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ABSTRACT : We review the expressibility of some basic graph properties in
certain fragments of Monadic Second-Order logic, like the set of Monadic-NP
formulas. We focus on cases where a property and its negation are both
expressible in the same (or in closely related) fragments. We examine cases
where edge quantifications can be eliminated and cases where they cannot.
We compare two logical expressions of planarity: one of them is
constructive in the sense that it defines a planar embedding of the considered
graph if it is planar and 3-connected, and the other, logically simpler, uses
the forbidden Kuratowski subgraphs.

Introduction

By considering graphs as logical structures one can express their properties by logical
formulas. From the logical expression of a graph property, one can obtain upper bounds
to its complexity, over all graphs or over specific classes of graphs: see for instance [2,
4, 10, 12, 14, 18, 25, 26]. One can also specify by logical formulas certain constructions
like the unique plane embedding of a planar 3-connected graph.

We will use Monadic Second-Order logic (MS logic) to define these properties and
constructions. This language is of special interest for the following reasons: it is
powerful enough to express non-first-order graph properties like connectivity, acyclicity,
planarity, k-colorability for each fixed k and is nevertheless algorithmically tractable:
every MS (Monadic Second-Order) property is testable in linear time on "tree-structured"
graphs, a notion which has of course a precise definition ([2, 4, 10]). MS logic is also
closely connected with finite-state automata: for finite binary trees, recognizability by
finite-state automata is equivalent to definability by an MS formula. This connection
yields effective constructions of linear-time verification algorithms. It extends also to
infinite trees and culminates with Rabin's theorem which is fundamental in semantics
(Emerson [11]).

Second-order logic  is of course more powerful than MS logic. However, it is in a
sense too powerful: the connection with automata does not extend and no general efficient
verification method is known, even for tree-structured graphs. However, it is interesting
because of its connections with complexity classes like NP and the polynomial hierarchy
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[12, 18, 26]. We will discuss some fragements of MS logic (like the class of monadic-
NP formulas) which have been introduced in the hope of proving that NP ≠ coNP  by
logical techniques ([1, 3, 12, 13, 15, 18]).

This survey is organized a follows. Section 1 reviews MS logic and some of its
fragments of special interest in the field of descriptive complexity . We consider basic
graph properties like connectivity or the existence of disjoint paths between given
vertices, and we compare the logical expression of a property with that of its negation. In
Section 2 we show that the orientations of an undirected graph can be specified by MS
formulas using quantifications on sets of edges, and that they cannot be (in general) with
formulas using vertex set quantifications only.

In Section 3 we show that edge set quantifications can be eliminated in MS formulas
expressing properties of planar graphs or of graphs of bounded degree or tree-width. In
Section 4 we consider chordal graphs and planar graphs. We observe that both classes can
be defined "negatively" (i.e., by forbidden configurations) in a simpler way than
"constructively". We establish the new result that the unique planar embedding of a 3-
connected planar graph is definable by MS formulas.

Section 5 reviews further topics of interest in this field and presents some open
problems.

1. Monadic second-order logic

A graph can be defined as a relational structure G = <VG, edgG> where VG, the set
of vertices of the graph, is the domain of the structure and edgG  is a binary relation on
VG  representing the edges. Hence, a closed logical formula written with the binary
relation symbol edg expresses a graph property in a natural way.

One can thus classify graph properties according to the logical complexity of the
formulas expressing them. This field is called descriptive complexity. We introduce or
recall the definitions of a few languages.

We will denote by FO, MS and SO the sets of first-order, monadic second-order and
second-order formulas respectively. We will denote by ∃ setFO  the set of formulas of the
special form  ∃ X1,...,Xk ϕ  where k ≥ 0 , X1,...,Xk   are set variables and  ϕ is FO  (the
set variables X1,...,Xk   can occur in ϕ   in atomic formulas of the form x  ∈  Xi  where
x  is an individual variable); these formulas are termed monadic-Σ 11  in [1] and monadic-

NP  in [3, 15].
We will denote by FOTC  the set of first-order formulas constructed with special

atomic formulas representing transitive closures of binary relations defined by existential
first-order formulas; these atomic formulas will be written  TCx,y (ϕ)(u,v)  where  ϕ  is
an existential first-order formula that can have other free variables than  x and y , say
z1,..., zk, X1,..., Xn . We will define the meaning of these new formulas. If R  is a

binary relation, we will denote by R + its transitive closure. Furthermore, we will denote
by the same symbol a variable and a value assigned to it. Here is the definition.

For every assignment of values to z1,..., zk, X1,..., Xn , for every u, v  in the
domain DS   of the considered structure  S ,  then

  TCx,y (ϕ)(u, v ) holds iff (u, v ) ∈  R +   where R  ⁄  DS 6DS  is defined by :

R = {(x, y ) ∈ DS 6DS  /  S   ϕ (x, y , z1,..., zk, X1,..., Xn )}.

Note that this transitive closure constructor is used for binary relations over domains
of structures (and not over n-fold products of domains of structures), which, furthermore,
are defined by existential first-order formulas (and not by arbitrary first-order formulas).
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By replacing  FO  by  FOTC   in the definition of ∃ setFO, we obtain the set of
formulas  ∃ setFOTC . Since transitive closures are definable by MS formulas we have

FO   1 ∃ setFO   1  ∃ setFOTC  1 MS.

 Examples will prove that the corresponding hierarchy of graph properties is strict.
Since formulas in FOTC   denote polynomial (and even NL) properties [18], formulas in
∃ setFOTC  denote NP properties. The second-order formulas denote the properties in the
polynomial hierarchy. It is proved in Makowsky and Pnueli [21]  that MS properties can
be arbitrarily high in the polynomial hierarchy.

Defining graphs as we did has two drawbacks: first, one defines simple graphs only,
(simple means that there are no multiple edges) and second, quantified variables cannot
denote edges or sets of edges. Even for expressing properties of simple graphs,
quantification on sets of edges is essential in certain cases as we will see.

For every graph G  we let |G |1 be the above defined structure <VG, edgG>. A
simple graph G  is completely determined up to isomorphism by the structure |G|1. For
an arbitrary graph G  we let |G|2 := <VG ∪ EG , incG> where EG  is the set of edges
and incG  is the ternary relation such that incG (x,y,z)  holds iff x  is an edge from y  to
z . (If G  is undirected  incG (x,y,z)  holds iff  incG (x,z,y)  holds). An element  x  of
VG ∪ EG  is an edge iff there exist y, z  such that incG(x,y,z) holds. Every graph G  is
completely determined, up to isomorphism, by the structure  |G|2 .

For each of the sets of formulas  FO, MS,  ∃ setFO  etc... the subscript 1 (resp. 2)
will indicate that the formulas are written with the relation symbol edg (respectively
inc) hence that they express properties of graphs G  represented by the structures |G|1
(respectively |G|2). We will see below that non-planarity is expressed by a formula in
∃ setFO1 ( i.e., a monadic-NP formula in the terminology of [15]). We will see that
directed reachability is expressed by a formula in ∃ setFO2  whereas (by [1]) it is not
expressible by any formula in ∃ setFO1 .

