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ABSTRACT : We review the expressibility of some basic graph properties in
certain fragments of Monadic Second-Order logic, like the set of Monadic-NP
formulas. We focus on cases where a property and its negation are both
expressible in the same (or in closely related) fragments. We examine cases
where edge quantifications can be eliminated and cases where they cannot.
We compare two logical expressions of planarity: one of them is
constructive in the sense that it defines a planar embedding of the considered
graph if it is planar and 3-connected, and the other, logically simpler, uses
the forbidden Kuratowski subgraphs.

Introduction

By considering graphs aslogical structures one can express their properties by logical
formulas. From the logical expression of a graph property, one can obtain upper bounds
to its complexity, over all graphs or over specific classes of graphs: see for instance [2,
4,10, 12, 14, 18, 25, 26]. One can also specify by logical formulas certain constructions
like the unique plane embedding of a planar 3-connected graph.

We will use Monadic Second-Order logic (MSlogic) to define these properties and
constructions. This language is of special interest for the following reasons: it is
powerful enough to express non-first-order graph properties like connectivity, acyclicity,
planarity, k-colorability for each fixed k and is nevertheless algorithmically tractable:
every MS (Monadic Second-Order) property istestable in linear time on "tree-structured”
graphs, a notion which has of course a precise definition ([2, 4, 10]). MS logic is aso
closely connected with finite-state automata: for finite binary trees, recognizability by
finite-state automata is equivalent to definability by an MS formula. This connection
yields effective constructions of linear-time verification algorithms. It extends also to
infinite trees and culminates with Rabin's theorem which is fundamental in semantics
(Emerson [11]).

Second-order logic is of course more powerful than MS logic. However, it isin a
sense too powerful: the connection with automata does not extend and no general efficient
verification method is known, even for tree-structured graphs. However, it is interesting
because of its connections with complexity classes like NP and the polynomial hierarchy
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[12, 18, 26]. We will discuss some fragements of MS logic (like the class of monadic-
NP formulas) which have been introduced in the hope of proving that NP # coNP by
logical techniques ([1, 3, 12, 13, 15, 18]).

This survey is organized a follows. Section 1 reviews MS logic and some of its
fragments of special interest in the field of descriptive complexity . We consider basic
graph properties like connectivity or the existence of disjoint paths between given
vertices, and we compare the logical expression of a property with that of its negation. In
Section 2 we show that the orientations of an undirected graph can be specified by MS
formulas using quantifications on sets of edges, and that they cannot be (in general) with
formulas using vertex set quantifications only.

In Section 3 we show that edge set quantifications can be eliminated in MS formulas
expressing properties of planar graphs or of graphs of bounded degree or tree-width. In
Section 4 we consider chordal graphs and planar graphs. We observe that both classes can
be defined "negatively" (i.e., by forbidden configurations) in a simpler way than
"constructively". We establish the new result that the unique planar embedding of a 3-
connected planar graph is definable by MS formulas.

Section 5 reviews further topics of interest in this field and presents some open
problems.

1. Monadic second-order logic

A graph can be defined as arelational structure G = <V g, edgg> where Vg, the set
of vertices of the graph, is the domain of the structure and edgg is abinary relation on
VG representing the edges. Hence, a closed logical formula written with the binary
relation symbol edg expresses a graph property in a natural way.

One can thus classify graph properties according to the logical complexity of the
formulas expressing them. This field is called descriptive complexity. We introduce or
recall the definitions of afew languages.

We will denote by FO, MSand SO the sets of first-order, monadic second-order and
second-order formulas respectively. We will denote by [kgFO the set of formulas of the
special form [0X1,...Xk ¢ where k=0, X1,...,.Xk areset variablesand ¢ isFO (the
set variables X1,...,.Xk can occur in ¢ in atomic formulas of the form x O Xj where
x isanindividual variable); these formulas are termed monadic-Z% in [1] and monadic-
NP in[3, 15].

We will denote by FOTC the set of first-order formulas constructed with special
atomic formulas representing transitive closures of binary relations defined by existential
first-order formulas; these atomic formulas will be written TCy y (¢)(u,v) where ¢ is
an existential first-order formula that can have other free variables than x andy, say
21,0 ZKy X1,---» Xpn - We will define the meaning of these new formulas. If R isa
binary relation, we will denote by R * its transitive closure. Furthermore, we will denote
by the same symbol avariable and a value assigned to it. Here is the definition.

For every assignment of values to zi,..., zk, X1,..., Xpn , for every u, v in the
domain Dg of the considered structure S, then

TCxy (¢)(u, v) holds iff (u, v) [ R* whereR € DgxDg isdefined by :
R={(x,y)ODsxDs / S E ¢6(X V, 71, Zks X1,0» Xn )}.
Note that this transitive closure constructor is used for binary relations over domains

of structures (and not over n-fold products of domains of structures), which, furthermore,
are defined by existential first-order formulas (and not by arbitrary first-order formulas).
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By replacing FO by FOTC in the definition of CsetFO, we obtain the set of
formulas [ketFOTC . Since transitive closures are definable by MS formulas we have

FO C OFO C OgFOTC © MS.

Examples will prove that the corresponding hierarchy of graph properties is strict.
Since formulasin FOTC  denote polynomial (and even NL) properties [18], formulas in
[ketFOTC denote NP properties. The second-order formulas denote the properties in the
polynomial hierarchy. It is proved in Makowsky and Pnueli [21] that MS properties can
be arbitrarily high in the polynomial hierarchy.

Defining graphs as we did has two drawbacks: first, one defines simple graphs only,
(simple means that there are no multiple edges) and second, quantified variables cannot
denote edges or sets of edges. Even for expressing properties of simple graphs,
quantification on sets of edges is essential in certain cases as we will see.

For every graph G we let |G|1 be the above defined structure <V g, edgg>. A
simple graph G is completely determined up to isomorphism by the structure |G|1. For
an arbitrary graph G welet |G| :=<Vg O Eg, incg> where Eg isthe set of edges
and incg isthe ternary relation such that incg (x,y,2) holdsiff x isan edge fromy to
z. (If G isundirected incg (x,y,2) holdsiff incg (X,z,y) holds). An element x of
Vg O Eg isan edge iff there exist y, z such that incg(x,y,2) holds. Every graph G is
completely determined, up to isomorphism, by the structure |G| .

