FASTer acceleration of counter automata in practice

Sébastien Bardin
Joint work with Jérôme Leroux and Alain Finkel

LSV - CNRS \& ENS de Cachan

Outline

1. Counter system model-checking
(a) Presburger sets and automata
(b) Acceleration
(c) Heuristic
2. The tool FAST
(a) Overview
(b) Related tools
(c) In practice
3. Verification of the TTP protocol with FAST
(a) Presentation of the protocol
(b) Verification for 1 fault and N stations
(c) Polyhedral acceleration
(d) Verification for 2 faults and N stations
4. Conclusion and future work

Counter systems model checking - 1

We focus on counter systems, which are automata extended with integer variables. Counter systems allow to model a large range of complex systems:

- Abstract multi-threaded java programs,
- Embedded systems (TTP/C),
- All Broadcast Protocols,
- ...

Counter systems model checking - 1

We focus on counter systems, which are automata extended with integer variables. Counter systems allow to model a large range of complex systems:

- Abstract multi-threaded java programs,
- Embedded systems (TTP/C),
- All Broadcast Protocols,

But checking safety properties is undecidable for counter systems!!

Counter systems model checking - 2

To overcome this problem, we have chosen:

- A symbolic representation of integer vectors by automata.
- An acceleration technique to help convergence:

$$
\sigma^{*}\left(X_{0}\right)=\bigcup_{i=0}^{\infty} \sigma^{i}\left(X_{0}\right)
$$

Notion of Acceleration

acceleration to compute in one operation the iteration of a transition.

Notion of Acceleration

acceleration to compute in one operation the iteration of a transition.

$$
\text { If } x \geq 0 \text { then } x:=x+2
$$

L:aboratoire
Spécification Vérification

Notion of Acceleration

acceleration to compute in one operation the iteration of a transition.

$$
\text { If } x \geq 0 \text { then } x:=x+2
$$

With the classical algorithm

Notion of Acceleration

acceleration to compute in one operation the iteration of a transition.

$$
\text { If } x \geq 0 \text { then } x:=x+2
$$

With the classical algorithm
If $S_{0}=\{0\}$ then Reach $\supseteq\{0\}$.

Notion of Acceleration

acceleration to compute in one operation the iteration of a transition.

$$
\text { If } x \geq 0 \text { then } x:=x+2
$$

With the classical algorithm
If $S_{0}=\{0\}$ then Reach $\supseteq\{0,2\}$.

Notion of Acceleration

acceleration to compute in one operation the iteration of a transition.

$$
\text { If } x \geq 0 \text { then } x:=x+2
$$

With the classical algorithm
If $S_{0}=\{0\}$ then Reach $\supseteq\{0,2,4\}$.

Notion of Acceleration

acceleration to compute in one operation the iteration of a transition.

$$
\text { If } x \geq 0 \text { then } x:=x+2
$$

With the classical algorithm
If $S_{0}=\{0\}$ then Reach $\supseteq\{0,2, \ldots, 2 . k\}$ and so on!!

Notion of Acceleration

acceleration to compute in one operation the iteration of a transition.

$$
\text { If } x \geq 0 \text { then } x:=x+2
$$

With Acceleration

Laboratoire
Spécification Vérification

Notion of Acceleration

acceleration to compute in one operation the iteration of a transition.

$$
\text { If } x \geq 0 \text { then } x:=x+2
$$

With Acceleration
If $S_{0}=\{0\}$ then Reach $=2 . \mathbb{N}$.

Related work

- FASt: Bardin, Finkel, Leroux, Petrucci [FSTTCSO2], [CAV03],
- LASH: Boigelot, Rassart, Wolper [CAV94], [SAS95], [CAV98], [TACAS00], [CAVO3],
- TREX: Asarin, Bouajjani, Collomb-Annichini, Lakhnech, Sighireanu, [SPINOO], [SASO1], [CAVO1].

Presburger sets and automata

- Presburger arithmetics is the first order additive theory $<\mathbb{N}^{m}, \leq,+>$, defined by

$$
\begin{aligned}
& \phi::=t \leq t|\neg \phi| \phi \vee \phi|\exists x . \phi| \text { true } \\
& t::=0|1| y|t-t| t+t .
\end{aligned}
$$

Presburger sets and automata

- Presburger arithmetics is the first order additive theory $<\mathbb{N}^{m}, \leq,+>$, defined by

$$
\begin{aligned}
& \phi::=t \leq t|\neg \phi| \phi \vee \phi|\exists x . \phi| \text { true } \\
& t::=0|1| y|t-t| t+t .
\end{aligned}
$$

- This theory is decidable, and Presburger sets can be represented symbolically by automata:
> DFA [Boudet, Comon CAAP96],
$>$ NDD [Wolper, Boigelot TACAS00],
> UBA [Leroux, INFINITYO3].