We will now review some basic graph properties that are significant for the
comparison of the expressive powers of the various fragments of MS logic we have
introduced. We shall only consider finite graphs (except in a short discussion in Section
5). In order to shorten statements and without any significant loss of generality, we will
use the following

Convention: The term graph  will mean finite simple loop-free graph .

Vertex colorability

For each k, (vertex) k-colorability is  ∃ set FO1 (i.e., is expressible by a formula
in ∃ setFO  relative to the representation of a graph G  by the structure |G|1). The formula
is easy to construct. For each k ≥ 3 this property in NP-complete. Furthermore  NP =
coNP iff Non-3-colorability is expressible by a second-order formula of the form
∃ R1,...,Rn ϕ   where R1,..., Rn  are relation variables (possibly not unary) and  ϕ   is
first-order.  (See [1]).  Cosmadakis  has  proved  in [3]  that  Non-3-colorability  is
not  a  ∃ setFO1 property.
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Connectivity properties

 If  R  ⁄ D 6D  and  X  ⁄ D , we say that X  is R-closed  if for all x, y  ∈ D, if x
∈ X  and (x, y ) ∈  R   then y  ∈ X . (This is clearly a first-order property). Non-
connectivity is ∃ setFO1 since it can be expressed by the formula

(1) ∃ X (∃ x (x  ∈  X ) 3 ∃ y (fly  ∈ X ) 3  "X  is (edg "edg-1)-closed").   

(The text between quotes defines the meaning of the subformula it stands for; this
formula is straightforward to write. Text between quotes will be used in this way in the
sequel in order to make formulas readable.)

Since Connectivity is not FO1 (Gaifman [16]), this proves that formulas in
∃ se tF O  are strictly more expressive than first-order ones. Similarly,
DirectedUnreachability(x,y) (the non-existence of a directed path from x  to y ) is
expressed by the following formula in  ∃ setFO1:

(2) ∃ X  (x  ∈  X  3 fl y  ∈ X  3 "X  is edg-closed").

In undirected graphs, edg denotes a symmetric relation and formula (2) expresses
Unreachability(x,y), i.e., the non-existence of a path between x  and y . (Any two
vertices in a path  are distinct except possibly the two ends in the case of a cycle; in a
directed graph G we distinguish a path, where edges can be traversed in either direction,
from a directed path, where they are all traversed in the natural direction.)

DirectedReachability(x,y) (i.e., the existence of a directed path from x  to y ) is
expressed by the formula  TCu,v (edg(u,v))(x,y ) and by a formula in ∃ setFO2 that we
now construct. We let first QuasiPath(X,x,y)  be the first-order formula expressing the
following :

X  is a set of edges, x  and y  are vertices, x ≠ y , x  is the origin of a unique
edge in  X  and the target of none,  y  is the target of a unique edge in  X  and the
origin of none, every vertex other than x  and y  that is incident to an edge of X
is the origin of a unique edge in X   and the target of a unique edge in  X.

Since graphs are finite, these conditions express that X  is the set of edges of a
directed path from x  to y  augmented possibly with the vertices of pairwise disjoint
cycles that are disjoint from the path. Hence DirectedReachability(x,y ) is equivalent
to  ∃ X QuasiPath(X,x,y) and is thus a ∃ setFO2 property. Ajtai and Fagin [1] proved
that no formula in ∃ setFO1 can express this property.

The situation is simpler for Reachability(x,y) (in undirected graphs or in directed
graphs but for nonnecessarily directed paths). This property can be expressed by the
∃ setFO1  formula ∃ X QuasiPath'(X,x,y) where QuasiPath'(X,x,y) is the first-order
formula :

x  ∈  X  3 y ∈ X  3 x ≠ y 3 "each of x  and y  is adjacent to a unique element of
X " 3"every vertex in X-{x,y} is adjacent to exactly two vertices of X ").

(This construction, due to P. Kannellakis, is given in [1]; one can use the same idea
to construct a formula in ∃ setFO1 expressing DirectedReachability(x,y)  in directed
acyclic graphs).
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Connectivity is expressed by : ∃ x∀ y [x =y ∨ Reachability(x,y)] hence by a

formula in FO TC
1 . It is known from Fagin [13] that Connectivity is not ∃ setFO1. (It

is not ∃ setFO2 either since the proof of [13]  uses graphs of degree at most 2, and since
formulas in ∃ setFO1 and in ∃ setFO2 express the same properties of these graphs by
Theorem (3.3) below.)

Disjoint paths in undirected graphs

Let k ≥ 2. k-DisjointPaths(x1,...,xk ; y1,...,yk )  is the property  saying that:
x1 ≠ y1,...,xk ≠ yk  and there exist  k  paths  p1,...,pk  linking  x1 to y1,...,
xk  to  yk  respectively, such that every vertex common to two paths pi
and  pj , j ≠ i ,  belongs to  {xi , yi } ∩  {xj , yj }.

From the construction done for Reachability  it is not hard to see that k -
DisjointPaths(x1,...,xk ; y1,...,yk )  is expressible by a formula in ∃ setFO1 with k
existential set quantifications (representing the  k  desired paths).

 k-Separability(x,y) is the property saying that x and y are distinct non-adjacent
vertices and that there exists a set  A  of at most k  vertices such that every path from x
to y  goes through A. It is ∃ setFO1 since it can be formulated as follows:

∃ X,Y  [ "x  ∈  X - (X ∩Y )" 3 "y  ∈ Y-  (X ∩Y )" 3 "every vertex belongs to
X "Y " 3 "X  ∩Y  has cardinality  ≤ k " 3  " there is no edge between a vertex
of X - (X ∩Y )  and a vertex of Y- (X ∩Y )"].

The negation of a ∃ setFO1 property is usually not a ∃ setFO1 one. However, it
follows from Menger's theorem (see Tutte [28]) that the negation of k -
Separability(x,y) is equivalent to

x = y  ∨ edg(x,y) ∨ (k+1)-DisjointPaths(x,x ...,x; y,y ...,y )

hence is also ∃ s e tF O 1 . We do not know whether the negation of k -
DisjointPaths(x1,...,xk; y1,..., yk) is  ∃ setFO1 .

Forbidden configurations and nonplanar graphs

Let  H  and G  be undirected graphs. We say that  H  embeds in  G  iff there is a
subgraph  G'  of  G  which is isomorphic to a graph obtained from H  by the replacement
of some edges by disjoint paths. Hence  G  is nonplanar iff either  K5  or  K3,3  embeds
in  G . (For  n ≥ 2, Kn  is the complete undirected graph with  n  vertices and  Kn,p  is
the graph with vertices -n,...,-1,1,...,p and undirected edges between -i  and j for positive
i, j.)

