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We focus on counter systems, which are automata extended with integer variables.
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� Abstract multi-threaded java programs,� Embedded systems (TTP/C),� All Broadcast Protocols,� . . .
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We focus on counter systems, which are automata extended with integer variables.
Counter systems allow to model a large range of complex systems:

� Abstract multi-threaded java programs,� Embedded systems (TTP/C),� All Broadcast Protocols,� . . .

But checking safety properties is undecidable for counter systems!!



Counter systems model checking - 2

To overcome this problem, we have chosen:� A symbolic representation of integer vectors by automata.� An acceleration technique to help convergence:
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Notion of Acceleration

acceleration to compute in one operation the iteration of a transition.

If  � � then � �  � �

With Acceleration
If

�� � � � � then ���� � � � � ".
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Presburger sets and automata

� Presburger arithmetics is the �rst order additive theory # " $ � % � � & , de�ned
by '� � � ( % ( )+* ' ) ', ' )-  ' ) (/. 0 �(� � � � )1 )32 ) (54 ( ) ( � (.

This theory is decidable, and Presburger sets can be represented symbolically
by automata:
ä DFA [Boudet, Comon CAAP96],
ä NDD [Wolper, Boigelot TACAS00],
ä UBA [Leroux, INFINITY03].

This representation is closed under and are decidable.
Moreover the image of a Presburger set by an af�ne function is still a
Presburger set.

The automata representation provides an ef�cient framework to check safety
properties on counter systems!!
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Automata representation in practice - 1
An automaton to represent

��  � 2 � �  � 2 �

in basis 2.

eq

bad

;<>= ? @= ; ?= < @
; ?= ? @= ;< = < @

; ?= ? @= ;< = < @= ;<>= ? @= ;<>= < @



Automata representation in practice - 2
An automaton to represent

��  � 2 � A � �  � 2 � A � in basis 2.

carry

bad

;< = <>= ? @
; ?= ?= < @

;< = < = < @= ; ?= ?= < @= ;<>= ?= ? @= ; ?= <>= ? @ ; ?= ?= ? @= ;<>= < = ? @= ;<>= ?= < @= ; ?= <>= < @

; ?= ?= ? @= ;<>= ?= < @= ; ?= < = < @ ; ?= < = ? @= ;< = ?= ? @= ;< = < = < @

B ?= < CED B ?= < CD B ?= < C



Counter systems

� A Presburger-linear function F � � G� H � I �

is de�ned by J  K I � F�  � � G  � H

where the guard

I : " $

is a Presburger set.

A counter system L is a tuple L where is a �nite alphabet of actions
and is a set of Presburger-linear functions.

L is the multiplicative monoid generated by the set of square matrices
of a counter system L .

Counter systems with a �nite monoid have nice acceleration properties and appear to
be well-spread in practice (transfer/reset/inhibitors Petri Nets, Broadcast
protocols, . . . )
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Acceleration for counter systems

Let F be a function, and

�

a set, we de�ne the acceleration of F byF �� � � � R 
S T F 
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is the relation associated with
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Theorem [Finkel Leroux, FSTTCS02] For a Presburger-linear function
with a �nite monoid, can be computed as a Presburger formula,
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�
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��  �  W � � - [ � � o� [ �  �  W � K hX � J !� � % ! # [ � � -  W W K I � � ! �  �  W W � K h � p �

� �qU is a Presburger set!!



How to �nd out the accelerations ?

time brake

stoplate

rts u v wyx r W s r v <>= z W s ?

rts u v < x u W s u v < = z W s ?
r{ u v < x u W s u v <

rs u}| < x r W s r v <
rts u}| wyx u W s u v <

rts u v < x u W s u v < = z W s ? zs wyx r W s r v <

r~ u}| < x r W s r v < r{ u v < x u W s u v < = z W s ?

r{ u}| wx u W s u v <r~ u v wx r W s r v < z~ wx z W s z v <>= r W s r v <
Initial configuration :
state=time � r s u �u s z � zs ?

Property to check :� r| u �� � ?

always holds.



Reduction result

Theorem [reduction, Finkel Leroux FSTTCS02]

Any acceleration of functions in a �nite set

�

of Presburger-linear functions can be
reduced to the acceleration of functions in a reduced set

o � p
, such that the cardinal

of

o � Z p is polynomial in !.