For each of the sets of formulas FO, MS, [kgFO etc... the subscript 1 (resp. 2)
will indicate that the formulas are written with the relation symbol edg (respectively
inc) hence that they express properties of graphs G represented by the structures |G|1
(respectively |G|2). We will see below that non-planarity is expressed by a formulain
OsetFO1 (i.e., amonadic-NP formula in the terminology of [15]). We will see that
directed reachability is expressed by a formula in [kegtFO2 whereas (by [1]) it is not
expressible by any formulain [kgFO; .

We will now review some basic graph properties that are significant for the
comparison of the expressive powers of the various fragments of MS logic we have
introduced. We shall only consider finite graphs (except in a short discussion in Section
5). In order to shorten statements and without any significant loss of generality, we will
use the following

Convention: The term graph will mean finite simple loop-free graph .
Vertex colorability

For each k, (vertex) k-colorability is Oget FO1 (i.e., is expressible by a formula
in CktFO relative to the representation of agraph G by the structure |G|1). The formula
is easy to construct. For each k = 3 this property in NP-complete. Furthermore NP =
coNP iff Non-3-colorability is expressible by a second-order formula of the form
R1,...,Rn ¢ where R1,..., Rh are relation variables (possibly not unary) and ¢ is
first-order. (See[1]). Cosmadakis has proved in [3] that Non-3-colorability is
not a UketFO1 property.
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Connectivity properties

If RS DxD and X € D, we say that X isR-closed if for al x,y O D, if x
OX and (x, y) OR theny OX. (This is clearly a first-order property). Non-
connectivity is CkgtFO1 since it can be expressed by the formula

(@) X (x(x OX)A Oy(ny OX) A "X is(edg Uedg1)-closed").

(The text between quotes defines the meaning of the subformula it stands for; this
formulais straightforward to write. Text between quotes will be used in this way in the
sequel in order to make formulas readable.)

Since Connectivity isnot FO41 (Gaifman [16]), this proves that formulas in
OsetF O are strictly more expressive than first-order ones. Similarly,
DirectedUnreachability(x,y) (the non-existence of a directed path from x toy) is
expressed by the following formulain [CggFO;q:

2 X x OX A 7y OX "X isedg-closed").

In undirected graphs, edg denotes a symmetric relation and formula (2) expresses
Unreachability(x,y), i.e., the non-existence of a path between x andy . (Any two
vertices in a path are distinct except possibly the two ends in the case of a cycle; in a
directed graph G we distinguish a path, where edges can be traversed in either direction,
from adirected path, where they are al traversed in the natural direction.)

DirectedReachability(x,y) (i.e., the existence of a directed path from x toy) is
expressed by the formula TCy v (edg(u,v))(x,y ) and by aformulain OxtFO2 that we
now construct. We let first QuasiPath(X,x,y) be the first-order formula expressing the
following :

X isaset of edges, x and y are vertices, X #y, X isthe origin of a unique
edgein X and the target of none, y isthetarget of aunique edgein X and the
origin of none, every vertex other than x andy that isincident to an edge of X
isthe origin of aunique edgein X and the target of aunique edgein X.

Since graphs are finite, these conditions express that X is the set of edges of a
directed path from x toy augmented possibly with the vertices of pairwise disjoint
cycles that are digjoint from the path. Hence DirectedReachability(x,y ) is equivalent
to OX QuasiPath(X,x,y) and is thus a [ketFO2 property. Ajtai and Fagin [1] proved
that no formulain CggtFO7 can express this property.

The situation is simpler for Reachability(x,y) (in undirected graphs or in directed
graphs but for nonnecessarily directed paths). This property can be expressed by the
OsetFO4 formula OOX QuasiPath' (X,x,y) where QuasiPath'(X,x,y) is the first-order
formula:

x OX A yOX A xzynteachof x andy isadjacent to a unique element of
X" n"every vertex in X-{x,y} is adjacent to exactly two vertices of X").

(This construction, due to P. Kannellakis, is given in [1]; one can use the same idea
to construct a formula in CgetFO1 expressing DirectedReachability(x,y) in directed

acyclic graphs).
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Connectivity is expressed by : OxOy [x =y OReachability(x,y)] hence by a
formulain FO -{C. It is known from Fagin [13] that Connectivity is not OgetFO1. (It

is not CketFO» either since the proof of [13] uses graphs of degree at most 2, and since
formulas in TgetFO1 and in TketFO2 express the same properties of these graphs by
Theorem (3.3) below.)

Digoint pathsin undirected graphs

Let k = 2. k-DisjointPaths(xq,...,Xk ; ¥1,--,Yk ) 1S the property saying that:
X1 #Y1,...Xk # Yk and there exist k paths p1,...,pk linking x1 toyz,...,
Xk to yk respectively, such that every vertex common to two paths pj
and pj,j#i, belongsto {xj,yi} n {X,yj}-

From the construction done for Reachability it is not hard to see that k -
DisjointPaths(x1,...,Xk ; Y1.----Yk ) 1S expressible by a formula in OggtFO1 with k
existential set quantifications (representing the k desired paths).

k-Separability(x,y) is the property saying that x and y are distinct non-adjacent
vertices and that there existsaset A of at most k vertices such that every path from x
toy goesthrough A. It is [kgtFO1 since it can be formulated as follows:
XY ["x OX-(XnY)' A"y OY- (XnY)" A "every vertex belongsto
XUY" A "X nY hascardinaity <k" » " thereisno edge between a vertex
of X-(XnY) and avertex of Y- (X nY)"].

The negation of a OgetFO1 property is usually not a OgetFO1 one. However, it
follows from Menger's theorem (see Tutte [28]) that the negation of k-
Separ ability(x,y) is equivalent to

x =y Oedg(x,y) O (k+1)-DisjointPaths(x,x ....x; Y,y ...,y )

hence is also OgetF O 1. We do not know whether the negation of k -
DisjointPaths(x1,...,Xk; ¥1,---, Yk) iS UsetFO1 .