Presburger sets and automata

- Presburger arithmetics is the first order additive theory $<\mathbb{N}^{m}, \leq,+>$, defined by

$$
\begin{aligned}
& \phi::=t \leq t|\neg \phi| \phi \vee \phi|\exists x . \phi| \text { true } \\
& t::=0|1| y|t-t| t+t .
\end{aligned}
$$

- This theory is decidable, and Presburger sets can be represented symbolically by automata:
> DFA [Boudet, Comon CAAP96],
$>$ NDD [Wolper, Boigelot TACAS00],
> UBA [Leroux, INFINITYO3].
- This representation is closed under $\cup, \cap,^{c}$ and \emptyset, \subseteq are decidable.
- Moreover the image of a Presburger set by an affine function is still a Presburger set.

Presburger sets and automata

- Presburger arithmetics is the first order additive theory $<\mathbb{N}^{m}, \leq,+>$, defined by

$$
\begin{aligned}
& \phi::=t \leq t|\neg \phi| \phi \vee \phi|\exists x . \phi| \text { true } \\
& t::=0|1| y|t-t| t+t .
\end{aligned}
$$

- This theory is decidable, and Presburger sets can be represented symbolically by automata:
> DFA [Boudet, Comon CAAP96],
$>$ NDD [Wolper, Boigelot TACAS00],
> UBA [Leroux, INFINITYO3].
- This representation is closed under $\cup, \cap,^{c}$ and \emptyset, \subseteq are decidable.
- Moreover the image of a Presburger set by an affine function is still a Presburger set.

The automata representation provides an efficient framework to check safety properties on counter systems!!

Laboratoire
Spécification
Vérification

Automata representation in practice - 1

An automaton to represent $\{(x, y), x=y\}$ in basis 2.

Laboratoire
Spécification
Vérification

Automata representation in practice - 2

An automaton to represent $\{(x, y, z), x+y=z\}$ in basis 2 .

$$
(0,0,0),(1,0,1),(0,1,1) \quad(0,1,0),(1,0,0),(1,1,1)
$$

Laboratoire
Spécification
Vérification

Counter systems

- A Presburger-linear function $f=(M, v, \mathcal{D})$ is defined by $\forall x \in \mathcal{D}, f(x)=M . x+v$ where the guard $\mathcal{D} \subseteq \mathbb{N}^{m}$ is a Presburger set.

Counter systems

- A Presburger-linear function $f=(M, v, \mathcal{D})$ is defined by $\forall x \in \mathcal{D}, f(x)=M . x+v$ where the guard $\mathcal{D} \subseteq \mathbb{N}^{m}$ is a Presburger set.
- A counter system L is a tuple $L=\left(\Sigma, f_{\Sigma}\right)$ where Σ is a finite alphabet of actions and $f_{\Sigma}=\left\{f_{a} ; a \in \Sigma\right\}$ is a set of Presburger-linear functions.

Counter systems

- A Presburger-linear function $f=(M, v, \mathcal{D})$ is defined by $\forall x \in \mathcal{D}, f(x)=M . x+v$ where the guard $\mathcal{D} \subseteq \mathbb{N}^{m}$ is a Presburger set.
- A counter system L is a tuple $L=\left(\Sigma, f_{\Sigma}\right)$ where Σ is a finite alphabet of actions and $f_{\Sigma}=\left\{f_{a} ; a \in \Sigma\right\}$ is a set of Presburger-linear functions.
- \mathcal{M}_{L} is the multiplicative monoid generated by the set of square matrices $\left\{M_{a} ; a \in \Sigma\right\}$ of a counter system L.

Counter systems

- A Presburger-linear function $f=(M, v, \mathcal{D})$ is defined by $\forall x \in \mathcal{D}, f(x)=M . x+v$ where the guard $\mathcal{D} \subseteq \mathbb{N}^{m}$ is a Presburger set.
- A counter system L is a tuple $L=\left(\Sigma, f_{\Sigma}\right)$ where Σ is a finite alphabet of actions and $f_{\Sigma}=\left\{f_{a} ; a \in \Sigma\right\}$ is a set of Presburger-linear functions.
- \mathcal{M}_{L} is the multiplicative monoid generated by the set of square matrices $\left\{M_{a} ; a \in \Sigma\right\}$ of a counter system L.

Counter systems with a finite monoid have nice acceleration properties and appear to be well-spread in practice (transfer/reset/inhibitors Petri Nets, Broadcast protocols,...)

Acceleration for counter systems

Let f be a function, and S a set, we define the acceleration of f by $f^{*}(S)=\bigcup_{i \in \mathbb{N}} f^{i}(S)$.

Acceleration for counter systems

Let f be a function, and S a set, we define the acceleration of f by $f^{*}(S)=\bigcup_{i \in \mathbb{N}} f^{i}(S)$.

- R_{f}^{*} is the relation associated with f^{*}.