F m � � G� H � I m � � F�� � � G� H � I � � 4 ] F m� � � � G� H � I m 6 I � �
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Heuristic

� Extension of the classic algorithm, adding cycles (meta-transitions).� 2 problems:
ä �nd good cycles ] incremental computation and reduction
ä avoid automata explosion ] minimization step

1. ! � 1

2. Compute

� Z , the reduced set of cycles of length % !

3. Use the search algorithm with

��� and � 6 � Z

4. if a �xpoint

�

is found then return
�

else (the stop criterion is met) do ! � ! � 1 � �� �� � � �



Heuristic -2

The search algorithm: 2 nested greedy algorithms

� � ��

while there exists F such that F �� � �

reaches new states do� � F �� � �

end while
return

�



Heuristic -2

The search algorithm: 2 nested greedy algorithms

� � ��

while there exists F such that F �� � �

reaches new states do� � F �� � �

while there exists f such that

)� � F �� � � � ) # )� � � � )

do� � F �� � �

end while
end while
return

�



Fast

We implement our results in the tool FAST.

FAST is a tool:� with a powerful model,� that automatically computes the reachability set in most practical cases,� easy to use thanks to the GUI interface.



Tools with acceleration and counters

va
ri

ab
le

ty
pe

guards actions ac
ce

le
ra

ti
on

au
to

.c
yc

le
se

ar
ch

FAST

� Presburger | ��� W s ���| �� v | ��� yes yes

LASH

� convex sets | ��� W s ���| �� v | ��� yes no� convex sets | ��� W s ���| �� v | ��� no

TREX

�
�

���������
�������

� 
� �  v¢¡
� 
� ¡

� 
 £ ¡

� �¤�
�

� 
s �  v ¡
� 
s ¡ yes yes

� � ���
�

� 
s � 
� 
s ? yes yes



Fast architecture

   and strategies
 − guided edition of models  network

 − control and feedback
   during the analysis

Heuristic
Acceleration
Automata library

FAST

Machine M1
InterFAST 

Machine M2
ServerFAST 



Fast Inputs

Input Model : A counter system such that each transition ( is:

¥ ¥ W( P '� 4 ] � P 4 ] W � � G 4 ] � 4 ]H

Input Strategy : A high level query language with

Automatic computation of reachability sets,
Presburger solver,
Modular analyzer.



Fast Inputs

Input Model : A counter system such that each transition ( is:

¥ ¥ W( P '� 4 ] � P 4 ] W � � G 4 ] � 4 ]H

Input Strategy : A high level query language with

� Automatic computation of reachability sets,� Presburger solver,� Modular analyzer.



Case Studies

80% of 40 counter systems (mainly taken from ALV, BABYLON, TREX) have been
automatically analysed.

In particular:� Abstract multi-threaded java programs,� Embedded systems (TTP/C),� All Broadcast Protocols,� Complex toy examples (Swimming Pool),
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failure.
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The TTP protocol - overview

� From car industry.� Communications between embedded microprocessors (stations).� Clique avoidance mechanism to prevent the partitioning of valid stations after a
failure.� N stations communicating through a shared bus
ä messages are broadcast,
ä static time slots to send and receive messages� Idea:
ä a station which considers itself as faulty becomes inactive.
ä a station which receives more invalid messages than valid ones must be

faulty.
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The TTP protocol

� G a boolean matrix of size ¦ _ ¦

� � N (ack ) and

� U (fail ) integer vectors of size ¦

� station [ receiving message §   from station ¨
ä if §   correctly received then

� N o [ p � �
ä else

� U o [ p � � � G o [ p o ¨ p � � �

� station [ sending
ä if

� N o [ p & � U o [ p then

� N o [ p � � �, � U o [ p � � �, ! G o [ p

ä else G o [ p o [ p � � �, becomes inactive
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The TTP protocol - In practice

stations © � © m © � ©ª � N � U© � 1 0 1 0 1 0� © m 0 0 0 0 0 0© � 1 0 1 0 2 0©ª 0 0 0 0 0 0
ack fail inactive

Valid stations belongs to the same clique!!



Validation of the TTP protocol

� A protocol dif�cult to validate.� Merceron and Bouajjani (FTRTFT'02):

ä Manual proof of correctness (N stations, k faults).
ä Provide a family of abstractions depending on the number of faults.
ä Semi-automatic veri�cation with tools LASH and ALV (N stations, 1 fault).

large parametric counter automaton (16 transitions)
complex guards

Few tools are adapted.