For every fixed undirected graph H  without isolated vertices the property of an
arbitrary graph G   that H  embeds in G  is expressible by a formula in ∃ setFO1
constructed as follows. We let VH  = {1,...,n}, EH  = {(i1, j1), ..., (ik , jk)} for some
i1,...,ik ,j1,...,jk   ∈ {1,...,n}. Then  H  embeds in  G  iff  |G |1  satisfies the formula :

∃  x1,...,xk , y1,...,yk , z1,...,zn

[k-DisjointPaths(x1,...,xk ;y1,...,yk ) 3 3    
1≤i≤n Ei ]
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where for each  i , Ei   is the conjunction of the equalities  x” =zi  , ym  =zi   such that
i” = jm = i  and of the inequalities x” ≠zi  , ym  ≠ zi    such that i” ≠i , jm  ≠ i . It is a
routine task to rewrite this formula into one in ∃ setFO1. It follows that Non-
Planarity is a ∃ setFO1 property. We will present in Section 4 a characterization of

Planarity (for 3-connected graphs) by a formula in ∃ setFO 
TC
1   which specifies a planar

embedding.

Trees

We consider undirected graphs. Such a graph G  has a cycle iff there are adjacent
vertices x  and  y  connected by a path not using the edge linking them. This can be

expressed by the following formula in  FO TC
1  :

∃ x,y  [edg(x,y) 3TCu,v (edg(u,v ) 3fl{x =u 3y = v }3fl{x =v 3y =u})(x,y)].

It follows that Tree (the property of being a tree) is expressible for undirected graphs

by a formula in FO TC
1 . An undirected graph is not a tree iff it is not connected or if  K3

embeds in it. Hence the negation of the property Tree is ∃ setFO1.

Monadic Second-Order logic on paths and trees

Let P be the class of directed paths. For every formula  ϕ in MS1 with free variables
X1,...,Xk  one can construct a formula  ψ in ∃ setFO1 with the same free variables that
is equivalent to  ϕ  on all directed paths. We mean by equivalent  that for every  G  ∈ P,
for every X1,..., Xk  ⁄ VG   we have :

|G|1  ψ(X1,..., Xk )      iff        |G |1  ϕ (X1,..., Xk )

Every tuple (G , X1,..., Xk )  where  G  ∈ P  and Xi    ⁄ VG   can be made as

follows into a word w (G, X1,..., Xk )  in  A +  (the set of nonempty words over A)

where  A  = {0,1}k  : if G  is the graph  v1→v2 → ... →vn  then  w (G, X1,..., Xk ) is
the word a1a2...an  where ai  is the sequence of bits  b1...bk  such that  bj = 1  iff  vi  ∈
Xj ). Then  {w (G, X1,..., Xk ) / G  ∈ P, |G|1  ϕ(X1,..., Xk )} is a regular language,
and from a finite-automaton with m  states recognizing it, one obtains a formula ψ  of
the desired form with  m  existential set quantifiers. (However, the number  m  is a tower
of exponentials in the alternation depth of  ϕ .) See Thomas [27, Thm 3.2]. Hence
monadic second-order logic is equivalent on P to its fragment ∃ setFO1 . Similar results
hold for trees of degree ≤ k  for any fixed k (see [27, Thm 11.1]) and for trees of
unbounded degree [29].

(1.1) Open problem : On which other classes of graphs is monadic second-order logic
equivalent to  its fragment   ∃ setFO1  or to a related one?

Summary

We summarize in a table the facts we have discussed (or will discuss) concerning the
expressibility of some graph properties, and of their negation. Except for
DirectedReachability, all graphs are undirected.
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Property i tse l f its negation
3-Colorability ∃ setFO1 not  ∃ setFO1
Connectivity FO TC

1 , not   ∃ setFO2
∃ setFO1

Reachability(x,y) ∃ setFO1 ∃ setFO1

DtedReachability(x,y) FO TC
1 ,  ∃ setFO2 ,

not ∃ setFO1

∃ setFO1

k-Separability(x,y ) ∃ setFO1 ∃ setFO1
k-DisjointPaths(...) ∃ setFO1
Planarity ∃ setFO TC

1
∃ setFO1

Tree FO TC
1

∃ setFO1

Hamiltonicity ∃ setFO TC
2 , not MS1

Chordality ∃ setFO TC
2

∃ setFO1

Any MS-property on
words or trees

∃ setFO1 ∃ setFO1

 The blank boxes in the negation column mean that we know nothing better than
the straightforward negation of the formula expressing the property. Hamiltonicity will
be discussed in Section 2 and 3. Planarity and chordality will be discussed in Section 4.

2. The definition of orientations by MS2  formulas

For a directed graph G, we denote by und(G) the underlying undirected graph obtained
by forgetting the orientations of edges; two parallel but opposite edges of G  get fused
into a unique edge in  und(G).

Let us assume we know how to express by an MSi  formula a property P  of directed

graphs. Can one express by an MSi   formula the property Pund of undirected graphs
defined by :

Pund(G) :⇔ P (G' )  holds for some directed graph G'  such that G = und(G' )?

The answer is "yes" if i = 2 and "not always" if i = 1. The reason is that the
orientations of an undirected graph can be defined by MS2 formulas but not by MS1
ones. We first show the counterexample and then give the construction.

(2.1) Proposition ([7]): The property that an undirected graph has a Hamiltonian
cycle is not  MS1 but is of the form  Pund for some  MS1 property  P of directed
graphs .

Proof : Note that by our initial convention, Hamiltonian graphs have at least 3 vertices.
We let P (H)  be the following property of a directed graph H :
there are at least 3 vertices, the reflexive and transitive closure of the relation edgH  is a
linear order on VH  and there is an edge from the first to the last element of  VH  (where
first and last are relative to this order).
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This property is actually in FO 
TC
1  . It is not hard to see that Hamiltonicity is

equivalent to P und .
Assume by contradiction that Hamiltonicity is expressed by an MS1 formula ϕ .

Observe that Kn,m  is Hamiltonian iff  n = m. Consider now a word w  in {a, b }+ of
length at least 3, which is represented by a structure »w»  having a domain which is the
set of occurrences of letters and a predicate  pa(x)  which holds iff x  is an occurrence of
letter a. By letting edg(x,y) :⇔ (pa(x)3flpa(y))∨ (pa(y)3flpa(x)),  one defines in »w»
the structure  |Kn,m |1  where  m (resp. n)  is the number of occurrences of a (resp. of b).
The existence of  ϕ  implies the existence of a monadic second-order formula  ψ  such

that »w»    ψ iff  w  has as many  a's  and  b's . This is not possible because the
language defined in this way by  ψ  is not regular (whereas every MS definable language
is regular ([27, thm 3.2]). Hence Hamiltonicity is not MS1-definable. (This argument is

from Makowsky [20]). Á

We now consider the definition of orientations by MS2 formulas. In order to define
an orientation of an undirected graph G  assumed to be connected, we choose a set of
edges  X  and a vertex  u  such that  X  is the set of edges of a depth-first search (dfs )
spanning tree of G  with root u . Call this tree T . For vertices z, y  we let z <T  y   if  z
≠ y  and  z  is on the (unique) path in T  from the root to y . This tree is depth-first
search iff the two ends of every edge of the graph are comparable under <T  .

