pi}{8}\right)
\]
to 6 sig. digits.


In fact \(1.02497\left(1-0.14 / T^{2}\right)\), similarly for the triang. lattice.

Conjecture (best estimates of \(x_{c}\) ):
\[
1=c_{A}(T) A_{T}\left(x_{c}\right)+c_{B}(T) B_{T}\left(x_{c}\right),
\]

Successive widths \((T, T+1)\) give \(c_{A}(T)\) and \(c_{B}(T)\).
(Square lattice \(T \leq 15\), triangular lattice \(T \leq 11\) ).
Extrapolate:
\[
\lim _{T \rightarrow \infty} \frac{c_{A}(T)}{c_{B}(T)}=\cos \left(\frac{3 \pi}{8}\right)
\]
to 6 sig. digits. Hence
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}\right)+B_{T}\left(x_{c}\right)=\text { const } .+ \text { correction }
\]

In fact \(1.02497\left(1-0.14 / T^{2}\right)\), similarly for the triang. lattice.

Conjecture (best estimates of \(x_{c}\) ):
\[
1=c_{A}(T) A_{T}\left(x_{c}\right)+c_{B}(T) B_{T}\left(x_{c}\right),
\]

Successive widths \((T, T+1)\) give \(c_{A}(T)\) and \(c_{B}(T)\).
(Square lattice \(T \leq 15\), triangular lattice \(T \leq 11\) ).
Extrapolate:
\[
\lim _{T \rightarrow \infty} \frac{c_{A}(T)}{c_{B}(T)}=\cos \left(\frac{3 \pi}{8}\right)
\]
to 6 sig. digits. Hence
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}\right)+B_{T}\left(x_{c}\right)=\text { const } .+ \text { correction }
\]

In fact \(1.02497\left(1-0.14 / T^{2}\right)\), similarly for the triang. lattice.

\section*{More generally, assume}
\(c_{A}(T) A_{T}\left(x_{c}\right)+c_{B}(T) B_{T}\left(x_{c}\right)=c_{A}(T+1) A_{T+1}\left(x_{c}\right)+c_{B}(T+1) B_{T+1}\left(x_{c}\right)\)
Successive triples give
\[
c_{A}(T), c_{B}(T), x_{c}(T)
\]

Extrapolate \(x_{c}(T)\) and find
\(x_{c}(s q)=0.37905228(1)\) and \(x_{c}(t r)=0.240917575(10)\).
(Since used for honeycomb NASAW).

More generally, assume
\(c_{A}(T) A_{T}\left(x_{c}\right)+c_{B}(T) B_{T}\left(x_{c}\right)=c_{A}(T+1) A_{T+1}\left(x_{c}\right)+c_{B}(T+1) B_{T+1}\left(x_{c}\right)\)
Successive triples give
\[
c_{A}(T), c_{B}(T), x_{c}(T)
\]

Extrapolate \(x_{c}(T)\) and find
\(x_{c}(s q)=0.37905228(1)\) and \(x_{c}(t r)=0.240917575(10)\).
(Since used for honeycomb NASAW).

More generally, assume
\(c_{A}(T) A_{T}\left(x_{c}\right)+c_{B}(T) B_{T}\left(x_{c}\right)=c_{A}(T+1) A_{T+1}\left(x_{c}\right)+c_{B}(T+1) B_{T+1}\left(x_{c}\right)\)
Successive triples give
\[
c_{A}(T), c_{B}(T), x_{c}(T)
\]

Extrapolate \(x_{c}(T)\) and find
\(x_{c}(s q)=0.37905228(1)\) and \(x_{c}(t r)=0.240917575(10)\).
(Since used for honeycomb NASAW).