Interesting to test FAST on the TTP.
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Model for the TTP, 1 fault N stations

/ CF=0,CW=N,Cp=0
d=0,dF=0

/ C1>=0, C0>=0, 
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1

later

round1normalinit

d=0,dF=0

Cp=N /
CW=C1+C0,Cp=0,

Cp=0,d=0,dF=0
Cp=N / 

dF<CF /
dF++, Cp++

d1<C1 & C1+C0−2d0>0 /
d1++, Cp++

C1−−,dF++,CF++,Cp++
d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0 /
d0++, Cp++

d0<C0 & C1+C0−2d1<=0 /
C0−−,dF++,CF++,Cp++

dF<CF /
dF++,Cp++

d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

d<CW / d++,Cp++

dF<CF / dF++,Cp++

Cp=N /  d1=0,d0=0,dF=0,Cp=0
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later
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d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

/ C1>=0, C0>=0, 
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1
CF=0,CW=N,Cp=0
d=0,dF=0

d<CW / d++,Cp++

Cp=N /  d1=0,d0=0,dF=0,Cp=0

dF<CF / dF++,Cp++



Veri�cation with Fast, 1 fault

A large model: 16 transitions, 9 variables

� easy to describe in FAST input model,� full automatic veri�cation (no intermediate property)
ä the exact reachability set is computed
ä the property is veri�ed� cycles of length 1, the reachability set has 27,932 nodes� on a pentium 4 (2.4 GHz) with 1 Gbyte RAM, computation takes 940 sec. and 73
Mbytes.



Model for the TTP, 2 faults N stations

later

round1

Pred1 :

Pred2 :

Pred3 :

d1+d11−dA11−dF11−dA10−dF10−d0−d10−d00+dA00+dF00>0

d1+d10−dA10−dF10−dA11−dF11−d0−d11−d00+dA00+dF00>0

d0+d00−dA00−dF00−d1−d11−d10+dA11+dA10+dF11+dF10>0

t2

t3

t4 t6
t7

t8

t18

t19

t21t22
t23

t25

t27

t26

      dF++, dF00++,Cp1++,Cp2++,C00−−

        d11++,Cp1++,Cp2++
t3: Cp1<N & d10<C10−d1 & CW −2d0 −2d00 −2d11>0/
      d10++,Cp1++,Cp2++     
t4 : Cp1<N & d00<C00−d0 & CW−2d1−2d10−2d11>0/
      d00++,Cp1++,Cp2++

        dF++,Cp1++,Cp2++,C11−−
t7 : Cp1<N & d10<C10 & CW−2d0−2d00−2d11<=0/

        dF++,Cp1++,Cp2++,C10−−
t8 : Cp1<N &d00<C00−d0 & CW−2d1−2d10−2d11<=0/

        dF++,Cp1++,Cp2++,C00−−

t19 : Cp1>=N & Cp2<N & Pred2/

        dF++,dF11++,Cp1++,Cp2++,C11−−
      dF++,dF10++,Cp1++,Cp2++,C10−−

t34

t33

t32

t31
t30

t28

d00=0 & d11=0 & d10=0 & 
dA00=0 & dA11=0 & dA10=0 &
dF00=0 & dF11=0 & dF10=0 &
dF=0 & Cp2=1 & Cp1=d0+d1+1 &
N>=0 & CW=N & C11>=1 &
C00>=1 & C10>=1 & d1<=C10 &
d0<=C00 & C11+C00+C10=CW

t2 : Cp1<N & d11<C11 & CW−2d0−2d00−2d10>0/ 

t6 : Cp1<N & d11<C11−d1 & CW−2d0−2d00−2d10<=0/ 

t18 : Cp1>=N & Cp2<N & Pred1/       d11++,Cp1++,Cp2++,dA11++
      d10++,Cp1++,Cp2++,dA10++
   d00++,Cp1++,Cp2++,dA00++t21 : Cp1>=N & Cp2<N & Pred3/

t22 : Cp1>=N & Cp2<N & !Pred1/  
t23 : Cp1>=N & Cp2<N & !Pred2/ 
t25 : Cp1>=N & Cp2<N & !Pred3/

t26 : Cp2=N /  dF=0,d11=0,d10=0,d00=0,Cp2=0 

t27 : Cp2<N & d11<C11 & C11−C10−C00>0 /        d11++,Cp2++
       d10++,Cp2++
       d00++, Cp2++

t28 : Cp2<N & d10<C10 & C10−C11−C00>0 /
t30 : Cp2<N & d00<C00 & C00−C10−C11>0 /
t31 : Cp2<N & d11<C11 & C11−C10−C00<=0 /