Forbidden configurations and nonplanar graphs

Let H and G be undirected graphs. We say that H embeds in G iff thereisa
subgraph G' of G which isisomorphic to agraph obtained from H by the replacement
of some edges by digjoint paths. Hence G is nonplanar iff either Ks or K33 embeds
in G. (For nz2, Ky isthe complete undirected graph with n verticesand Kpp is
the graph with vertices -n,...,-1,1,...,p and undirected edges between -i and j for positive
i

J )For every fixed undirected graph H without isolated vertices the property of an
arbitrary graph G that H embeds in G is expressible by a formula in OggtFO1
constructed as follows. We let Vy ={1,...n}, E4 ={(i1,j1), -- (ik, jk)} for some
11,00k Lre-jk O {1,...,n}. Then H embedsin G iff |G|y satisfiesthe formula:

OX1,ee00Xk s Y1seo YK » Z15-+42Z0

[k-DisjointPaths(Xq,....Xk ;Y1.-- Yk ) A /N 1<i<n Ej]
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where for each i, Ej isthe conjunction of the equalities xp =z , ym =z such that
ip=jm=i and of theinequalitiesxp #zj ,ym #z suchthatip#i,jm #i.ltisa
routine task to rewrite this formula into one in OgetFOq. It follows that Non-
Planarity is a [gegtFO1 property. We will present in Section 4 a characterization of
Planarity (for 3-connected graphs) by aformulain CggtFO IC which specifies a planar

embedding.
Trees

We consider undirected graphs. Such a graph G has a cycle iff there are adjacent
vertices x and y connected by a path not using the edge linking them. This can be

expressed by the following formulain FO IC :

[xy [edg(x,y) ATCy,v (edg(u,v) A{x=uny=v}Aa{x=vAy=u})(Xy)].

It followsthat Tree (the property of being atree) is expressible for undirected graphs
by aformulain FO Ic. An undirected graph is not atree iff it is not connected or if Kg
embeds in it. Hence the negation of the property Treeis [ketFO1.

Monadic Second-Order logic on paths and trees

Let IP bethe class of directed paths. For every formula ¢ in MS; with free variables
X1,..,Xk oOne can construct a formula Y in CketFO1 with the same free variables that
isequivalentto ¢ on al directed paths. We mean by equivalent that for every G 0O P,
for every X1,..., Xk € Vg wehave:

IGh Ew(X1,..., Xk) iff IGl1 E ¢(X1,.... Xk)

Every tuple (G, X1,..., Xk) where G O P and Xj € Vg can be made as
follows into a word w (G, X1,..., Xk) in A% (the set of nonempty words over A)
where A = {0,1}k (if G isthegraph vi-v2 - ... -vpn then w (G, X1,..., Xk) is
the word ajap...an Where aj isthe sequence of bits b1...bk suchthat bj =1 iff vj O
Xj ). Then {_w_(G, X1yeey Xk)_/G aP, |Gl E ¢_()_(1,.._., Xk)} is a regular language,
and from a finite-automaton with m states recognizing it, one obtains a formula ) of
the desired form with m existentia set quantifiers. (However, the number m is atower
of exponentials in the alternation depth of ¢.) See Thomas [27, Thm 3.2]. Hence
monadic second-order logic is equivalent on IP to its fragment CketFO1 . Similar results

hold for trees of degree < k for any fixed k (see [27, Thm 11.1]) and for trees of
unbounded degree [29].

(1.2) Open problem : On which other classes of graphs is monadic second-order logic
equivalent to itsfragment [kgFOq or to arelated one?

Summary

We summarize in atable the facts we have discussed (or will discuss) concerning the
expressibility of some graph properties, and of their negation. Except for
DirectedReachability, all graphs are undirected.
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Property itself its negation
3-Colorability CsetFO1 not CgetFO1
Connectivity FO '{C’ not DgetFO2 UsetFO1
Reachability(x,y) CsetFO1 CeetFO1
ted ili TC FO
DtedRreachability(x,y) FO 1%, [FOy, CeetFO1
not UgetFO1
k-Separ ability(x,y ) CeetFO1 LsetFO1
k-DisjointPaths(...) CketFO1
Planarit TC FO
Yy OsetFO 1 UsetFO1
Tree TC FO]_
FO, Heet
Hamiltonicity DsetFO;C1n0tMsl
Chordalit TC FO1
y CetFO 5 ot
Any MS-property on OsetFO1 UsetFO1
words or trees

The blank boxes in the negation column mean that we know nothing better than
the straightforward negation of the formula expressing the property. Hamiltonicity will
be discussed in Section 2 and 3. Planarity and chordality will be discussed in Section 4.

2. The definition of orientations by MSp formulas

For a directed graph G, we denote by und(G) the underlying undirected graph obtained
by forgetting the orientations of edges; two parallel but opposite edges of G get fused
into aunique edge in und(G).

Let us assume we know how to express by an MS§ formula a property P of directed
graphs. Can one express by an MS; formula the property pund of undirected graphs
defined by :

PUNd(G) : = P (G') holdsfor some directed graph G' such that G = und(G' )?

The answer is "yes" if i = 2 and "not always" if i = 1. The reason is that the
orientations of an undirected graph can be defined by MS, formulas but not by M$p
ones. Wefirst show the counterexample and then give the construction.

(2.1) Proposition ([7]): The property that an undirected graph has a Hamiltonian
cycleisnot MSj but is of the form pund for some M S property Pof directed
graphs.

Proof : Note that by our initial convention, Hamiltonian graphs have at least 3 vertices.
Welet P (H) bethefollowing property of adirected graph H :

there are at least 3 vertices, the reflexive and transitive closure of the relation edgy isa
linear order on V4 and there is an edge from the first to the last element of V4 (where
first and last are relative to this order).
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This property is actualy in FO IC . It is not hard to see that Hamiltonicity is

equivalent to P und
Assume by contradiction that Hamiltonicity is expressed by an MS; formula ¢.
Observe that Kp m is Hamiltonian iff n=m. Consider now aword w in{a, b 3 of

length at least 3, which is represented by a structure ||w|| having a domain which is the
set of occurrences of letters and a predicate pg(X) which holdsiff x isan occurrence of

letter a. By letting edg(xy) : = (pa()/ 1pa))Apa(y)A1pa(x), one definesin [[wl|
the structure |Kp m |1 where m (resp. n) is the number of occurrences of a (resp. of b).
The existence of ¢ implies the existence of a monadic second-order formula ¢ such

that HW|| E Y iff w hasasmany a's and b's . This is not possible because the
language defined in thisway by W is not regular (whereas every MS definable language
isregular ([27, thm 3.2]). Hence Hamiltonicity is not MS;-definable. (This argument is

from Makowsky [20]). |

We now consider the definition of orientations by MS formulas. In order to define
an orientation of an undirected graph G assumed to be connected, we choose a set of
edges X and avertex u suchthat X isthe set of edges of a depth-first search (dfs)
spanning tree of G with root u. Call thistree T . For verticesz,y weletz<t y if z
#zy and z ison the (unique) path in T from the root to y . This tree is depth-first
search iff the two ends of every edge of the graph are comparable under < .