Figure: Finite patch with a boundary. The SAW acquires weights \(x, y\) for each step/contact.
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}, y\right)+\cos \left(\frac{\pi}{4}\right)\left(\frac{y_{c}-y}{y}\right) B_{T}\left(x_{c}, y\right)=1 .
\]
- At \(y=y_{c}\) we have
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}, y\right)=1
\]
- So for the honeycomb lattice \(T=1\) and \(T=2\) results are enough to calculate \(x_{c}\) and \(y_{c}\) !
- Other lattices?
- Vertex or site interaction?
- Honeycomb all vertices interaction ?
- At \(y=y_{c}\) we have
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}, y\right)=1
\]
- So for the honeycomb lattice \(T=1\) and \(T=2\) results are enough to calculate \(x_{c}\) and \(y_{c}\) !
- Other lattices?
- Vertex or site interaction?
- Honeycomb all vertices interaction ?
- At \(y=y_{c}\) we have
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}, y\right)=1
\]
- So for the honeycomb lattice \(T=1\) and \(T=2\) results are enough to calculate \(x_{c}\) and \(y_{c}\) !
- Other lattices?
- Vertex or site interaction?
- Honeycomb all vertices interaction ?
- At \(y=y_{c}\) we have
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}, y\right)=1
\]
- So for the honeycomb lattice \(T=1\) and \(T=2\) results are enough to calculate \(x_{c}\) and \(y_{c}\) !
- Other lattices?
- Vertex or site interaction?
- Honeycomb all vertices interaction?
- At \(y=y_{c}\) we have
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}\left(x_{c}, y\right)=1
\]
- So for the honeycomb lattice \(T=1\) and \(T=2\) results are enough to calculate \(x_{c}\) and \(y_{c}\) !
- Other lattices?
- Vertex or site interaction?
- Honeycomb all vertices interaction?


Figure: The figure shows the two types of surface sites on the honeycomb lattice as indicated by solid and shaded circles.


Figure: Square lattice with surface site interactions. \(A_{T}\left(x_{c}, y\right)\) versus \(y\) for \(T=1 \ldots 15\). Inset shows the intersection region in finer scale.
- We denote by \(y_{c}(T)\) the point of intersection of \(A_{T}\left(x_{\mathrm{c}}, y\right)\) and \(A_{T+1}\left(x_{\mathrm{c}}, y\right)\).
- We observe that the sequence \(\left\{y_{c}(T)\right\}\) is a monotone function of \(T\). The argument above implies that \(\lim _{T \rightarrow \infty} y_{c}(T)=y_{c}\).
- This then suggests a new numerical approach to estimating \(y_{c}\).
- One first calculates the generating functions \(A_{T}\left(x_{\mathrm{c}}, y\right)\), for all strip widths \(T=0,1,2, \ldots T_{\text {max }}\).
- Then use these to calculate \(y_{c}(T)\) for \(T=0,1,2, \ldots T_{\max -1}\).
- Then extrapolate this monotone sequence by a variety of standard sequence extrapolation methods.
- We denote by \(y_{c}(T)\) the point of intersection of \(A_{T}\left(x_{\mathrm{c}}, y\right)\) and \(A_{T+1}\left(x_{\mathrm{c}}, y\right)\).
- We observe that the sequence \(\left\{y_{c}(T)\right\}\) is a monotone function of \(T\). The argument above implies that \(\lim _{T \rightarrow \infty} y_{c}(T)=y_{c}\).