       C11−−,Cp2++,dF++,CF++
t32 : Cp2<N & d10<C10 & C10−C11−C00<=0 /
       C10−−,Cp2++,CF++,dF++

       C00−−,Cp2++,CF++,dF++
t34 : Cp2<N & dF<CF / Cp2++,dF++

t33 : Cp2<N & d00<C00 & C00−C10−C11<=0 / 



Veri�cation with Fast, 2 faults

� A very large model: 20 transitions, 18 variables� Guards are very complex.

When computing the acceleration relation of transition , the internal
representation exceeds its limits and FAST stops.
ä Intermediate automata have more than states!!

Our acceleration formula is too expensive in this case!!
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Faster acceleration

� Almost all the transitions are translations over convex polyhedra

ä Don't need to test if all the predecessors are in the guard.

We can use a simpler acceleration formula:
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The polyhedral acceleration is quadratic in the size of the function while the generic
formula (1) is at most elementary in the size of the function.
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Polyhedral acceleration in practice

We use the polyhedral acceleration on the TTP with 2 faults.

Acceleration relations are computed.
ä For it takes 18 sec, 460 Mbytes (413,447 states!!)
For a small �xed number of stations (about 10), the reachability set is
computed.
For an arbitrary value of , the intermediate automata exceed the limit.
We have to use an overapproximation for .
ä simplify some guards,
ä remove some variables,
ä modular analysis.

The protocol is veri�ed with FAST for 2 fauts and N stations.
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Abstraction for the TTP with 2 faults

round1
d00=0 & d11=0 & d10=0 & 
Cp2=1 & N>=0 & C11>=1 & 
C00>=1 & C10>=1 &  
C00+C11+C10=N

later

t2−t18 : Cp2<N & d11<C11 / 
        d11++,Cp2++

t7−t23 : Cp2<N & d10<C10 /
        Cp2++,C10−−

        Cp2++,C00−−

t6−t22 : Cp2<N & d11<C11 / 
        Cp2++,C11−−

t4−t21 : Cp2<N & d00<C00 /
      d00++,Cp2++

t3−t19: Cp2<N & d10<C10 /
      d10++,Cp2++     

t8−t25 : Cp2<N &d00<C00 /

            Compute reachable states R1

         reachable states R1

t34 : Cp2<N & dF<CF / Cp2++,dF++ t27 : Cp2<N & d11<C11 & C11−C10−C00>0 / 
       d11++,Cp2++

t28 : Cp2<N & d10<C10 & C10−C11−C00>0 /
       d10++,Cp2++

t30 : Cp2<N & d00<C00 & C00−C10−C11>0 /
       d00++, Cp2++

t31 : Cp2<N & d11<C11 & C11−C10−C00<=0 /
       C11−−,Cp2++,dF++,CF++

t32 : Cp2<N & d10<C10 & C10−C11−C00<=0 /
       C10−−,Cp2++,dF++,CF++

t33 : Cp2<N & d00<C00 & C00−C10−C11<=0 / 
       C00−−,Cp2++,CF++,dF++

Check Property P2 :
Cp2=N => C11=0&C10=0&C00>0
                || C11=0&C10>0&C00=0
                || C11>0&C10=0&C00=0



Results

Presburger acceleration polyhedral acceleration
time1 memory1 time2 memory2 number of

seconds Mbytes seconds Mbytes states
1 fault, N stations 940 73 600 63 27,932
2 faults, 5 stations ¹ ¹ 446 588 5,684
2 faults, 10 stations ¹ ¹ 12,365 588 273,427
2 faults, 15 stations ¹ ¹ ¹ ¹ ¹

2 faults, N stations ¹ ¹ ¹ ¹ ¹

2 faults, N stations 210 200 175 200 11,036
(abstraction)



Conclusion and Future Works

Conclusion:� Polyhedral acceleration appears to be interesting in practice,� But for complex systems like the TTP, we are never far from the limits of the
tool.

Future Works:� Other speci�c acceleration formula,� More ef�cient Presburger library to scale up to wider systems.
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