Welet G (X,u) be the directed graph obtained from G by directing from z toy an
edgewithendsy and z suchthatz<t y.

Let now Y be an arbitrary subset of Eg . We define G (X, u,Y) by directing the
edges of Eg -Y asin G (X,u) andthose of Y in the opposite direction. It is clear that
every directed graph H such that und(H) = G is of the form G (X, u,Y) for some X, u
and Y. (One can even choose X, u arbitrarily so as they define a dfs tree of G and then
choose Y .)

We describe more formally the general construction which works for all, non
necessarly connected, graphs. We let ¢(X, U, Y) be the FO-|2—C formula expressing the

following properties of X, U, Y inagivengraph G (where we define an X-path as a
path all edges of which arein agiven set X):

(1) U isaset of vertices such that every vertex of G islinked by some path to one
and only one vertex of U ;

(2) X isaset of edges and the subgraph of G with set of verticesVg and set of
edges X has no cycle and any two vertices of G linked by a path are linked by an X-
path;

(3) the two ends of every edge of G belong to an X-path one end of whichisin U;

@Y <€ Eg-

Welet dso Y(X, U, Y, e x,y) bethe FOEC formula such that, whenever ¢ (X,

U, Y) holds, we have the following for al e OEg,Xx,y OVg :
B)if WX, U, Y, e xYy) holdsthen x andy are the two ends of e and
either e isinY and y ison the (unique) X-path from u tox whereu isthe
unique vertex in U linked by some pathtoy,
or eisnotinY and x isonthe X-path from u toy where u is as above.
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Having fixed X, U, Y satisfying (1)-(3), theincy relationof H =G(X, U, Y) is
now defined as follows:
incy (e xy):=incg(exy)n [x=y OP (XU, Y exy)l

(2.2) Proposition ([7]): Let G be undirected. For all sets X, U, Y such that |G|>
Eo(X, U, Y) thegraph H = G(X, U, Y) is an orientation of G, and the ternary
relation incy isdefinablein [G|2 by an FOEC formulaintermsof X, U, Y. For all

sets X, U suchthat |Gl E¢(X, U, @), for every orientation H of G one can find
Y suchthat H=G(X, U, Y).

(2.3) Corollary ([7]): For every M Sy property P of directed graphs, the property
pund isalso MS,.

Proof : Let P be expressed by 8 in MSp. Then PUNd s expressed by the formula
X,U,Y [¢ (X, U, Y) n BT where 6" isobtained from 6 by replacing every atomic
formula inc(e, x, y ) by the formula inc(e, x, y)AQ(X, U, Y, e, X, y ) (after the
necessary renamings of bound variables have been done as usual). |

It follows from Proposition (2.1) that no similar construction giving Proposition
(2.2) can be done with M$; formulas. However, for restricted types of graphs we will
see in the next section that orientations can be defined by MS; formulas.

3. The elimination of edge quantifications

Let us recall that al graphs are simple. It is not hard to see that quantifications on
edges are not necessary in first-order formulas. Roughly speaking one can replace [e["e
isan edge'nd] by (X y["'x andy are vertices forming an edge'~ ¢'] where ¢' is an
adequate translation of ¢. A similar result holds in second-order logic because an n-ary
relation on Eg can be handled as a 2n-ary relation on Vg . However this technique does
not work for monadic second-order logic because a set of edgesis a binary relation on
vertices, and not a unary one. Actually, a quantification on sets of edges can be seen asa
restricted form of quantification on binary relations on vertices.

IsSMSy more expressive than MS; ?
We have seen that DirectedReachability is OgetFO2 (whence MSy ) but not

[ketFOy . However itis FO 1< hence MSy.

(3.1) Proposition: (1) Hamiltonicity is MSy (and even DsetFOTzc) but not
MS1.

(2) The property that a directed graph hasa directed spanning tree of outdegree at most
2is MSy (and even DsetFOEC) but not MS;.

Proof : (1) We know from Proposition (2.1) that Hamiltonicity isnot MS;. It is
M$S, by Propositions (2.1) and (2.3). We give here a simpler construction for the latter
fact: G is Hamiltonian iff it has at least 3 vertices and there exists a set of edges X such
that every vertex isincident to an edge of X, and there exist two adjacent vertices X, y
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such that no edge belonging to X links them, QuasiPath(X,x,y) holds and every vertex
in the graph is reachable from x by an X-path. These conditions (for given X) are first-
order expressible, except the very last one which is FOTC . This last condition is
necessary because without it, we only express that G is spanned by a union of disjoint
cycles.

(2) Let P(G) be the property of a simple directed graph G that it has a directed
spanning tree of outdegree at most 2. It can be written ;

There exists asubset X of Eg such that every vertex isincident to an edge
in X, every vertex is the origin of at most two edgesin X and X isthe set of
edgesof adirectedtree T € G.

This property isin [kgtFO ;—C. Let us prove that it is hot MSq. For n, m>1 we
let Ghm be the graph with set of vertices {i 0 Z/-n<i <m} and directed edges (i, ] )
for i<O and j O{i+1,1,2, .., m} Itiseasy to seethat P(Gphm) holdsiff m<n.
Hence P isnot MS;. (The argument is similar to that of Proposition (2.1) using the
fact that the language {a"o™M/m<n} is not regular). |

(3.2) Question : Does there exist a gt FO2 property that isnot MSq ?

Let C be a class of graphs. Let I be a fragment of MS, typically OgetFO,
[ketFOTC or MS itself. We say that edge quantificationsare L-eliminablefor C if for
every closed formula ¢ in I, one can construct a closed formula in I.q such that, for

al graphs G in C: |G|1 Ey iff |G]p E¢.

(3.3) Theorem ([6]): Let I be one of OsetFO, OsetFOTC or MS. Edge
quantificationsare IL-eliminable for each of the following classes of directed (resp.
undirected) graphs:

- the graphs of degree < d for any fixed d,

- the planar graphs,

- the graphs of tree-width <k for any fixed k.