We let G (X,u) be the directed graph obtained from G  by directing from z  to y  an
edge with ends y  and  z  such that z <T  y .

Let now Y  be an arbitrary subset of EG . We define G (X, u,Y) by directing the
edges of EG -Y  as in G (X,u)  and those of Y   in the opposite direction. It is clear that
every directed graph H  such that und(H) = G  is of the form G (X, u,Y) for some X, u
and Y. (One can even choose X, u  arbitrarily so as they define a dfs tree of G  and then
choose Y .)

We describe more formally the general construction which works for all, non

necessarly connected, graphs. We let ϕ(X, U, Y ) be the FO
TC
2  formula expressing the

following properties of  X, U, Y   in a given graph  G  (where we define an X-path as a
path all edges of which are in a given set X ):

(1) U  is a set of vertices such that every vertex of  G  is linked by some path to one
and only one vertex of U ;

(2) X  is a set of edges and the subgraph of G  with set of vertices VG   and set of
edges X  has no cycle and any two vertices of G  linked by a path are linked by an X-
path;

(3) the two ends of every edge of G  belong to an X-path one end of which is in U;
(4) Y  ⁄  EG .

We let also  ψ(X, U, Y, e, x, y )  be the  FO
TC
2  formula such that, whenever ϕ(X,

U, Y ) holds, we have the following for all  e  ∈  EG , x , y  ∈ VG  :
(5) if ψ(X, U, Y, e, x, y )  holds then x  and y  are the two ends of e  and

either e  is in Y  and  y  is on the (unique) X-path from u  to x  where u  is the
unique vertex in  U  linked by some path to y ,
or  e  is not in Y   and  x  is on the X-path from u  to y  where u  is as above.



MONADIC  SECOND-ORDER  LOGIC

9

Having fixed  X, U, Y  satisfying (1)-(3), the incH  relation of H  = G(X, U, Y )  is
now defined as follows :

incH (e, x, y) : ⇔  incG (e, x, y) 3 [x = y  ∨ ψ (X, U, Y, e, x, y )]

(2.2) Proposition ([7]):  Let  G  be undirected. For all sets  X, U, Y such that  |G|2
 ϕ(X, U, Y)  the graph  H = G(X, U, Y)  is an orientation of  G, and the ternary

relation  incH  is definable in |G|2  by  an   FO
TC
2   formula in terms of  X, U, Y. For all

sets  X, U  such that  |G|2   ϕ(X, U, Ø), for every orientation  H of  G one can find
Y  such that  H = G(X, U, Y).

(2.3) Corollary ([7]): For every  MS2 property  P of directed graphs, the property

Pund  is also  MS2.

Proof : Let P  be expressed by θ in MS2. Then Pund  is expressed by the formula
∃ X,U,Y  [ϕ (X, U, Y ) 3 θ'] where  θ'  is obtained from  θ  by replacing every atomic
formula inc(e, x, y ) by the formula inc(e, x, y )3ψ(X, U, Y, e, x, y ) (after the

necessary renamings of bound variables have been done as usual). Á

It follows from Proposition (2.1) that no similar construction giving Proposition
(2.2) can be done with  MS1 formulas. However, for restricted types of graphs we will
see in the next section that orientations can be defined by MS1 formulas.

3. The elimination of edge quantifications

 Let us recall that all graphs are simple. It is not hard to see that quantifications on
edges are not necessary in first-order formulas. Roughly speaking one can replace  ∃ e ["e
is an edge"3ϕ]  by ∃ x, y ["x  and y  are vertices forming an edge"3ϕ '] where ϕ ' is an
adequate translation of ϕ. A similar result holds in second-order logic because an n-ary
relation on EG  can be handled as a 2n-ary relation on VG . However this technique does
not work for monadic second-order logic because a set of edges is a binary relation on
vertices, and not a unary one. Actually, a quantification on sets of edges can be seen as a
restricted form of quantification on binary relations on vertices.

Is MS2  more expressive than MS1 ?
We have seen that DirectedReachability is ∃ setFO2 (whence MS2 ) but not

∃ setFO1 . However it is  FO 
TC
1   hence MS1.

(3.1) Proposition: (1) Hamiltonicity is  MS2 (and even  ∃ setFO
T C
2  ) but not

MS1.
   (2) The property that a directed graph has a directed  spanning tree of outdegree at most

2 is  MS2 (and even  ∃ setFO
TC
2  ) but not  MS1.

Proof : (1) We know from Proposition (2.1) that Hamiltonicity is not MS1. It is
MS2 by Propositions (2.1) and (2.3). We give here a simpler construction for the latter
fact: G  is Hamiltonian iff it has at least 3 vertices and there exists a set of edges X  such
that every vertex is incident to an edge of X, and there exist two adjacent vertices x, y
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such that no edge belonging to X  links them, QuasiPath(X,x,y) holds and every vertex
in the graph is reachable from  x  by an X-path. These conditions (for given X ) are first-
order  expressible, except the very last one which is FOTC . This last condition is
necessary because without it, we only express that G  is spanned by a union of disjoint
cycles.

(2) Let P(G)  be the property of a simple directed graph G  that it has a directed
spanning tree of outdegree at most 2. It can be written :

There exists a subset  X  of  EG  such that every vertex is incident to an edge
in X , every vertex is the origin of at most two edges in X  and X  is the set of
edges of a directed tree  T  ⁄ G .

This property is in ∃ setFO 
TC
2 . Let us prove that it is not MS1. For n, m ≥ 1  we

let  Gn,m   be the graph with set of vertices  {i ∈ Z / -n ≤i ≤m}  and directed edges  (i, j )
for  i < 0  and  j  ∈  {i +1, 1, 2, ..., m}. It is easy to see that  P(Gn,m)  holds iff m ≤ n.
Hence P  is not MS1. (The argument is similar to that of Proposition (2.1) using the

fact that the language  {anbm /m ≤ n}  is not regular). Á

(3.2) Question : Does there exist a  ∃ set FO2 property  that is not  MS1 ?

Let C be a class of graphs. Let L be a fragment of MS , typically ∃ setF O ,
∃ setFOTC  or MS  itself. We say that edge quantifications are L-eliminable for   C if for
every closed formula  ϕ in L2 one can construct a closed formula ψ  in L1 such that, for

all graphs  G  in C:  |G|1  ψ  iff  |G|2  ϕ.

(3.3) Theorem ([6]): Let L be one of ∃ setFO,  ∃ setF O TC  or MS. E d g e
quantifications are L-eliminable for each of the following classes of  directed (resp.
undirected) graphs :

- the graphs of degree  ≤ d  for any fixed  d,
- the planar graphs,
- the graphs of tree-width  ≤ k  for any fixed  k.

In all cases the proof will consist in constructing |G|2  from |G|1 by means of logical
formulas. (Since we only consider simple graphs, |G |2 is uniquely defined up to
isomorphism from |G|1.)