Laiboratoire
Spécification
Vêrification

Acceleration for counter systems

Let f be a function, and S a set, we define the acceleration of f by $f^{*}(S)=\bigcup_{i \in \mathbb{N}} f^{i}(S)$.

- R_{f}^{*} is the relation associated with f^{*}.
- Theorem [Finkel Leroux, FSTTCS02] For a Presburger-linear function $f=(M, v, \mathcal{D})$ with a finite monoid, R_{f}^{*} can be computed as a Presburger formula, of the form

$$
R_{f}^{*}=\left\{\left(x, x^{\prime}\right) \mid x \in \mathcal{D} \wedge \exists k \geq 0 . x^{\prime}=g^{k}(x) \wedge \forall i .0 \leq i<k, g^{i}(x) \in \mathcal{D}\right\}
$$

Idea of the construction

- $f=(M, v, \mathcal{D})$ with $<M>$ finite.
- $g: \mathbb{Q}^{m} \rightarrow \mathbb{Q}^{m}, \forall x \in \mathbb{Q}^{m}, g(x)=M \cdot x+v$

Laboratoire
Spécification
Vérification

Idea of the construction

- $f=(M, v, \mathcal{D})$ with $<M>$ finite.
- $g: \mathbb{Q}^{m} \rightarrow \mathbb{Q}^{m}, \forall x \in \mathbb{Q}^{m}, g(x)=M \cdot x+v$
- $\left\langle M>\right.$ is finite, so there exists $(a, b) \in \mathbb{N} \times \mathbb{N}$ such that $M^{a+b}=M^{a}$

Idea of the construction

- $f=(M, v, \mathcal{D})$ with $<M>$ finite.
- $g: \mathbb{Q}^{m} \rightarrow \mathbb{Q}^{m}, \forall x \in \mathbb{Q}^{m}, g(x)=M \cdot x+v$
- $<M>$ is finite, so there exists $(a, b) \in \mathbb{N} \times \mathbb{N}$ such that $M^{a+b}=M^{a}$
- Notice that $\forall n \in \mathbb{N}, \forall x \in \mathbb{Q}^{m}, g^{a+n . b}=g^{a}(x)+n . M^{a} . g^{b}(0)$

Idea of the construction

- $f=(M, v, \mathcal{D})$ with $<M>$ finite.
- $g: \mathbb{Q}^{m} \rightarrow \mathbb{Q}^{m}, \forall x \in \mathbb{Q}^{m}, g(x)=M \cdot x+v$
- $\left\langle M>\right.$ is finite, so there exists $(a, b) \in \mathbb{N} \times \mathbb{N}$ such that $M^{a+b}=M^{a}$
- Notice that $\forall n \in \mathbb{N}, \forall x \in \mathbb{Q}^{m}, g^{a+n . b}=g^{a}(x)+n . M^{a} . g^{b}(0)$
- $G=\left\{\left(i, x, x^{\prime}\right) \in \mathbb{N} \times \mathbb{Z}^{m} \times \mathbb{Z}^{m}, x^{\prime}=g^{i}(x)\right\} \Longleftrightarrow$

$$
\bigvee_{r=0}^{a-1}\left[x^{\prime}=g^{r}(x) \wedge i=r\right] \bigvee_{r=0}^{b-1} \exists n \geq 0\left[\left(x^{\prime}=g^{a+r}(x)+n \cdot M^{a+r} \cdot g^{b}(0)\right) \wedge(i=a+r+n . b)\right]
$$

Idea of the construction

- $f=(M, v, \mathcal{D})$ with $<M>$ finite.
- $g: \mathbb{Q}^{m} \rightarrow \mathbb{Q}^{m}, \forall x \in \mathbb{Q}^{m}, g(x)=M \cdot x+v$
- $\left\langle M>\right.$ is finite, so there exists $(a, b) \in \mathbb{N} \times \mathbb{N}$ such that $M^{a+b}=M^{a}$
- Notice that $\forall n \in \mathbb{N}, \forall x \in \mathbb{Q}^{m}, g^{a+n . b}=g^{a}(x)+n . M^{a} . g^{b}(0)$
- $G=\left\{\left(i, x, x^{\prime}\right) \in \mathbb{N} \times \mathbb{Z}^{m} \times \mathbb{Z}^{m}, x^{\prime}=g^{i}(x)\right\} \Longleftrightarrow$

$$
\bigvee_{r=0}^{a-1}\left[x^{\prime}=g^{r}(x) \wedge i=r\right] \bigvee_{r=0}^{b-1} \exists n \geq 0\left[\left(x^{\prime}=g^{a+r}(x)+n \cdot M^{a+r} \cdot g^{b}(0)\right) \wedge(i=a+r+n . b)\right]
$$

- Finally we have $R_{f}^{*}=\left\{\left(x, x^{\prime}\right), \exists i \geq 0, x^{\prime}=f^{i}(x)\right\} \Longleftrightarrow$

$$
\left\{\left(x, x^{\prime}\right), \exists i \geq 0\left[\left(i, x, x^{\prime}\right) \in G \wedge\left(\forall k(0 \leq k<i), \exists x^{\prime \prime} \in \mathcal{D},\left(k, x, x^{\prime \prime}\right) \in G\right)\right]\right\}
$$

R_{f}^{*} is a Presburger set!!
Laboratoire
Spécification
Verrification $_{\text {en }}^{\text {etic }}$

How to find out the accelerations?