In al cases the proof will consist in constructing |G|  from |G|y by means of logical
formulas. (Since we only consider simple graphs, |G| is uniquely defined up to
isomorphism from |G|1.)

Our objective will be to describe by monadic second-order formulas the
transformation of the structure |G|1 into the structure |G|2. We need a definition
concerning transformations of general relational structures. We will denote by QF the set
of formulas without quantifiers.

Welet Rand Q be two sets of relation symbols. Let IL be a fragment of MS. (We
will use the notation I (R) to indicate the relevant set R of relation symbols). An
(L,RQ)-definition scheme isatuple of formulas

A =<3, (6gb)g 0Q bO{O,.. k}P@) >
of the following form : we fix k,n =20 and two sets {Zg,...,Zk} and {Y1,....Yn} of
set variables. We let 6 be a formulain IL(R) with free variables in {Zg,...,Zk ,
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Y1,...Yn}. For every 0 Q and b O {0,...k}™, m = p(q) (the arity of the relation
symbol q), we let 8 p beaformulain L(R) with free variablesin {Zo,...,Zk Y1,....Yn,
XLy Xmp -

For every R-structure S = <Dg, (rg)r gr> for al subsets Zg,...,Zk,Y1,....Yn Of
Dg suchthat (S Zo.....Zk,Y1....Yn) E & we define as follows a Q-structure T =
dEfA(S, Zo,...,Zk,Y]_,...,Yn) .

D1 :=Zox{0tU ... UZk x{K}

g7 ((d1, i)+ dm, im)):= i1,e, im O {0,..., k},d1 O Zj1, ..., dm O Zjm, and

(SZo,... Zk,Y1,--.Yn » d1 ..., dm) E Bg,b whereb = (ig,....im).

We will say that the multivalued mapping associating with an R-structure S the Q-
structures of the form defa(Zo,....Zk,Y1,...,Yn ) such that (S,Zo,....Zk,Y1,....Yn ) E &

is an [L—definable transduction. The monadic first-order reductionsused in [3] are FO-
definable transductions.

(34) Lemma : Let A bea (MS,R,Q) definition scheme. For every closed formula ¢
0 MS(Q), one can construct a formula ¢A 0 MS(R) with free variables in {Zqg,..., Zk,
Y1,..., Yn } such that, for every [R—structure S and for all sets Zq,...,Zk,Y1,...,Yn
< Ds,

defa(SZo.....Zk,Y1,....Yn) E ¢ iff (SZo....Zk.Y1....Yn) E ¢2.

Furthermore, if Aisan (FO,R,Q)-definition schemeand ¢ O [kgtFO(Q) then c|)A
0 DsetFO(R). If, in addition, the formulas 8q b of A are without quantifiers and ¢ [

[ketFOTC(Q) then ¢2 O OFOTC(R).

Proof : Elementary manipulations of formulas. The idea is to replace a quantification of
the form [OX.¢ by quantifications of the form [Xg,...,.Xk +1[X0 & Zg A..A XKk +1 €
Zk +1~ '] where ¢ is an appropriate transformation of ¢. We refer the reader to

Courcelle [5] for details. O

(In the last assertion we assume that the formulas 6q,b are in QF (and not in FO)

because in the transitive closure operators used in FOTC | we assume that the formulas
are existentially quantified.)

The various statements of Theorem (3.3) will be proved in the following way: for
each class of graphs € we will construct a (QF, {edg}, {inc})-definition scheme A = <9,
...> such that, for every G O C, there exist Zo,...,Zk,Y1,....Yn Satisfying , and for any
such tuple: defa(|G [1,Z0,--Zk:Y1s---,Yn ) £ |G]2 (where = denotes isomorphism of
structures). Assuming that we have defined A, the proof goes as follows. Given ¢ O Lo
we let ¢A be the corresponding formula in .1 (by Lemma (3.4)). Then a formula
equivaent to ¢ is [Z,...,Zk,Y1,---,Yn [ A ¢A] whichisin IL 1 or can be transformed
into aformulain L1 by some permutation of quantifiers. O

Let k be apositive integer and G be a directed graph. A k-coloring of G isa
mapping yv:Vg - {1,2,...k} suchthat y(v) #y(w) whenever (v, w) 0 edgg. We
say that y issemi-strong if y(v) # y(w) whenever v #w and there exists x such that

11
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(v, X) and (w, X) belong to edgg. We denote by SSk the class of graphs having a
semi-strong k-coloring.

(3.5) Proposition : For each k = 1, there exists an FO-definable transduction
associating |G|> with |G| for every graph Gin SSg .

Proof : Assuming that we know a semi-strong coloring y (given by ak-tuple of sets
of vertices Y1q,...,Yk such that Yj = y'l(i) ), then we will represent an edge e fromv
to w by the pair rep(e) = (w, y(v)). We let adso rep(x) = (x,0) for x O Vg . It follows
that rep isabijection of Vg U Eg onto Zgx{0}UZ1x{1}U ... UZK x{k} where Zg =
Vg andZj = {w OVg /thereisan edge (v, w) O Eg for some v 0Yj} fori= 1.
We let then Bjnc,i j,m be the formulaxy =x3 Ax2 OYj A X3 0Zj ~ edg(x 2,x 3) if i
#0,j =m =0 and be the formulafalseif i =0or m # 0. Whenever Y1, ..., Yk, Zo
,-.,.Zk are associated as above with a semi-strong k-coloring, |G|2 is isomorphic by rep
to the structure defao(IGl1, Y1, - Yk s Z0 102K )-
The formula & intended to express that arbitrarily given sets Y1, ..., Yk, Zg »--»Zk
are appropriate can be defined as the conjunction of the following first-order conditions :
1) Y1, .., Yk form apartition of Vg,
2) any two adjacent verticesare not inthe sameset Yj foranyi,
3) any two distinct vertices x, y such that edgg(x, u) and edgg(y, u) for some u
arenot in the same set Yj forany i,
4) Zo =Va,
5) foreveryi =1,..k and xO Vg :x0OZ iff thereis y OYj such that
edgg (Y, x) holds.