- This then suggests a new numerical approach to estimating \(y_{c}\)
- One first calculates the generating functions \(A_{T}\left(x_{\mathrm{c}}, y\right)\), for all strip widths \(T=0,1,2, \ldots T_{\text {max }}\)
- Then use these to calculate \(y_{c}(T)\) for \(T=0,1,2, \ldots T_{\max -1}\)
- Then extrapolate this monotone sequence by a variety of standard sequence extrapolation methods.
- We denote by \(y_{c}(T)\) the point of intersection of \(A_{T}\left(x_{\mathrm{c}}, y\right)\) and \(A_{T+1}\left(x_{\mathrm{c}}, y\right)\).
- We observe that the sequence \(\left\{y_{c}(T)\right\}\) is a monotone function of \(T\). The argument above implies that \(\lim _{T \rightarrow \infty} y_{c}(T)=y_{c}\).
- This then suggests a new numerical approach to estimating \(y_{c}\).
- One first calculates the generating functions \(A_{T}\left(x_{\mathrm{c}}, y\right)\), for all strip widths \(T=0,1,2, \ldots T_{\max }\)
- Then use these to calculate \(y_{c}(T)\) for \(T=0,1,2, \ldots T_{\max -1}\) - Then extrapolate this monotone sequence by a variety of standard sequence extrapolation methods.
- We denote by \(y_{c}(T)\) the point of intersection of \(A_{T}\left(x_{\mathrm{c}}, y\right)\) and \(A_{T+1}\left(x_{\mathrm{c}}, y\right)\).
- We observe that the sequence \(\left\{y_{c}(T)\right\}\) is a monotone function of \(T\). The argument above implies that \(\lim _{T \rightarrow \infty} y_{c}(T)=y_{c}\).
- This then suggests a new numerical approach to estimating \(y_{c}\).
- One first calculates the generating functions \(A_{T}\left(x_{\mathrm{c}}, y\right)\), for all strip widths \(T=0,1,2, \ldots T_{\text {max }}\).
- Then extrapolate this monotone sequence by a variety of standard sequence extrapolation methods.
- We denote by \(y_{c}(T)\) the point of intersection of \(A_{T}\left(x_{\mathrm{c}}, y\right)\) and \(A_{T+1}\left(x_{\mathrm{c}}, y\right)\).
- We observe that the sequence \(\left\{y_{c}(T)\right\}\) is a monotone function of \(T\). The argument above implies that \(\lim _{T \rightarrow \infty} y_{c}(T)=y_{c}\).
- This then suggests a new numerical approach to estimating \(y_{c}\).
- One first calculates the generating functions \(A_{T}\left(x_{\mathrm{c}}, y\right)\), for all strip widths \(T=0,1,2, \ldots T_{\text {max }}\).
- Then use these to calculate \(y_{c}(T)\) for \(T=0,1,2, \ldots T_{\max -1}\). standard sequence extrapolation methods.
- We denote by \(y_{c}(T)\) the point of intersection of \(A_{T}\left(x_{\mathrm{c}}, y\right)\) and \(A_{T+1}\left(x_{\mathrm{c}}, y\right)\).
- We observe that the sequence \(\left\{y_{c}(T)\right\}\) is a monotone function of \(T\). The argument above implies that \(\lim _{T \rightarrow \infty} y_{c}(T)=y_{c}\).
- This then suggests a new numerical approach to estimating \(y_{c}\).
- One first calculates the generating functions \(A_{T}\left(x_{\mathrm{c}}, y\right)\), for all strip widths \(T=0,1,2, \ldots T_{\text {max }}\).
- Then use these to calculate \(y_{c}(T)\) for \(T=0,1,2, \ldots T_{\max -1}\).
- Then extrapolate this monotone sequence by a variety of standard sequence extrapolation methods.