Initial configuration: state=time $\wedge b=s \wedge$ $s=d \wedge d=0$

Property to check: $|b-s| \leq 20$ always holds.

Reduction result

Theorem [reduction, Finkel Leroux FSTTCS02]
Any acceleration of functions in a finite set C of Presburger-linear functions can be reduced to the acceleration of functions in a reduced set $[C]$, such that the cardinal of $\left[C_{k}\right]$ is polynomial in k.

$$
f_{1}=\left(M, v, \mathcal{D}_{1}\right), f_{2}=\left(M, v, \mathcal{D}_{2}\right) \longrightarrow f_{1 \otimes 2}=\left(M, v, \mathcal{D}_{1} \cup \mathcal{D}_{2}\right)
$$

Heuristic

- Extension of the classic algorithm, adding cycles (meta-transitions).
- 2 problems:
> find good cycles
> avoid automata explosion

Spécification
Vêrification

Heuristic

- Extension of the classic algorithm, adding cycles (meta-transitions).
- 2 problems:
$>$ find good cycles \rightarrow incremental computation and reduction
> avoid automata explosion

Laboratoire
Spécification
Vêerification

Heuristic

- Extension of the classic algorithm, adding cycles (meta-transitions).
- 2 problems:
$>$ find good cycles \rightarrow incremental computation and reduction
> avoid automata explosion \rightarrow minimization step

Spécification
Vérification

Heuristic

- Extension of the classic algorithm, adding cycles (meta-transitions).
- 2 problems:
$>$ find good cycles \rightarrow incremental computation and reduction
$>$ avoid automata explosion \rightarrow minimization step

1. $k \leftarrow 1$
2. Compute C_{k}, the reduced set of cycles of length $\leq k$
3. Use the search algorithm with S_{0} and $L \cup C_{k}$
4. if a fixpoint S is found then return S else (the stop criterion is met) do $k \leftarrow k+1$, goto (2)

Heuristic -2

The search algorithm: 2 nested greedy algorithms
$S \leftarrow S_{0}$
while there exists f such that $f^{*}(S)$ reaches new states do

$$
S \leftarrow f^{*}(S)
$$

end while
return S

Heuristic -2

The search algorithm: 2 nested greedy algorithms
$S \leftarrow S_{0}$
while there exists f such that $f^{*}(S)$ reaches new states do $S \leftarrow f^{*}(S)$
while there exists f such that $\left|\mathcal{A}\left(f^{*}(S)\right)\right|<|\mathcal{A}(S)|$ do

$$
S \leftarrow f^{*}(S)
$$

end while
end while
return S

Laboratoire
Spécification
Vérification

Fast

We implement our results in the tool FAST.
FAST is a tool:

- with a powerful model,
- that automatically computes the reachability set in most practical cases,
- easy to use thanks to the GUI interface.

Laiboratoire
Spécification Vếrification

Tools with acceleration and counters

	$\begin{aligned} & 0 \\ & \frac{0}{1} \\ & \frac{\omega}{0} \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	guards	actions		
FAST	\mathbb{N}	Presburger	$\vec{x}^{\prime}=M \cdot \vec{x}+\vec{v}$	yes	yes
LASH	\mathbb{Z}	convex sets	$\vec{x}^{\prime}=M \cdot \vec{x}+\vec{v}$	yes	no
	\mathbb{R}	convex sets	$\vec{x}^{\prime}=M \cdot \vec{x}+\vec{v}$	no	
TREX	\mathbb{Z}	$\wedge\left\{\begin{array}{l} x_{i} \leq x_{j}+c \\ x_{i} \leq c \\ x_{i} \geq c \end{array}\right.$	$\wedge\left\{\begin{array}{l}x_{i}=x_{j}+c \\ x_{i}=c\end{array}\right.$	yes	yes
	\mathbb{R}		$\wedge\left\{\begin{array}{l}x_{i}=x_{j} \\ x_{i}=0\end{array}\right.$	yes	yes

Fast architecture

Fast Inputs

Input Model: A counter system such that each transition t is:

Spécification Vêrification

Fast Inputs

Input Model: A counter system such that each transition t is:

Input Strategy: A high level query language with

- Automatic computation of reachability sets,
- Presburger solver,
- Modular analyzer.