Our objective will be to describe by monadic second-order formulas the
transformation of the structure |G |1 into the structure |G |2. We need a definition
concerning transformations of general relational structures. We will denote by QF the set
of formulas without quantifiers.

We let R and Q  be two sets of relation symbols. Let L be a fragment of MS. (We
will use the notation  L(R) to indicate the relevant set R of relation symbols). An
(L,R,Q)-definition scheme  is a tuple of formulas

∆ = <δ, (θq,b )q  ∈ Q, b ∈ {0,...,k }ρ(q)  >
of the following form : we fix  k,n  ≥ 0  and two sets  {Zo,...,Zk}  and  {Y1,...,Yn } of
set variables. We let δ be a formula in  L (R) with free variables in {Zo ,...,Zk ,
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Y1,...,Yn}. For every q ∈  Q  and  b ∈  {0,...,k}m, m = ρ(q) (the arity of the relation
symbol q), we let θq,b be a formula in  L(R) with free variables in {Zo,...,Zk,Y1,...,Yn,
x1,...,xm}.

For every R-structure S  = <DS, (rS )r ∈ R >  for all subsets Zo,...,Zk,Y1,...,Yn  of

DS  such that  (S,  Zo,...,Zk,Y1,...,Yn )    δ we define as follows a Q-structure  T =
def∆(S, Zo,...,Zk,Y1,...,Yn ) :

DT  := Zo 6{0}" ... "Zk 6{k}
qT ((d1, i1),...,(dm , im)):⇔  i1,..., im  ∈  {0,..., k }, d1 ∈  Zi1, ..., dm ∈  Zim, and

(S,Zo,...,Zk,Y1,...,Yn , d1 ,..., dm)   θq,b   where b = (i1,...,im).

We will say that the multivalued mapping associating with an R-structure S  the Q-

structures of the form def∆(Zo,...,Zk,Y1,...,Yn ) such that (S,Zo,...,Zk,Y1,...,Yn )  δ
is an L-definable transduction. The monadic first-order reductions used in [3]  are FO-
definable transductions.

(3.4) Lemma : Let  ∆  be a  (MS,R,Q) definition scheme. For every closed formula  ϕ
∈ MS(Q), one can construct a formula ϕ∆ ∈  MS(R) with free variables in  {Zo,..., Zk,
Y1,..., Yn } such that, for every  R-structure  S  and for all sets  Zo,...,Zk,Y1,...,Yn
⁄ DS,

def∆(S,Zo,...,Zk,Y1,...,Yn )  ϕ   iff    (S,Zo,...,Zk,Y1,...,Yn)   ϕ∆.

Furthermore, if  ∆ is an (FO,R,Q)-definition scheme and   ϕ ∈   ∃ setFO(Q) then ϕ∆
∈  ∃ setFO(R). If, in addition, the formulas  θq,b  of  ∆ are without quantifiers and  ϕ ∈
∃ setFOTC(Q) then  ϕ∆ ∈   ∃ setFOTC(R).

Proof : Elementary manipulations of formulas. The idea is to replace a quantification of
the form  ∃ X.ϕ by quantifications of the form  ∃ X0,...,Xk +1[X0 ⁄ Z0 3...3Xk +1 ⁄
Zk +13ϕ '] where ϕ ' is an appropriate transformation of ϕ . We refer the reader to

Courcelle [5] for details. Á

(In the last assertion we assume that the formulas θq,b are in QF (and not in FO)
because in the transitive closure operators used in FOTC , we assume that the formulas
are existentially quantified.)

The various statements of Theorem (3.3) will be proved in the following way: for
each class of graphs C we will construct a (QF, {edg}, {inc})-definition scheme ∆ = <δ,
...> such that, for every G ∈ C, there exist Zo,...,Zk,Y1,...,Yn  satisfying δ, and for any
such tuple: def∆(|G |1,Zo,...,Zk,Y1,...,Yn ) – |G|2 (where –  denotes isomorphism of
structures). Assuming that we have defined ∆, the proof goes as follows. Given  ϕ ∈  L2
we let ϕ∆ be the corresponding formula in L1 (by Lemma (3.4)). Then a formula

equivalent to ϕ is  ∃ Zo,...,Zk,Y1,...,Yn [δ 3 ϕ∆]  which is in L1 or can be transformed

into a formula in  L1  by some permutation of quantifiers. Á

Let k  be a positive integer and  G   be a directed graph. A k-coloring  of G  is a
mapping  γ : VG  → {1,2,...,k} such that  γ(v) ≠ γ(w)  whenever (v, w) ∈  edgG. We
say that  γ  is semi-strong  if  γ(v) ≠ γ(w) whenever v ≠ w  and there exists x  such that
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(v, x)  and  (w, x) belong to edgG.  We denote by  SSk the class of graphs having a
semi-strong k-coloring.

(3.5) Proposition : For each  k ≥ 1, there exists an FO-definable transduction
associating |G|2 with  |G|1  for every  graph  G in  SSk .

Proof : Assuming that we know a semi-strong coloring  γ  (given by a k-tuple of sets
of vertices  Y1,...,Yk  such that Yi = γ-1(i) ), then we will represent an edge  e  from v
to  w  by the pair rep(e) = (w, γ(v)). We let also rep(x) = (x,0) for  x ∈  VG . It follows
that rep is a bijection of VG " EG  onto Zo6{0}"Z16{1}" ... "Zk 6 {k} where Zo  =
VG  and Z i  =  {w  ∈ VG  / there is an edge (v, w ) ∈  EG  for some  v  ∈ Yi } for i ≥ 1.
We let then  θinc,i,j,m be the formula x1 =x3 3x2 ∈ Yi  3 x3 ∈ Zi  3 edg(x 2,x 3) if  i
≠ 0, j  = m  = 0  and be the formula false if  i = 0 or m  ≠ 0. Whenever Y1, ..., Yk,  Zo
,...,Zk are associated as above with a semi-strong k-coloring, |G|2 is isomorphic by rep
to the structure def∆(|G |1,  Y1, ..., Yk , Zo ,...,Zk ).

The formula  δ  intended to express that arbitrarily given sets Y1, ..., Yk , Zo ,...,Zk
are appropriate can be defined as the conjunction of the following first-order conditions :

1)  Y1, ..., Yk   form a partition of  VG ,
2) any two adjacent vertices are not in the same set Yi   for any i ,
3) any two distinct vertices  x, y  such that edgG(x, u ) and edgG(y, u ) for some u

are not in the same set  Yi   for any  i,
4)  Zo  = VG,
5) for every i  = 1,...,k  and  x ∈  VG  : x ∈  Zi  iff there is  y  ∈  Yi  such that

edgG (y, x ) holds.