It follows that A is a (FO,{ edg} ,{inc})-definition scheme and that a graph G isin
SSk  iff there exist a 2k-tuple of sets (Y1,..., Yk, Zg ..., Zk ) such that (|G |1, Y1,

v Yk 1 Z0 »...Zk ) E 8. Furthermore, for any such tuple, defa(|G |1, Y1, ..., Yk,
Zg, ...,Zk ) isisomorphic to |G| by rep. |

One next aim is to extend this result to certain undirected graphs by equipping them
with an adequate orientation that we will define by QF41 formulas (and not by FO ;C

formulas as in Section 2).

Let C beak-tournament, i.e., a directed graph with set of vertices {1,...,.k } and for
every 1<i<j<k anedgeeither from i to j orfrom j to i. Let G be an undirected
graph, andy: Vg -{1,..., k} beak-coloring. We denote by G (C, y) the orientation of
G obtained by directing an edge {u,v} from u tov iff (y(u), y(v)) isan edge of C. We
let 5(C) denote the class of graphs H of the form G(C,y) for some G and vy, such that

y is a semi-strong coloring of H. Welet G(k) =U{G (C)/C isa k-tournament}.

(3.6) Proposition : For each k, the result of Proposition (3.5) holds for the classes
und(G(k)) and und 1( und(G(K))).

Proof: The result holds for each class und((G(C)) since an appropriate orientation is
definable from a coloring y of agraph G inund(GG(C)) where y isgivenasin (3.5)
by sets Y1, ..., Yk . If the result holds for two classes, it holds for their union. The

result follows thus for und(GG(k)) .
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We now consider the case of agraph H in und'l(und([B(k))). By reversing the
orientation of aset X of edgesof H we obtain agraph G in G(k). Let Yq, ..., Yk,
Zg ,..,Zk be atuple associated with G asin (3.5). Since a set of edges X of und(G)
can be specified by k sets of vertices X1,...,Xk of und(G) (equivalently, of H ), we
can define, by QF-definition schemes, |G|1 from |H |1, |G|2 from |G|y and |H |2 from
|Gl2> in terms of the sets Y1, ..., Yk, Zo »---2Zk s X1,--.Xk - One can combine these
definitions and one gets finally a definition scheme defining |[H |2 from ([H]y, Y1, ..
Yk, Zos--ZK » X1,---.Xk) wWhere Y1, ..., Yk, Zg -y Zky---,X1,..,Xk are appropriately
chosen. That they actualy are, can be verified by afirst-order formula. We refer the reader
to [6] for more details. O

Proof of Theorem (3.3): It is proved in [6, Lemmas 5.1 and 5.2] that every

undirected graph of degree < d isin und(G (k)) where k= (m+1)23M and m=d?2.

Proposition 6.7 of the same paper shows that every undirected graph of tree-width < k
belongs to und(EB(Sk )). Improving a result of [6], Raspaud and Sopena proved ([22,
Thm 2]) that every undirected planar graph isin und((320)). The result follows then
immediately from Proposition (3.6). These lemmas from [6, 22] are purely graph

theoretical. Their proofs make no use of logic. |

4. 1t is easier to forbid than to build

Certain classes of graphs can be defined in two different ways: either "positively" by
expressing that a graph has a certain structure or "negatively" by expressing that a graph
has no subgraph of a certain kind. We consider two such classes, the class of chordal
graphs and the class of 3-connected planar graphs: for both cases we obtain that the
"negative" definition is simpler than the "positive" one : the former isin OgetFO1

. TC
whereasthe latter isin [setFO 5 .

Chordal graphs

An undirected graph is chordal iff it has no induced subgraph which is a cycle with
at least 4 vertices. Chordal graphs have particular algorithmic properties (see Gavril [17]).
However, these properties are not based on this definition which is "negative" and says
little on the structure of chordal graphs, but on an equivalent one showing that chordal
graphs have a certain characteristic "tree-structure”.

By the definition, Non-Chordality is characterized by the following [kgtFO1
property (see Section 1 for QuasiPath'):

X [X Y, z(xzy A xOX A yOX AzOX A-edg(x, y) A edg(x, 24
edg(zy) A Ou{"u OX-{x,y}" O —edg(u,2} »n QuasiPath'(X, x, y)].

We now consider an alternative characterization exhibiting the tree-structure of
chordal graphs which isimportant for algorithmic purposes. A directed chordal graph isa
directed acyclic graph G such that, for every two edges (x, y) and (X', y) in G, x and X'
are adjacent. It is known from Rose [23] that agraph G ischordd iff itis und(H ) for

some directed chordal graph H. DirectedChordality is clearly FO IC. We will prove

13
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that Chordality is DsetFOEC. The corresponding formulawill be "constructive": it will

specify, (when it holds) an orientation of the considered graph G making it into a
directed chorda graph.

(4.1) Lemma : A connected directed acyclic graph G isdirected chordal iff it has a
directed spanning tree T such that for every edge (x,y) notin T we have x <t vy, and
for every zwithx <7 z<7 ywehavean edgein G from zto y and one fromx to z.

Before doing the proof, we recall some definitions. A tree-decomposition of a graph
G isapair (T,f) consisting of atree T and amapping f =VT - P (Vg) satisfying
the following conditions :

i) every vertex belongsto f (x) for some x,

ii) every edge hasitstwo endsin f (x) for some x,

iii) forevery y OVg ,{x O VT /y Of(x)} isaconnected subgraph of T .

The width of (T, f) is the maximal cardinality of the sets f(x) minus 1. The tree-
width of a graph is the minimal width of its tree-decompositions.

Proof of Lemma 4.1: "If". Let G be a directed acyclic graph with a spanning tree T
satisfying the condition of the statement. Let (x,y ) and (X',y ) be two edges. Then we
have x <1 y and X <1 y and we must have x <1 X' or X' <7 X. Assume the first:
we have thus an edge from X to X' sincex <X <t V.

"Only if". Let G bedirected chordal and connected. Consider avertex v of outdegree
0inG. Let {x1,....xk} bethe vertices adjacent to v. They form aclique C . It iseasy to
see that every cliquein G islinearly ordered by the transitive and reflexive closure of
edgg . Assume xk isthe maximal element of C with respect to this partial order. By
induction we have that G-v is directed chordal, we can assume that T' is a directed
spanning tree of G-v asdesired and we build T by adding to T' the directed edge (xk ,V).