Case Studies

80% of 40 counter systems (mainly taken from ALV, BABYLON, TREX) have been automatically analysed.

In particular:

- Abstract multi-threaded java programs,
- Embedded systems (TTP/C),
- All Broadcast Protocols,
- Complex toy examples (Swimming Pool),

The TTP protocol - overview

- From car industry.
- Communications between embedded microprocessors (stations).
- Clique avoidance mechanism to prevent the partitioning of valid stations after a failure.

The TTP protocol - overview

- From car industry.
- Communications between embedded microprocessors (stations).
- Clique avoidance mechanism to prevent the partitioning of valid stations after a failure.
- N stations communicating through a shared bus
> messages are broadcast,
$>$ static time slots to send and receive messages

The TTP protocol - overview

- From car industry.
- Communications between embedded microprocessors (stations).
- Clique avoidance mechanism to prevent the partitioning of valid stations after a failure.
- N stations communicating through a shared bus
> messages are broadcast,
$>$ static time slots to send and receive messages
- Idea:
> a station which considers itself as faulty becomes inactive.
> a station which receives more invalid messages than valid ones must be faulty.

The TTP protocol

- M a boolean matrix of size $N \times N$
- C_{a} (ack) and C_{f} (fail) integer vectors of size N
- station i receiving message m_{j} from station j
- station i sending

Laboratoire
Spécification
Vêrification

The TTP protocol

- M a boolean matrix of size $N \times N$
- C_{a} (ack) and C_{f} (fail) integer vectors of size N
- station i receiving message m_{j} from station j
$>$ if m_{j} correctly received then $C_{a}[i]++$
$>$ else $C_{f}[i]++, M[i][j]:=0$
- station i sending

Laboratoire
Spécification
Vếrification

The TTP protocol

- M a boolean matrix of size $N \times N$
- C_{a} (ack) and C_{f} (fail) integer vectors of size N
- station i receiving message m_{j} from station j
$>$ if m_{j} correctly received then $C_{a}[i]++$
$>$ else $C_{f}[i]++, M[i][j]:=0$
- station i sending
$>$ if $C_{a}[i]>C_{f}[i]$ then $C_{a}[i]:=0, C_{f}[i]:=0,!M[i]$
> else $M[i][i]:=0$, becomes inactive

The TTP protocol - In practice

stations	s_{0}	s_{1}	s_{2}	s_{3}	C_{a}	C_{f}
s_{0}	1	1	1	1	4	0
s_{1}	1	1	1	1	3	0
s_{2}	1	1	1	1	2	0
s_{3}	1	1	1	1	1	0

ack fail inactive

The TTP protocol - In practice

stations	s_{0}	s_{1}	s_{2}	s_{3}	C_{a}	C_{f}
s_{0}	1	1	1	1	4	0
s_{1}	1	1	1	1	3	0
s_{2}	1	1	1	1	2	0
s_{3}	1	1	1	1	1	0

ack fail inactive

A failure occurs while s_{0} is sending.

The TTP protocol - In practice

- stations $\quad s_{0} \quad s_{1} \quad s_{2} \quad s_{3} \quad C_{a} \quad C_{f}$
ack fail inactive

The TTP protocol - In practice

stations | s_{0} | s_{1} | s_{2} | s_{3} | C_{a} | C_{f} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s_{0} | 1 | 1 | 1 | 1 | 1 | 0 |
| s_{1} | 0 | 1 | 1 | 1 | 3 | 1 |
| s_{2} | 1 | 1 | 1 | 1 | 3 | 0 |
| s_{3} | 0 | 1 | 1 | 1 | 1 | 1 |

ack fail inactive

The TTP protocol - In practice

stations	s_{0}	s_{1}	s_{2}	s_{3}	C_{a}	C_{f}
s_{0}	1	0	1	1	1	1
s_{1}	0	1	1	1	1	0
s_{2}	1	0	1	1	3	1
s_{3}	0	1	1	1	2	1

ack fail inactive

The TTP protocol - In practice

stations	s_{0}	s_{1}	s_{2}	s_{3}	C_{a}	C_{f}
s_{0}	1	0	1	1	1	1
s_{1}	0	1	1	1	1	0
s_{2}	1	0	1	1	3	1
s_{3}	0	1	1	1	2	1

ack fail inactive

The TTP protocol - In practice

stations	s_{0}	s_{1}	s_{2}	s_{3}	C_{a}	C_{f}
s_{0}	1	0	1	1	2	1
s_{1}	0	1	0	1	1	1
s_{2}	1	0	1	1	1	0
s_{3}	0	1	0	1	2	2

ack fail inactive

The TTP protocol - In practice

stations	s_{0}	s_{1}	s_{2}	s_{3}	C_{a}	C_{f}
s_{0}	1	0	1	1	2	1
s_{1}	0	1	0	1	1	1
s_{2}	1	0	1	1	1	0
s_{3}	0	1	0	1	2	2

ack fail inactive
$C_{a}\left[s_{3}\right]<C_{f}\left[s_{3}\right]$ then s_{3} becomes inactive.