It follows that ∆ is a (FO,{edg},{inc})-definition scheme and that a graph G  is in
SSk   iff there exist a 2k-tuple of sets (Y1,..., Yk , Zo ,..., Zk )  such that (|G |1, Y1,

..., Yk  , Zo ,...,Zk  )   δ. Furthermore, for any such tuple, def∆(|G |1, Y1, ..., Yk,

Zo, ...,Zk ) is isomorphic to |G|2 by rep. Á

One next aim is to extend this result to certain undirected graphs by equipping them

with an adequate orientation that we will define by QF1 formulas (and not by FO 
TC
2

formulas as in Section 2).
Let C  be a k-tournament, i.e., a directed graph with set of vertices {1,...,k } and for

every 1 ≤ i < j ≤ k  an edge either from  i  to  j  or from  j  to  i. Let G  be an undirected
graph, and γ: VG →{1,..., k} be a k-coloring. We denote by  G (C, γ)  the orientation of
G  obtained by directing an edge {u,v} from  u  to v  iff (γ(u), γ(v)) is an  edge of C. We
let G(C) denote the class of graphs H of the form G(C,γ) for some G  and  γ , such that

γ is a semi-strong coloring of H. We let G(k ) = "{G (C ) / C  is a  k-tournament}.

(3.6) Proposition :  For each  k, the result of Proposition (3.5) holds for the classes
und(G(k)) and  und-1( und(G(k))).

Proof: The result holds for each class und(G(C )) since an appropriate orientation is
definable from a coloring γ of a graph  G  in und(G(C ))  where  γ  is given as in (3.5)
by sets Y1, ..., Yk . If the result holds for two classes, it holds for their union. The
result follows thus for und(G(k )) .
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We now consider the case of a graph  H  in und-1(und(G(k))). By reversing the
orientation of a set  X  of edges of  H  we obtain a graph  G  in G(k). Let Y1, ..., Yk ,
Zo ,...,Zk  be a tuple associated with G  as in (3.5). Since a set of edges  X  of  und(G)
can be specified by  k  sets of vertices  X1,...,Xk  of  und(G) (equivalently, of H ), we
can define, by QF-definition schemes, |G|1  from |H |1, |G|2  from |G|1  and |H |2 from
|G |2  in terms of the sets Y1, ..., Yk , Zo ,...,Zk , X1,...,Xk . One can combine these
definitions and one gets finally a definition scheme defining |H |2  from (|H|1, Y1, ...,
Yk, Zo,...,Zk , X1,...,Xk) where Y1, ..., Yk , Zo ,..., Zk,...,X1,...,Xk  are appropriately
chosen. That they actually are, can be verified by a first-order formula. We refer the reader

to [6] for more details. Á

Proof of Theorem (3.3): It is proved in [6, Lemmas 5.1 and 5.2] that every
undirected graph of degree  ≤ d  is in  und(G (k ))  where  k = (m +1)23m  and  m = d 2.
Proposition 6.7 of the same paper shows that every undirected graph of tree-width  ≤ k
belongs to  und(G(3k )). Improving a result of [6], Raspaud and Sopena proved ([22,
Thm 2]) that every undirected planar graph is in und(G(320)). The result follows then
immediately from Proposition (3.6). These lemmas from [6, 22] are purely graph

theoretical. Their proofs make no use of logic. Á

4. It is easier to forbid than to build

Certain classes of graphs can be defined in two different ways: either "positively" by
expressing that a graph has a certain structure or "negatively" by expressing that a graph
has no subgraph of a certain kind. We consider two such classes, the class of chordal
graphs and the class of 3-connected planar graphs: for both cases we obtain that the
"negative" definition is simpler than the "positive" one : the former is in  ∃ setFO1

whereas the latter is in  ∃ setFO 
TC
2  .

Chordal graphs

An undirected graph is chordal  iff it has no induced subgraph which is a cycle with
at least 4 vertices. Chordal graphs have particular algorithmic properties (see Gavril [17]).
However, these properties are not based on this definition which is "negative" and says
little on the structure of chordal graphs, but on an equivalent one showing that chordal
graphs have a certain characteristic "tree-structure".

By the definition, Non-Chordality is characterized by the following  ∃ setFO1
property (see Section 1 for QuasiPath'):

∃ X  [∃ x, y, z (x ≠y 3 x ∈ X 3 y ∈ X 3flz ∈ X 3fledg(x, y) 3 edg(x, z)3
edg(z, y) 3 ∀ u {"u  ∈ X - {x, y }" ⇒  fledg(u,z)} 3 QuasiPath'(X, x, y )].

We now consider an alternative characterization exhibiting the tree-structure of
chordal graphs which is important for algorithmic purposes. A directed chordal graph  is a
directed acyclic graph G  such that, for every two edges (x, y) and (x', y ) in  G,  x  and x'
are adjacent. It is known from Rose [23] that a graph  G  is chordal iff it is  und(H ) for

some directed chordal graph H. DirectedChordality is clearly FO 
TC
1 . We will prove
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that Chordality is ∃ setFO
TC
2 . The corresponding formula will be "constructive": it will

specify, (when it holds) an orientation of the considered graph  G  making it into a
directed chordal graph.

(4.1) Lemma  : A  connected directed  acyclic graph  G  is directed chordal iff it has a
directed spanning tree  T  such that for every edge  (x,y) not in  T  we have  x <T  y, and
for every  z with x <T  z <T  y we have an edge in  G from  z to  y and one from x to  z.

Before doing the proof, we recall some definitions. A tree-decomposition of a graph
G  is a pair (T, f )  consisting of a tree T  and a mapping  f  = VT  → P (VG)  satisfying
the following conditions :

i) every vertex belongs to  f (x )  for some  x ,
ii) every edge has its two ends in  f (x ) for some  x ,
iii) for every  y  ∈  VG  , {x  ∈   VT  / y  ∈ f (x )} is a connected subgraph of T .
The width of (T, f ) is the maximal cardinality of the sets f(x) minus 1. The tree-

width of a graph is the minimal width of its tree-decompositions.

Proof of Lemma 4.1: "If". Let G  be a directed acyclic graph with a spanning tree T
satisfying the condition of the statement. Let (x,y ) and (x',y ) be two edges. Then we
have x  <T  y  and  x' <T  y  and we must have x  <T  x'  or x'  <T  x. Assume the first:
we have thus an edge from  x  to  x'  since x  <T x'  <T  y  .

"Only if". Let  G  be directed chordal and connected. Consider a vertex v  of outdegree
0 in G. Let {x1,...,xk}  be the vertices adjacent to v. They form a clique C . It is easy to
see that every clique in G  is linearly ordered by the transitive and reflexive closure of
edgG . Assume xk  is the maximal element of C  with respect to this partial order. By
induction we have that G-v  is directed chordal, we can assume that T'  is a directed
spanning tree of G-v  as desired and we build T  by adding to T' the directed edge (xk ,v).

The remaining verifications are easy. Á

We can thus express that a connected undirected graph  G  is chordal as follows :
(3) ∃ Y  ["Y  is a set of edges" 3 ∃ u ( "(Y, u) is a dfs spanning tree"3

"for every edge {x, y } not in Y  we have x  <(Y, u) y  or y  <(Y, u) x "3
"for every vertex z  such that x <(Y, u) z <(Y, u) y , {x, z } and {z, y }
are edges")].