The remaining verifications are easy. |

We can thus express that a connected undirected graph G ischordal asfollows:
©) Oy ["Y isaset of edges' ~ [u ("(Y, u) isadfs spanning tree" A
“for every edge {x, y } notinY wehavex <gy,y)y Ory <gy,u X"A
“for every vertex z such that X <(y, u) Z<(y,u) ¥, {x z} and{z y}
areedges’)].

This definition is clearly in OggtFO TZC. The extension to graphs that are not
connected isimmediate by using dfs forests, asin the proof of Proposition (2.2).

Finally, we may observe that we obtain in this way a tree-decomposition of G . By
taking thetree T = (Y, u) of (3) and the mapping f suchthat f (x)={x} U {y/(y, x)
isan edge of T} one obtains a tree-decomposition of G . All "boxes' f (x ) of thistree-
decomposition are cliques of G .

It is easy to check that a graph is chordal iff it has a tree-decomposition all boxes of

which are cliques. |

A tree-decomposition (T,f) of agraph G will be represented by the structure |(T,f)|2
= <VgUEg UVT,incg, edgT, boxT >where boxt (Xy) holdsiff x OVT,y O
f(x) (weassumethat VT n (VGUEG))=9.
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(4.2) Corollary : One can build a definition scheme A = <9,...>with parameters Zp,
Z1,Y1, and formula &in FogC such that, for every undirected connected graph G,

|Gl E 0Z0, Z1, Y1[8] iff Gischordal
and for every triple Zp,Z1,Y 1 satisfying & the structure defa(|G|2, Zo, Z1, Y1) is
isomorphic to a structure representing a tree-decomposition of G.

Proof : Welet d expressthat Zg =VgUEg ,Z1=Vg, Y1 isaset of edges of G,
Yo={u},ul Vg, and (Y1, u) witnesses that G is chordal (see (3) after Lemma

(4.1)). The remaining details are easy tofill in. |

Planar graphs

We have seen that Non-Planarity is a OgetFO1 property. Our goal here is to
express Planarity by a formulain CggtFO ;C which specifies, when it holds, a planar

embedding of the considered graphs. We will consider graphsin (5, the class of connected
undirected graphs.

Part 1: Logical representation of planar drawings.

Let G beaplanar graphin 5. A planar drawing of G can be defined from atriple (r,
T,S) where (T, r) isaspanning treeof G and S € EgXEg isarelation which
defines a strict linear order on each set Eg(x), x 0 Vg (we denote by Eg(X) the set of
edges incident with x).

The drawing is done from (r, T, S) as follows: one first draws (T, r ) by placing the
edges going out of avertex x from left to right according to the order on Eg(x) defined
by S ; one places then the edges not in T in such a way that the relative order of
incidence around a vertex x is determined by the restriction of S to Eg(x ). Thisis
possible without crossings if S satisfies condition (C) stated below, with help of some
notation.

Welet B={(e,x)/e O Eg-T,x OVgG,x isincident withe}. We let <<g be
the strict linear order on B defined as follows :
(6 x) <<s (€, X ) iff (€1, &2, &k, €) <L (€1rn€m,€)

where (e1, €,..., €& ) isthe sequence of edges of the unique pathin T

fromr tox and similarly for (€'y,..., €m) and X', and <|Sex isthe

lexicographic ordering associated with S,
Condition C isnow the following :
(C) :therearenotwoedges e ={x,y} and € ={xX,y' } in Eg-ET

such that:
(& X)<<s (€,X") <<s (8, y) <<s (€, Y").

15
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That this condition ensures the possibility of placing the edges of Eg - T without
crossings can be explained with the help of an example.

- %

Figure 1

Example: Consider the graph G of Figure 1 with vertices numbered from 1 to 17 and
Ec-ET ={a b,c,d}. Weassumethat S inducesthe following linear orders:
{1,2} <a<{1,3} <c<{1,4} <b on Eg (1),
{1, 3} <{3,9} <{3,10} <{3,11} on Eg(3),
{1,4} <{4,7} <d< {4, 8} on Eg (4),
{1,8} <{8,12} <c<{8,13} on Eg(8),
{3,9} <{9, 14} <a<{9,15} on Eg(9).

The order <<g on B isthen:
(b, 5)<<s (a,1)<<s(a9)<<s(c1)<<s(dd)<<s(d ,12)<<s(c,8)<<s(b,1).
A drawing can be done as follows: one cuts in two parts each edge of Eg- ET; one
draws T and these half-edges according to S ; Condition (C) guarantees that the two
halves of any edgein Eg-ET can be linked without creating any crossing.

We defineamap of agraph G asatripleD =(r, T, S) satisfying condition (C).
Such amap will be defined by the structure:
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ID |2:= <VgUEg, incg, rootg, tree-edgeg , Sg>
where rootg(x) holdsiff x =r , tree-edgeg(e) holds iff e O T and sg(x,y) holds iff
xy) OS.

Part 2: Defining a map from a dfs tree and two sets of edges.

We now establish that for planar 3-connected graphs G in (5 the required objects T
and S can be specified by formulas in [getFO ;C. (A graph is 3-connected if the
property 2-Separ ability(x,y) holds for no two vertices x, y .)

Wefirst define a construction of T from a planar drawing of G . We take an drawing
in the closed half-plane with a single vertex, say r , on the border. Let (T, r ) be adfs
spanning tree of G . We will denoteby H the directed graph G(T, r, Eg-T) (see Section
2). For every edge (x,y) O Eg-T wehavey <Tx.Wecdl it aleft-edge if it reaches
y from the left of the branch in T going from r to x . Wecall it aright-edge otherwise.
Welet L bethe set of left-edges and R be the set of right-edges. (On Figure 1, a from
9tol,d from12to 4 and c from 8to 1 are |eft-edges, b from 5to 1 is aright-edge;
the graph G is not 3-connected).

We will prove that if G is 3-connected its unique embedding in the plane can be
defined from any 4-tuple (r, T, L, R) O Vg x P (Eg )3 satisfying some conditions C1-C3
listed below, which hold if r, T, L, R are associated as explained above with a plane
drawing of G, and that are expressible by formulasin FO ;C. Here are conditions C1-
C2:

C1: (T, r)isadfsspanning tree of G,

C2: (T, L, R) isapartition of Eg .