The TTP protocol - In practice

stations	s_{0}	s_{1}	s_{2}	s_{3}	C_{a}	C_{f}
s_{0}	1	0	1	0	2	1
s_{1}	0	1	0	0	1	1
s_{2}	1	0	1	0	1	0
s_{3}	0	0	0	0	0	0

ack fail inactive

The TTP protocol - In practice

- stations $\quad s_{0} \quad s_{1} \quad s_{2} \quad s_{3} \quad C_{a} \quad C_{f}$
ack fail inactive

The TTP protocol - In practice

- stations | s_{0} | s_{1} | s_{2} | s_{3} | C_{a} | C_{f} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s_{0} | 1 | 0 | 1 | 0 | 1 | 0 |
| s_{1} | 0 | 1 | 0 | 0 | 1 | 2 |
| s_{2} | 1 | 0 | 1 | 0 | 2 | 0 |
| s_{3} | 0 | 0 | 0 | 0 | 0 | 0 |

ack fail inactive

The TTP protocol - In practice

stations	s_{0}	s_{1}	s_{2}	s_{3}	C_{a}	C_{f}
s_{0}	1	0	1	0	1	0
s_{1}	0	1	0	0	1	2
s_{2}	1	0	1	0	2	0
s_{3}	0	0	0	0	0	0

ack fail inactive
$C_{a}\left[s_{1}\right]<C_{f}\left[s_{1}\right]$ then s_{1} becomes inactive.

The TTP protocol - In practice

stations	s_{0}	s_{1}	s_{2}	s_{3}	C_{a}	C_{f}
s_{0}	1	0	1	0	1	0
s_{1}	0	0	0	0	0	0
s_{2}	1	0	1	0	2	0
s_{3}	0	0	0	0	0	0

ack fail inactive

The TTP protocol - In practice

stations	s_{0}	s_{1}	s_{2}	s_{3}	C_{a}	C_{f}
s_{0}	1	0	1	0	1	0
s_{1}	0	0	0	0	0	0
s_{2}	1	0	1	0	2	0
s_{3}	0	0	0	0	0	0

ack fail inactive

Valid stations belongs to the same clique!!

Validation of the TTP protocol

- A protocol difficult to validate.
- Merceron and Bouajjani (FTRTFT'02):

Laboratoire
Spécification
Vérification

Validation of the TTP protocol

- A protocol difficult to validate.
- Merceron and Bouajjani (FTRTFT'02):
> Manual proof of correctness (N stations, k faults).
> Provide a family of abstractions depending on the number of faults.
> Semi-automatic verification with tools LASH and ALV (N stations, 1 fault).

Validation of the TTP protocol

- A protocol difficult to validate.
- Merceron and Bouajjani (FTRTFT'02):
> Manual proof of correctness (N stations, k faults).
> Provide a family of abstractions depending on the number of faults.
> Semi-automatic verification with tools LASH and ALV (N stations, 1 fault).
- large parametric counter automaton (16 transitions)
- complex guards

Validation of the TTP protocol

- A protocol difficult to validate.
- Merceron and Bouajjani (FTRTFT'02):
> Manual proof of correctness (N stations, k faults).
> Provide a family of abstractions depending on the number of faults.
> Semi-automatic verification with tools LASH and ALV (N stations, 1 fault).
- large parametric counter automaton (16 transitions)
- complex guards
- Few tools are adapted.

Validation of the TTP protocol

- A protocol difficult to validate.
- Merceron and Bouajjani (FTRTFT'02):
> Manual proof of correctness (N stations, k faults).
> Provide a family of abstractions depending on the number of faults.
> Semi-automatic verification with tools LASH and ALV (N stations, 1 fault).
- large parametric counter automaton (16 transitions)
- complex guards
- Few tools are adapted.

> Interesting to test FAST on the TTP.

Model for the TTP, 1 fault \mathbf{N} stations

Laboratoire

Model for the TTP, 1 fault \mathbf{N} stations

Laboratoire Spécification Vérification

Verification with Fast, 1 fault

A large model: 16 transitions, 9 variables

- easy to describe in FAST input model,
- full automatic verification (no intermediate property)
> the exact reachability set is computed
> the property is verified
- cycles of length 1, the reachability set has 27,932 nodes
- on a pentium $4(2.4 \mathrm{GHz})$ with 1 Gbyte RAM, computation takes 940 sec . and 73 Mbytes.