This definition is clearly in ∃ setFO 
T C
2 . The extension to graphs that are not

connected is immediate by using dfs forests, as in the proof of Proposition (2.2). 

Finally, we may observe that we obtain in this way a tree-decomposition of G . By
taking the tree T  = (Y, u) of (3) and the  mapping  f  such that f (x ) = {x } " {y / (y, x )
is an edge of T } one obtains a tree-decomposition of G . All "boxes" f (x ) of this tree-
decomposition are cliques of G .

It is easy to check that a graph is chordal iff it has a tree-decomposition all boxes of

which are cliques. Á

A tree-decomposition (T,f ) of a graph G will be represented  by the structure |(T,f)|2
=  <VG "EG  "VT , incG , edgT , boxT  > where  boxT  (x,y) holds iff x  ∈  VT , y  ∈
f (x) (we assume that VT  ∩ (VG "EG )) = Ø .
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(4.2) Corollary : One can build a definition scheme  ∆ = <δ,...>with parameters  Z0,

Z1, Y1,  and formula  δ in FO
TC
2   such that, for every  undirected connected graph  G,

 |G|2  ∃  Z0, Z1, Y1[δ]  iff   G is chordal
and for every triple  Z0,Z1,Y1 satisfying  δ  the structure  def∆(|G|2, Z0, Z1, Y1) is
isomorphic to a structure representing a tree-decomposition of   G.

Proof : We let δ  express that Z0  = VG "EG  , Z1 = VG , Y1  is a set of edges of G,
Y2 = {u }, u ∈  VG , and  (Y1, u ) witnesses that G  is chordal (see (3) after Lemma

(4.1)). The remaining details are easy to fill in. Á

Planar graphs

We have seen that Non-Planarity is a ∃ setFO1 property. Our goal here is to

express Planarity by a  formula in ∃ setFO 
TC
2  which specifies, when it holds, a planar

embedding of the considered graphs. We will consider graphs in G, the class of connected
undirected graphs.

Part 1: Logical representation of planar drawings.

Let G  be a planar graph in G. A planar drawing of G  can be defined from a triple (r,
T, S )  where  (T, r ) is a spanning tree of G   and  S  ⁄ EG6EG is a relation which
defines a strict linear order on each set  EG(x), x  ∈  VG (we denote by EG(x) the set of
edges incident with x ).

The drawing is done from (r, T, S ) as follows: one first draws (T, r ) by placing the
edges going out of a vertex x  from left to right according to the order on EG(x) defined
by S ; one places then the edges not in T  in such a way that the relative order of
incidence around a vertex  x  is determined by the restriction of S  to EG(x ). This is
possible without crossings if  S  satisfies condition (C)  stated below, with help of some
notation.

We let  B = {(e, x ) / e  ∈  EG-T , x  ∈  VG , x  is incident with e }. We let <<S  be
the strict linear order on B  defined as follows :

(e, x ) <<S  (e', x' )  iff (e1, e2,..., ek , e )  <
lex
S

(e'1,...,e'm , e' )

where (e1, e2,..., ek )  is the sequence of edges of the unique path in T

from r  to x  and similarly for (e'1,..., e'm )  and  x' , and  <
lex
S   is the

lexicographic ordering associated with  S.

Condition  C  is now the following :

(C ) : there are no two edges  e  = {x, y }  and  e' = {x', y' } in  EG - ET
such that:

(e, x ) <<S  (e', x ') <<S  (e, y) <<S  (e', y' ).
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That this condition ensures the possibility of placing the edges of  EG - T  without
crossings can be explained with the help of an example.

⁄

⁄ ⁄ ⁄

⁄ ⁄ ⁄ ⁄  8

⁄ ⁄ 13

⁄⁄⁄

⁄ ⁄ ⁄⁄

b

a c

d

1

2 3 4

5 6 7

12
9 10 11

14 15 16 17

Figure 1

Example: Consider the graph G of Figure 1 with vertices numbered from 1 to 17 and
EG - ET  = {a, b, c, d }. We assume that  S  induces the following linear orders :

{1, 2} < a < {1, 3} < c < {1, 4} < b  on  EG (1),
{1, 3} < {3, 9} < {3, 10} < {3, 11} on  EG (3),

{1, 4} < {4, 7} < d < {4, 8} on  EG (4),
{1, 8} < {8, 12} < c < {8, 13} on  EG (8) ,
{3, 9} < {9, 14} < a < {9, 15} on  EG (9).

The order <<S  on  B  is then:

(b, 5)<<S  (a,1)<<S (a,9)<<S (c,1)<<S (d,4)<<S (d ,12)<<S (c,8)<<S (b,1).

A drawing can be done as follows: one cuts in two parts each edge of EG- ET ; one
draws T  and these half-edges according to S ; Condition (C) guarantees that the two
halves of any edge in EG-ET  can be linked without creating any crossing.

We define a map  of a graph G  as a triple D  = (r, T, S )  satisfying condition (C).
Such a map will be defined by the structure:
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|D |2:= <VG"EG, incG, rootG, tree-edgeG , sG>
where rootG(x)  holds iff x = r , tree-edgeG(e) holds iff e  ∈  T  and sG(x,y) holds iff
(x,y) ∈  S .

Part 2: Defining a map from a dfs tree and two sets of edges.

We now establish that for planar 3-connected graphs G  in G the required objects T

and S  can be specified by formulas in ∃ setFO 
T C
2 . (A graph is 3-connected if the

property 2-Separability(x,y) holds for no two vertices x, y .)

We first define a construction of T  from a planar drawing of G . We take an drawing
in the closed half-plane with a single vertex, say  r , on the border. Let (T, r ) be a dfs
spanning tree of G . We will denote by H  the directed graph  G(T, r,  EG-T) (see Section
2). For every edge  (x, y ) ∈  EG -T  we have y <T x . We call it a left-edge  if it reaches
y  from the left of the branch in T going from r  to x . We call it a right-edge  otherwise.
We let L  be the set of left-edges and  R  be the set of right-edges. (On Figure 1, a  from
9 to 1, d  from 12 to 4 and c  from 8 to 1 are left-edges, b  from 5 to 1 is a right-edge;
the graph G  is not 3-connected).

We will prove that if G  is 3-connected its unique embedding in the plane can be
defined from any 4-tuple (r, T, L, R ) ∈ VG 6P (EG )3 satisfying some conditions C1-C3
listed below, which hold if  r, T, L, R  are associated as explained above with a plane

drawing of  G , and that are expressible by formulas in FO 
TC
2 . Here are conditions C1-

C2:
C1 : (T, r ) is a dfs spanning tree of  G,
C2 : (T, L, R ) is a partition of EG .

Assuming them, we let H  := G (T, r, EG  -T); we will consider T, L, R  as subsets
of  EH  hence as sets of directed edges. We will say that a path from  w  to x  is a left
path  (resp. a  right path ) if its last edge is in  L  (resp. in  R ). We will write UL(e, x)
if  e  is the first edge of a left path from some vertex  w  (the origin of  e ) to  x . We
define similarly UR (e, x ) with right paths. Finally, for  e = (w, y ), e = (w, y' ) ∈  EH ,
we let Q (e, e' ) hold iff for some  x, x' <T  w   we have :

either  UL (e, x)  and  UL (e', x' ) and x' <T  x ,
or  UR (e, x ) and  UR (e', x ')  and  x' >T  x ,
or  UL (e, x)  and  UR (e', x ').