Assuming them, welet H =G (T, r, Eg -T); we will consider T, L, R as subsets
of EH hence as sets of directed edges. We will say that a path from w to x isaleft
path (resp. a right path) if itslast edgeisin L (resp.in R). We will write U (e, x)
if e isthefirst edge of aleft path from some vertex w (the origin of e)to x . We
define similarly UR (e, x ) with right paths. Finaly, for e=(w,y),e=(w,y )UOEH,
welet Q (g € ) hold iff for some x, X' < w we have:

either U (g, x) and U (€, X ) and X <T X,
or Ur(e, x)and Ur(€e,x") and X >T X,
or U (e, X) and UR(€, x").

Our third condition now reads:
C3: for every two edges e, € if Q (e € ) holdsthen Q (¢, e) doesnot.

Conditions C1-C3 hold if r, T, L, R are associated as explained above with a plane
drawing of G. For proving the converse, namely that amap (r, T, S can be defined from
them if they hold, we need some lemmas::

(4.3) Lemma: Let H be a 3-connected directed graph. Let T, L, R satisfy conditions
C1-C3. For every vertex w, therelation Q defines a strict linear order on the set of
edgeswith origin w.

We will extend Q into abinary relation S which isastrict linear order on each set
Eg(w). We will denote by org(e) the origin of an edge e and by tgt(e) itstarget. If e [

17
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L UR andw isavertex withw >1 tgt(e) welet ORG(e, w) bethe unique edgein T
with origin w which is on a directed path from w totgt(e) the last edge if whichise.
(If there is no such path then ORG(e, w) is undefined). We now define S:
S(e€): = ez€, g€ OEg(w) for some (necessarly unique) w, and
either e OT andtgt(e)=w
orw= org(e)=org(e") and Q (e €)
ore =0ORG (e, w) and € OR
ore =ORG (¢,w)and e OL
orw= org(e) and Q (e, ORG (¢',w))
orw= org(e") and Q (ORG (e,w), €)
orw =tgt(e) = tgt(e"), e, € 0L UR and we have:
either Q (ORG (e, w), ORG (€, w))
or ORG (e, w) = ORG (€', w) and for some w' > w we have
f=ORG (e, w) ZORG (¢, w") =f" and
either Q(f,f'), edL,e OR
orQ(f',f),e,e¢ OR
orQ(f',f), e,e OL.

(4.4) Lemma: Under the hypothesis of Lemma (4.3) the relation S defines a linear
ordering of each set Eg(x) for x 0 Vg andthepair (T, S) satisfies condition C.

This lemma and the previous one will be proved in a forthcoming paper.

(4.5) Theorem: The planarity of a 3-connected graph can be expressed by a formula
of the form [OX,T,L,R.¢ where ¢ is FOEC. When (g holds, one can define from X, T,

L, R satisfying ¢ and by a FOTZC formula, a binary relation Son Eg which
satisfies the condition C and fromwhich a planar drawing of G can be defined.

(4.6) Corollary: One can build a definition scheme A that defines for every 3-
connected planar graph G given by |G| a structure |D|2 representingamap D of G.

Corollary (4.6) does not extend to general, even 2-connected, planar graphs. Consider
for instance the 2-connected graphs shown in Figure 2, for arbitrary large sets X.

X

Figure 2
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Defining a planar drawing of this graph is equivalent to defining a linear order of the
set of vertices X . If one could define such a drawing by MS formulas one could define
by MS formulas a linear order on any set, which is not possible (we skip details ; see

[7D)

5. Overview of further topics and open problems

We first discuss two extensions of MS. The first extension is called counting
monadic second-order logic (CMS), and is obtained from MS by the use of atomic
formulas of the form cardp(X), p = 2, meaning that the set X has cardinatlity Ap for
some A O IN.CMSisan extension of MS which is strictly more expressive. However,
in a structure where alinear order is definable by an MS formula, every formula of CMS
can be transformed into an equivalent onein MS (see [4]).

Another extension of MSisMS(<), i.e.,, MS logic in presence of a built-in linear
order. (A property P of astructure S isMS(<) iff it is equivalent to an MS property
Q of (Sx5), i.e, of the structure S augmented with a binary relation < which is a
linear order of Dg, and such that for any two linear orders< and <' on Dg it holds that

Q(S <) iff Q(S <').) Every CMS property is MS(<).

(5.1) Conjecture ([9]) : There existsa MS(<) property whichisnot CMS.

Seese [24] has proved that if a set of graphsis such that its MSy-theory is decidable
then its elements have uniformly bounded tree-width. (See the beginning of Section 4 for
the definition of tree-width.)

(5.2) Conjecture ([24]): If a set of graphs L has a decidable MSq-theory, then L
€ defa(K) for some MS-definition scheme A where K isthe set of binary trees.

An equivalent form of this conjecture is discussed in [7], and proved for certain sets
of chordal graphs and for any class of directed graphs L closed under arbitrary changes of

edge directions (i.e., such that L = und‘l(und(L))).

We showed in Section 4 (Corollary 4.2) how atree-decomposition of a chordal graph
can be defined by MS-formulas.

(5.3) Conjecture ([5]): For every k one can construct an M S-definable transduction
associating with every graph G of tree-width at most k a tree-decomposition of it of
width at most k.

The case k =1 isfairly obvious, the cases k = 2 and k = 3 are proved respectively in
[5] and [19]. The MS definition of tree-decompositions of width g(k) for graphs of tree-
width at most k (where g isafixed function such that g(k) = k for al k) would yield a
weak form of this conjecture and prove the following one :

(5.4) Conjecture ([5]): For each Kk, every recognizable set of graphs of tree-width < k
is CMS-definable.
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This would generalize the similar result for words and trees (see [27, Thm 3.2], [4]).
We only recall here that recognizability for sets of graphsis defined algebraically in terms
of finite congruences ([4]) and not in terms of automata.

Every graph G has a unique modular decomposition [9], i.e., a unique hierarchical
structuring based on the substitution of a graph for a vertex in a graph. This structuring
is MS-definable in the structure (|G|1, <) where < isan arbitrary (built-in) linear ordering
of V.

(5.5) Conjecture[9] : The modular decomposition of a graph G isnot MS-definable
in|G|1.

Some of our results hold for infinite graphs: Propositions (2.2) and (2.3), because
infinite graphs have dfs spanning forests and Theorems (3.3) and (3.6) because the
coloring lemmas of Section 3 extend from finite graphs to infinite ones.
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