Model for the TTP, 2 faults N stations

 t 30 : $\mathrm{Cp} 2<\mathrm{N}$ \& d $00<\mathrm{C} 00$ \& $\mathrm{C} 00-\mathrm{C} 10-\mathrm{C} 11>0 / \mathrm{d} 00++$, $\mathrm{Cp} 2++$
t 31 : $\mathrm{Cp} 2<\mathrm{N}$ \& d11<C11 \& C11-C10-C00<=0 /
C11--,Cp2++,dF++,CF++
t 32 : $\mathrm{Cp} 2<\mathrm{N}$ \& $110<\mathrm{C} 10 \& \mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 00<=0 /$ C10--,Cp2++,CF++,dF++
t33: Cp2<N \& d00<C00 \& C00-C10-C11<=0 C00--,Cp2++,CF++,dF++
t 34 : $\mathrm{Cp} 2<\mathrm{N}$ \& dF<CF / Cp2++,dF++

Pred1:
$\mathrm{d} 1+\mathrm{d} 11-\mathrm{dA} 11-\mathrm{dF} 11-\mathrm{dA} 10-\mathrm{dF} 10-\mathrm{d} 0-\mathrm{d} 10-\mathrm{d} 00+\mathrm{dA} 00+\mathrm{dF} 00>0$ Pred2:
$\mathrm{d} 1+\mathrm{d} 10-\mathrm{dA} 10-\mathrm{dF} 10-\mathrm{dA} 11-\mathrm{dF} 11-\mathrm{d} 0-\mathrm{d} 11-\mathrm{d} 00+\mathrm{dA} 00+\mathrm{dF} 00>0$ Pred3:
d0+d00-dA00-dF00-d1-d11-d10+dA11+dA10+dF11+dF10>0

Verification with Fast, 2 faults

- A very large model: 20 transitions, 18 variables
- Guards are very complex.

Verification with Fast, 2 faults

- A very large model: 20 transitions, 18 variables
- Guards are very complex.
- When computing the acceleration relation of transition t_{25}, the internal representation exceeds its limits and FAST stops.

Verification with Fast, 2 faults

- A very large model: 20 transitions, 18 variables
- Guards are very complex.
- When computing the acceleration relation of transition t_{25}, the internal representation exceeds its limits and FAST stops.
> Intermediate automata have more than 2^{24} states!!

Verification with Fast, 2 faults

- A very large model: 20 transitions, 18 variables
- Guards are very complex.
- When computing the acceleration relation of transition t_{25}, the internal representation exceeds its limits and FAST stops.
> Intermediate automata have more than 2^{24} states!!
Our acceleration formula is too expensive in this case!!

Faster acceleration

- Almost all the transitions are translations over convex polyhedra

Laboratoire
Spécification
Vérification

Faster acceleration

- Almost all the transitions are translations over convex polyhedra - Don't need to test if all the predecessors are in the guard.

Laboratoire
Spécification
Vếrification

Faster acceleration

- Almost all the transitions are translations over convex polyhedra $>$ Don't need to test if all the predecessors are in the guard.
- We can use a simpler acceleration formula:

Faster acceleration

- Almost all the transitions are translations over convex polyhedra $>$ Don't need to test if all the predecessors are in the guard.
- We can use a simpler acceleration formula:

$$
>R_{f}^{*}=\left\{\left(x, x^{\prime}\right) \mid x \in \mathcal{D} \wedge \exists k \geq 0 . x^{\prime}=g^{k}(x) \wedge \forall i .0 \leq i<k, g^{i}(x) \in \mathcal{D}\right\} \text { (1) }
$$

Faster acceleration

- Almost all the transitions are translations over convex polyhedra
$>$ Don't need to test if all the predecessors are in the guard.
- We can use a simpler acceleration formula:
$>R_{f}^{*}=\left\{\left(x, x^{\prime}\right) \mid x \in \mathcal{D} \wedge \exists k \geq 0 . x^{\prime}=g^{k}(x) \wedge \forall i .0 \leq i<k, g^{i}(x) \in \mathcal{D}\right\}$ (1)
$>R_{f}^{*}=\left\{\left(x, x^{\prime}\right) \mid x \in \mathcal{D} \wedge \exists k \geq 0 . x^{\prime}=g^{k}(x) \wedge k>0 \Rightarrow g^{k-1}(x) \in \mathcal{D}\right\}$

Faster acceleration

- Almost all the transitions are translations over convex polyhedra
$>$ Don't need to test if all the predecessors are in the guard.
- We can use a simpler acceleration formula:
$>R_{f}^{*}=\left\{\left(x, x^{\prime}\right) \mid x \in \mathcal{D} \wedge \exists k \geq 0 . x^{\prime}=g^{k}(x) \wedge \forall i .0 \leq i<k, g^{i}(x) \in \mathcal{D}\right\}(1)$
$>R_{f}^{*}=\left\{\left(x, x^{\prime}\right) \mid x \in \mathcal{D} \wedge \exists k \geq 0 . x^{\prime}=g^{k}(x) \wedge k>0 \Rightarrow g^{k-1}(x) \in \mathcal{D}\right\}$
$>R_{f}^{*}=\left\{\left(x, x^{\prime}\right) \in D \times(D+v) ; x^{\prime}-x \in \mathbb{N} . v\right\}$ (polyhedral acceleration)