Our third condition now reads :
C3 : for every two edges  e, e'  if  Q (e, e' )  holds then Q (e', e )  does not.

Conditions C1-C3 hold if  r, T, L, R   are associated as explained above with a plane
drawing of G. For proving the converse, namely that a map (r, T, S) can be defined from
them if they hold, we need some lemmas :

(4.3) Lemma : Let  H  be a 3-connected directed graph. Let T, L, R satisfy conditions
C1-C3. For every vertex  w, the relation  Q defines a strict linear order on the set of
edges with origin  w.

We will extend  Q  into a binary relation S   which is a strict linear order on each set
EG(w). We will denote by org(e) the origin of an edge e and by tgt(e ) its target. If e  ∈
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L "R  and w  is a vertex with w  ≥T  tgt(e)  we let ORG(e, w )  be the unique edge in T
with origin w  which is on a directed path from  w  to tgt(e ) the last edge if which is e .
(If there is no such path then ORG(e, w )  is undefined). We now define  S :

S (e, e' ) : ⇔ e ≠ e',  e, e'  ∈  EG (w )  for some (necessarly unique) w , and
either  e  ∈  T  and tgt(e ) = w
or w =  org(e ) = org(e ')  and  Q (e, e' )
or e' = ORG (e, w )  and  e'  ∈  R
or e  = ORG (e', w ) and  e  ∈  L
or w =  org(e )  and  Q (e, ORG (e' , w ))
or w =  org(e ')  and  Q (ORG (e , w ), e' )
or w  = tgt(e ) =  tgt(e '), e, e'  ∈ L "R  and we have:

either  Q (ORG (e, w ), ORG (e', w ))
or ORG (e, w ) = ORG (e', w )  and for some  w' >T  w  we have
f = ORG (e, w ') ≠ ORG (e', w ') = f '  and

either  Q (f, f ' ),  e  ∈  L , e'  ∈  R
or Q (f ', f ), e , e'  ∈  R
or Q (f ' , f ),  e , e'  ∈  L .

(4.4) Lemma: Under the hypothesis of Lemma (4.3) the relation  S defines a linear
ordering of each set  EG(x) for  x ∈  VG  and the pair  (T, S)  satisfies condition  C.

This lemma and the previous one will be proved in a forthcoming paper.

(4.5) Theorem: The planarity of a 3-connected graph can be expressed by a formula ψ
of the form  ∃ X,T,L,R.ϕ where ϕ  is  FO

TC
2 . When ψ holds, one can define from  X, T,

L, R  satisfying  ϕ   and by a  FO
T C
2  formula , a binary relation  S on  EG   which

satisfies  the condition  C and from which a planar drawing of  G can be defined.

(4.6) Corollary: One can build a definition scheme  ∆ that defines for every 3-
connected planar graph G given by  |G|2 a  structure  |D|2  representing a map  D of  G.

Corollary (4.6) does not extend to general, even 2-connected, planar graphs. Consider
for instance the 2-connected graphs shown in Figure 2, for arbitrary large sets X.

⁄

⁄

⁄

⁄

⁄

⁄

⁄ ⁄

X

Figure 2
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Defining a planar drawing of this graph is equivalent to defining a linear order of the
set of vertices X . If one could define such a drawing by MS  formulas one could define
by MS formulas a linear order on any set, which is not possible (we skip details ; see
[7]).

5. Overview of further topics and open problems

We first discuss two extensions of MS . The first extension is called counting
monadic second-order logic (CMS), and is obtained from MS by the use of atomic
formulas of the form cardp(X), p ≥ 2, meaning that the set X  has cardinatlity  λp  for
some  λ  ∈ N . CMS is an extension of MS  which is strictly more expressive. However,
in a structure where a linear order is definable by an MS formula, every formula of CMS
can be transformed into an equivalent one in MS (see [4]).

Another extension of MS is MS(≤), i.e., MS logic in presence of a built-in linear
order. (A property  P  of a structure  S  is MS(≤) iff it is equivalent to an MS property
Q  of (S,≤), i.e., of the structure  S  augmented with a binary relation ≤  which is a
linear order of  DS , and such that for any two linear orders ≤ and ≤'  on DS   it holds that
Q(S, ≤) iff Q(S, ≤').) Every CMS property is MS(≤).

(5.1) Conjecture ([9]) : There exists a  MS(≤)  property which is not  CMS.

Seese [24] has proved that if a set of graphs is such that its MS2-theory is decidable
then its elements have uniformly bounded tree-width. (See the beginning of Section 4 for
the definition of tree-width.)

(5.2) Conjecture ([24]): If a set of  graphs  L  has a decidable  MS1-theory, then  L
⁄ def∆(K)  for some  MS-definition scheme  ∆ where  K  is the set of binary trees.

An equivalent form of this conjecture is discussed in [7], and proved for certain sets
of chordal graphs and for any class of directed graphs  L  closed under arbitrary changes of
edge directions (i.e., such that  L = und-1(und(L))).

We showed in Section 4 (Corollary 4.2) how a tree-decomposition of a chordal graph
can be defined by MS-formulas.

(5.3) Conjecture ([5]): For every  k one can construct an MS-definable transduction
associating with every graph  G of tree-width at most  k a tree-decomposition of it of
width at most  k.

The case k =1 is fairly obvious, the cases k = 2 and k = 3 are proved respectively in
[5] and [19]. The MS  definition of tree-decompositions of width  g(k)  for graphs of tree-
width at most k  (where g  is a fixed function such that  g(k) ≥ k for all k ) would yield a
weak form of this conjecture and prove the following one :

(5.4) Conjecture ([5]): For each  k, every recognizable set of graphs of tree-width  ≤ k
is  CMS-definable.
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This would generalize the similar result for words and trees (see [27, Thm 3.2], [4]).
We only recall here that recognizability for sets of graphs is defined algebraically in terms
of finite congruences ([4]) and not in terms of automata.

Every graph G  has a unique modular decomposition [9], i.e., a unique hierarchical
structuring based on the substitution of a graph for a vertex in a graph. This structuring
is MS-definable in the structure (|G|1, ≤) where ≤ is an arbitrary (built-in) linear ordering
of VG .

(5.5) Conjecture [9] : The modular decomposition of a graph  G  is not MS-definable
in |G|1.

Some of our results hold for infinite graphs: Propositions (2.2) and (2.3), because
infinite graphs have dfs spanning forests and Theorems (3.3) and (3.6) because the
coloring lemmas of Section 3 extend from finite graphs to infinite ones.

Acknowledgements: I dedicate this work to the memory of P. Kannellakis who died
in a plane accident in 1995. I thank C. Lautemann and H. Straubing for their comments
on the first version of this article.
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