Table: Estimated critical fugacity \(y_{c}\) for surface adsorption.
\begin{tabular}{lll}
\hline Lattice & Site weighting & Edge weighting \\
\hline Honeycomb & 1.46767 & \(\sqrt{1+\sqrt{2}}\) \\
Square & 1.77564 & 2.040135 \\
Triangular & 2.144181 & 2.950026 \\
\hline
\end{tabular}

For the square lattice these are at least 1000 times more accurate than other methods. Other results are new.

\section*{EXTEND OFF-CRITICALITY}
- We redefine the parafermionic operator \((\bar{\sigma}=1+\sigma)\) as
\[
F(x)=F(a, x, z, \bar{\sigma})=\sum_{\gamma \subset \Omega: a \rightarrow x} e^{\bar{\sigma} W(\gamma)} z^{|\gamma|} .
\]
- In terms of this redefined operator, the D-C/S result is
\[
\sum_{\gamma \subset \Omega: a \rightarrow x} e^{i \frac{3}{8} W(\gamma)} z_{c}^{|\gamma|}=1
\]
where the sum is over all walks starting at \(a\) and ending at \(x\), on the boundary of \(\Omega\).
```

Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = zc

Theorem

For $z \leq z_{c}$

$$
\sum_{\gamma: a \rightarrow x \in \partial \Omega} e^{\frac{3 i}{8} W(\gamma)} z^{|\gamma|}+\left(1-z / z_{c}\right) \sum_{\gamma: a \rightarrow x \in \Omega \backslash \partial \Omega} e^{\frac{3 i}{8} W(\gamma)} z^{|\gamma|}=1 .
$$

The first sum is over all walks that finish at the surface of the domain, while the second sum is over all walks that finish strictly in the interior of the domain.

> We do this for the n-vector model $n \in[-2,2]$. The r.h.s. becomes a loop generating function, and F has an extra parameter that counts loops.

Theorem

For $z \leq z_{c}$

$$
\sum_{\gamma: a \rightarrow x \in \partial \Omega} e^{\frac{3 i}{8} W(\gamma)} z^{|\gamma|}+\left(1-z / z_{c}\right) \sum_{\gamma: a \rightarrow x \in \Omega \backslash \partial \Omega} e^{\frac{3 i}{8} W(\gamma)} z^{|\gamma|}=1 .
$$

The first sum is over all walks that finish at the surface of the domain, while the second sum is over all walks that finish strictly in the interior of the domain.
We do this for the n-vector model $n \in[-2,2]$. The r.h.s. becomes a loop generating function, and F has an extra parameter that counts loops.

Sketch of proof

Lemma For a given vertex v with mid-edges p, q and r, and z below the critical value z_{c}, the observable $F_{H}(z)$ satisfies

$$
(p-v) F_{H}(p)+(q-v) F_{H}(q)+(r-v) F_{H}(r)=\left(1-\frac{z}{z_{c}}\right) F_{V}(v)
$$

where

$$
F_{V}(v):=(p-v) F_{H}(p ; v)+(q-v) F_{H}(q ; v)+(r-v) F_{H}(r ; v)
$$

and $F_{H}(p ; v)$ only includes configurations where there is a walk terminating at the mid-edge p which precedes the vertex v.
sum
invoking symmetries, and some simplifications.

Sketch of proof

Lemma For a given vertex v with mid-edges p, q and r, and z below the critical value z_{c}, the observable $F_{H}(z)$ satisfies

$$
(p-v) F_{H}(p)+(q-v) F_{H}(q)+(r-v) F_{H}(r)=\left(1-\frac{z}{z_{c}}\right) F_{V}(v)
$$

where

$$
F_{V}(v):=(p-v) F_{H}(p ; v)+(q-v) F_{H}(q ; v)+(r-v) F_{H}(r ; v)
$$

and $F_{H}(p ; v)$ only includes configurations where there is a walk terminating at the mid-edge p which precedes the vertex v. Now sum over all vertices, using this lemma, and the result follows, after invoking symmetries, and some simplifications.

```
Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z = z

\section*{EXPONENT INEQUALITIES}

In a strip, we obtain
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}(z)+B_{T}(z)+\left(1-z / z_{c}\right) G_{T}(z)=1
\]

It immediately follows that
(Numerically, \(\frac{73}{64} \geq 1\).)

\section*{EXPONENT INEQUALITIES}

In a strip, we obtain
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}(z)+B_{T}(z)+\left(1-z / z_{c}\right) G_{T}(z)=1
\]

As \(T \rightarrow \infty, A_{T}(z) \rightarrow \chi_{11}(z), B_{T}(z) \rightarrow 0\), and \(G_{T}(z) \leq \chi_{1}\).
(Numerically, \(\frac{73}{64} \geq 1\).)

\section*{EXPONENT INEQUALITIES}

In a strip, we obtain
\[
\cos \left(\frac{3 \pi}{8}\right) A_{T}(z)+B_{T}(z)+\left(1-z / z_{c}\right) G_{T}(z)=1
\]

As \(T \rightarrow \infty, A_{T}(z) \rightarrow \chi_{11}(z), B_{T}(z) \rightarrow 0\), and \(G_{T}(z) \leq \chi_{1}\).

It immediately follows that
\[
\gamma_{11} \leq \gamma_{1}-1
\]
(Numerically, \(\frac{73}{64} \geq 1\).)

\section*{Winding angle calculation}

Now to obtain the winding angle distribution function directly from the off-critical generating function identity.
Define
\[
G_{\theta, \Omega}(x)=\sum_{\substack{\gamma: a \rightarrow z \in \Omega \backslash \partial \Omega \\ W(\gamma)=\theta}} x^{|\gamma|} n^{c(\gamma)}
\]
(contributions to \(G_{\Omega}(x)\) that involve walks with winding angle \(\theta\). Also
\[
F_{\Omega}(x)=\sum_{\gamma: a \rightarrow z \in \partial \Omega} e^{\tilde{\sigma} i W(\gamma)} x^{|\gamma|} n^{c(\gamma)}
\]
the ogf of "walks" that end on a domain boundary.
(To simplify the notation, \(\gamma\) now describes a walk and a configuration of loops.)