Faster acceleration

- Almost all the transitions are translations over convex polyhedra
> Don't need to test if all the predecessors are in the guard.
- We can use a simpler acceleration formula:
$>R_{f}^{*}=\left\{\left(x, x^{\prime}\right) \mid x \in \mathcal{D} \wedge \exists k \geq 0 . x^{\prime}=g^{k}(x) \wedge \forall i .0 \leq i<k, g^{i}(x) \in \mathcal{D}\right\}(1)$
$>R_{f}^{*}=\left\{\left(x, x^{\prime}\right) \mid x \in \mathcal{D} \wedge \exists k \geq 0 \cdot x^{\prime}=g^{k}(x) \wedge k>0 \Rightarrow g^{k-1}(x) \in \mathcal{D}\right\}$
$>R_{f}^{*}=\left\{\left(x, x^{\prime}\right) \in D \times(D+v) ; x^{\prime}-x \in \mathbb{N} . v\right\}$ (polyhedral acceleration)
The polyhedral acceleration is quadratic in the size of the function while the generic formula (1) is at most elementary in the size of the function.

Polyhedral acceleration in practice

We use the polyhedral acceleration on the TTP with 2 faults.

L:aboratoire
Spécification
Vérification

Polyhedral acceleration in practice

We use the polyhedral acceleration on the TTP with 2 faults.

- Acceleration relations are computed.

Polyhedral acceleration in practice

We use the polyhedral acceleration on the TTP with 2 faults.

- Acceleration relations are computed.
- For t_{25} it takes $18 \mathrm{sec}, 460$ Mbytes (413,447 states!!)

Liboratoire
Spécification
Vérification

Polyhedral acceleration in practice

We use the polyhedral acceleration on the TTP with 2 faults.

- Acceleration relations are computed.
- For t_{25} it takes $18 \mathrm{sec}, 460$ Mbytes (413,447 states!!)
- For a small fixed number of stations (about 10), the reachability set is computed.

Laboratoire
Spécification
Vêrification

Polyhedral acceleration in practice

We use the polyhedral acceleration on the TTP with 2 faults.

- Acceleration relations are computed.
$>$ For t_{25} it takes $18 \mathrm{sec}, 460$ Mbytes (413,447 states!!)
- For a small fixed number of stations (about 10), the reachability set is computed.
- For an arbitrary value of N, the intermediate automata exceed the limit.

Polyhedral acceleration in practice

We use the polyhedral acceleration on the TTP with 2 faults.

- Acceleration relations are computed.
$>$ For t_{25} it takes $18 \mathrm{sec}, 460$ Mbytes (413,447 states!!)
- For a small fixed number of stations (about 10), the reachability set is computed.
- For an arbitrary value of N, the intermediate automata exceed the limit.
- We have to use an overapproximation for $N \geq 0$.

Polyhedral acceleration in practice

We use the polyhedral acceleration on the TTP with 2 faults.

- Acceleration relations are computed.
$>$ For t_{25} it takes $18 \mathrm{sec}, 460$ Mbytes (413,447 states!!)
- For a small fixed number of stations (about 10), the reachability set is computed.
- For an arbitrary value of N, the intermediate automata exceed the limit.
- We have to use an overapproximation for $N \geq 0$.
> simplify some guards,
> remove some variables,
> modular analysis.

Polyhedral acceleration in practice

We use the polyhedral acceleration on the TTP with 2 faults.

- Acceleration relations are computed.
- For t_{25} it takes $18 \mathrm{sec}, 460$ Mbytes (413,447 states!!)
- For a small fixed number of stations (about 10), the reachability set is computed.
- For an arbitrary value of N, the intermediate automata exceed the limit.
- We have to use an overapproximation for $N \geq 0$.
> simplify some guards,
> remove some variables,
- modular analysis.

The protocol is verified with FAST for 2 fauts and N stations.

Abstraction for the TTP with 2 faults

Results

	Presburger acceleration		polyhedral acceleration		
	time1 seconds	memory1 Mbytes	time2 seconds	memory2 Mbytes	number of states
1 fault, N stations	940	73	600	63	27,932
2 faults, 5 stations	\uparrow	\uparrow	446	588	5,684
2 faults, 10 stations	\uparrow	\uparrow	12,365	588	273,427
2 faults, 15 stations	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
2 faults, N stations	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
2 faults, N stations	210	200	175	200	11,036
(abstraction)					

Conclusion and Future Works

Conclusion:

- Polyhedral acceleration appears to be interesting in practice,
- But for complex systems like the TTP, we are never far from the limits of the tool.

Future Works:

- Other specific acceleration formula,
- More efficient Presburger library to scale up to wider systems.