The key identity becomes
\[
F_{\Omega}(x)+\left(1-x / x_{c}\right) \sum_{\theta} e^{\tilde{\sigma} i \theta} G_{\theta, \Omega}(x)=C_{\Omega}(x)
\]

Normalise, so that \(F_{\Omega}^{*}(x)=\frac{F_{\Omega}(x)}{C_{\Omega}(x)}\) and \(G_{\theta, \Omega}^{*}(x)=\frac{G_{\theta, \Omega}(x)}{C_{\Omega}(x)}\).
For \(x<x_{c}\) define \(F^{*}(x)\) and \(G_{\theta}^{*}(x)\) to be \(F_{\Omega}^{*}(x)\) and \(G_{\theta, \Omega}^{*}(x)\) respectively as \(\Omega\) approaches the half plane. So


We assume the existence of two critical exponents, \(\gamma_{11}\) for loops, and \(\gamma_{1}\) for walks attached to a surface.

The key identity becomes
\[
F_{\Omega}(x)+\left(1-x / x_{c}\right) \sum_{\theta} e^{\tilde{\sigma} i \theta} G_{\theta, \Omega}(x)=C_{\Omega}(x)
\]

Normalise, so that \(F_{\Omega}^{*}(x)=\frac{F_{\Omega}(x)}{C_{\Omega}(x)}\) and \(G_{\theta, \Omega}^{*}(x)=\frac{G_{\theta, \Omega}(x)}{C_{\Omega}(x)}\).
For \(x<x_{c}\) define \(F^{*}(x)\) and \(G_{\theta}^{*}(x)\) to be \(F_{\Omega}^{*}(x)\) and \(G_{\theta, \Omega}^{*}(x)\) respectively as \(\Omega\) approaches the half plane. So
\[
\begin{equation*}
F^{*}(x)+\left(1-x / x_{c}\right) \sum_{\theta} e^{\tilde{\sigma} i \theta} G_{\theta}^{*}(x)=1 . \tag{1}
\end{equation*}
\]

We assume the existence of two critical exponents, \(\gamma_{11}\) for loops, and \(\gamma_{1}\) for walks attached to a surface.
\[
F^{*}(x) \sim 1+\text { const. }\left(1-x / x_{c}\right)^{-\gamma_{11}} ; \sum_{\theta} G_{\theta}^{*}(x) \sim \text { const. }\left(1-x / x_{c}\right)^{-\gamma_{1}} .
\]

From equation (1) we obtain
\[
\begin{gathered}
\sum_{\theta} e^{\tilde{\sigma} \theta} G_{\theta}^{*}(x)=\frac{1-F^{*}(x)}{1-x / x_{c}} \sim C\left(1-x / x_{c}\right)^{-\gamma_{11}-1} \\
\text { Let } G_{\theta}^{*}(x)=\sum_{j=0}^{\infty} a_{\theta}(j) x^{j}
\end{gathered}
\]

Then
\[
\sum_{\theta} a_{\theta}(j) \sim \text { const. } \cdot x_{c}^{-j} j^{\gamma_{1}-1}, \text { and } \sum_{\theta} e^{\tilde{\sigma} i \theta} a_{\theta}(j) \sim C x_{c}^{-j} j^{\gamma_{11}} .
\]
\[
\begin{gathered}
\sum_{\theta} a_{\theta}(j) \sim \text { const. } x_{c}^{-j} j^{\gamma_{1}-1}, \text { and } \sum_{\theta_{\theta}} e^{\tilde{\sigma} i \theta} a_{\theta}(j) \sim C x_{c}^{-j} j^{\gamma_{11}} . \\
\text { Let } b_{\theta}(j)=\frac{a_{\theta}(j)}{\sum_{\theta} a_{\theta}(j)} \\
\sum_{\theta} e^{\tilde{\sigma} i \theta} b_{\theta}(j) \sim \text { const. } j^{\gamma_{11}-\gamma_{1}+1}
\end{gathered}
\]

Now \(b_{\theta}\) is just the probability distribution function \(P(\theta)\), so
\[
\sum_{\theta} e^{\tilde{\sigma} \theta} b_{\theta}(j) \approx \int_{-\infty}^{\infty} e^{\tilde{\sigma} i \theta} P(\theta) d \theta \propto j^{-\omega}
\]

So
\[
1+\gamma_{11}-\gamma_{1}=-\omega
\]

This gives the winding angle distribution exponent for all \(\mathrm{O}(n)\) models with \(n \in[-2,2]\) in terms of exponents \(\gamma_{1}\) and \(\gamma_{11}\).

From the existing physics literature, one has (CFT)

and thus


This gives the winding angle distribution exponent for all \(\mathrm{O}(n)\) models with \(n \in[-2,2]\) in terms of exponents \(\gamma_{1}\) and \(\gamma_{11}\).

From the existing physics literature, one has (CFT)
\[
\gamma_{1}=\frac{\kappa^{2}+12 \kappa-12}{8 \kappa(4-\kappa)}, \quad \gamma_{11}=-\frac{2(3-\kappa)}{\kappa(4-\kappa)}
\]
and thus
\[
1+\gamma_{11}-\gamma_{1}=-\frac{9}{8} \frac{(2-\kappa)^{2}}{\kappa(4-\kappa)}
\]

\section*{Winding angle distribution}

Obtained by Duplantier and Saleur for the \(\mathrm{O}(n)\) model. We have \(n=-2 \cos (4 \pi / \kappa)\). arguments, that

where \(\ell\) is the length of the SAW. \(\nu\) is the standard critical exponent relating the circumference of the cylinder to the length of the walk, \(L \sim \ell^{\nu}, \nu=\frac{1}{4-\kappa}\). It follows that


\section*{Winding angle distribution}

Obtained by Duplantier and Saleur for the O(n) model. We have \(n=-2 \cos (4 \pi / \kappa)\). They conjecture, from CFT and Coulomb gas arguments, that
\[
P(x=\theta) \propto \exp \left(-\frac{\theta^{2}}{2 \kappa \nu \log \ell}\right), \quad \ell \rightarrow \infty
\]
where \(\ell\) is the length of the SAW.
relating the circumference of the cylinder to the lengtl
\(L \sim \ell^{\nu}, \nu=\frac{1}{4-\kappa}\). It follows that
\[
\int_{-\infty}^{\infty} e^{\tilde{\sigma} i \theta} P(\theta) d \theta \propto \ell^{-\omega} \text {, where }
\]

\section*{Winding angle distribution}

Obtained by Duplantier and Saleur for the O(n) model. We have \(n=-2 \cos (4 \pi / \kappa)\). They conjecture, from CFT and Coulomb gas arguments, that
\[
P(x=\theta) \propto \exp \left(-\frac{\theta^{2}}{2 \kappa \nu \log \ell}\right), \quad \ell \rightarrow \infty
\]
where \(\ell\) is the length of the SAW. \(\nu\) is the standard critical exponent relating the circumference of the cylinder to the length of the walk, \(L \sim \ell^{\nu}, \nu=\frac{1}{4-\kappa}\).


\section*{Winding angle distribution}

Obtained by Duplantier and Saleur for the O(n) model. We have \(n=-2 \cos (4 \pi / \kappa)\). They conjecture, from CFT and Coulomb gas arguments, that
\[
P(x=\theta) \propto \exp \left(-\frac{\theta^{2}}{2 \kappa \nu \log \ell}\right), \quad \ell \rightarrow \infty
\]
where \(\ell\) is the length of the SAW. \(\nu\) is the standard critical exponent relating the circumference of the cylinder to the length of the walk, \(L \sim \ell^{\nu}, \nu=\frac{1}{4-\kappa}\). It follows that
\[
\begin{gathered}
\int_{-\infty}^{\infty} e^{\tilde{\tilde{\sigma}} i \theta} P(\theta) d \theta \propto \ell^{-\omega}, \text { where } \\
\omega=\nu \kappa \tilde{\sigma}^{2} / 2=\frac{\kappa \tilde{\sigma}^{2}}{2(4-\kappa)}=\frac{9}{8} \frac{(2-\kappa)^{2}}{\kappa(4-\kappa)} .
\end{gathered}
\]
```

Discrete holomorphicity References Discrete Holomorphicity Self-avoiding walks on other lattices Extend identity away from z}=\mp@subsup{z}{c}{}\mathrm{ .

- Note that for SAW $(\kappa=8 / 3)$ this gives $\omega=\tilde{\sigma}^{2}=\frac{9}{64}$.
- There are several other calculations that we can make with this identity, and that is work in progress.
- THE END - Thank you
- Note that for SAW $(\kappa=8 / 3)$ this gives $\omega=\tilde{\sigma}^{2}=\frac{9}{64}$.
- There are several other calculations that we can make with this identity, and that is work in progress.
- THE END - Thank you
- Note that for SAW $(\kappa=8 / 3)$ this gives $\omega=\tilde{\sigma}^{2}=\frac{9}{64}$.
- There are several other calculations that we can make with this identity, and that is work in progress.
- THE END - Thank you

