
Flat acceleration.

Flat acceleration.

Sébastien Bardin Alain Finkel Jérôme Leroux
Philippe Schnoebelen

LSV - CNRS & ÉNS de Cachan

Journées Systèmes Infinis 2005

Flat acceleration.

Motivations

What is it about?

Symbolic model-checking

extends model-checking to infinite systems,

many techniques and tools

Problem of convergence

theory: often undecidable

practice: the iterative fixpoint computation is not sufficient.

Acceleration

methods to enhance convergence, mainly by computing the
transitive closure of some part of the system.

promising case-studies

BUT (too many!) different techniques and different tools.

Flat acceleration.

Motivations

What is it about?

Toward a unification of acceleration techniques

1. General framework for symbolic model-checking with
acceleration, encompassing most existing techniques.

2. We identify three main levels for acceleration techniques (loop,
flat, and global). For each one:

a symbolic procedure computing reachability sets

characterization of the class of systems on which it terminates.

3. Several algorithmic/heuristic improvements for flat acceleration.

Flat acceleration.

Motivations

What is it about?

Unification and clarification of previous works in the field.

common theoretical background justifying existing tools
(Alv, Lash, Fast, TReX)

meaningful comparisons of techniques and tools.

guidelines to improve or design from scratch symbolic model
checkers with acceleration.

Flat acceleration.

Motivations

Context

We do not check programs but mathematical models.

Automata extended with a finite number of variables.

Many applications.

Communication
protocols,

Embedded systems,

Program abstractions, ...

VASS/Petri Nets,

Timed Automata,

Hybrid systems,

(lossy) CFSMs, ...

Flat acceleration.

Motivations

Systems

Systems S = (Σ, Q, T , D, J·K)

an infinite set of formulas Σ,

a finite labeled control structure

finite set Q of locations
finite set of transitions T ⊆ Q × Σ× Q.

an interpretation of formulas I = (Σ, D, J·K)

a domain of interpretation D,
an interpretation function J·K : Σ→ 2D×D

Flat acceleration.

Motivations

Systems

Ex: Counter Systems

1-Σ = linear assignments, linear
inequalities on variables x , y .

2-D = N
2

3-J·K: “x ≥ 0? x← x + 2” −→
{(x , y , x ′, y ′)|x ≥ 0∧ x ′ = x +2∧ y ′ = y}

x ≥ 0? x ← x + 2

x ≥ y?

x ← x + 1
y ← y + 1

x ← x − y

Flat acceleration.

Motivations

Systems

Ex: Channel Systems

1-Σ = ?a or !a with a ∈ {0, 1, A0, A1}.

2- D = (0, 1)∗ × (A0, A1)∗

3-J·K: “!A1” −→
{((w1, w2), (w1, A1 · w2))}

1

1

0

0

0

Sender

! 1

! 0

? A0
? A1

? A1 ? A0

? 0

? 1

? 1

? 0

Receiver

! A0

! A1

A0

A0

A1

A1

A1

Flat acceleration.

Motivations

Systems - semantics

Transition system, reachability set

configuration c = (q, d) ∈ Q × D

(q, d)
(q,l ,q′)
−−−−→ (q′, d ′) iff (d , d ′) ∈ JlK.

c ′ ∈ post∗(c) iff c
t1−→ c1

t2−→ . . .
tn−→ c ′.

post∗(c0) is the reachability set from c0.

Safety properties = properties on reachable configurations.

interesting: mutual exclusion, deadlock freedom, ...

can be checked easily from the reachability set.

we focus on the computation of post∗(c0)

Flat acceleration.

Motivations

Iterative computation of post*(c)

Unsafe

Initial

Flat acceleration.

Motivations

Iterative computation of post*(c)

Unsafe

Initial

Flat acceleration.

Motivations

Iterative computation of post*(c)

Unsafe

Initial

Flat acceleration.

Motivations

Iterative computation of post*(c)

Unsafe

Initial

Flat acceleration.

Motivations

Iterative computation of post*(c)

Unsafe

Initial

?

Flat acceleration.

Motivations

Comments

Works well for systems with a finite number of configurations.

Problem in the infinite case

the state space is infinite.

enumerating concrete configurations cannot be sufficient.

Solution

Manipulate symbolic configurations (regions) x ∈ L encoding
(infinite) sets of configurations.

Symbolic representations must at least provide symbolic
operations for post, ∪, ⊆ (denoted post, t, v)

Depends heavily on the underlying interpretation (Σ, D, J·K).

Flat acceleration.

Motivations

Symbolic iterative computation of post*(c)

procedure reach1(x0)

parameters: S
input: initial region x0 ∈ L

1: x← x0

2: while post(x) 6v x do

3: x← post(x) t x
4: end while

5: return x

Flat acceleration.

Motivations

Symbolic framework

Symbolic framework

A symbolic framework SF = (Σ, D, J·K1 , L, J·K2)

I = (Σ, D, J·K1) is an interpretation,

L is a set of formulas called regions,

J·K2 : L→ 2D is a region concretization,

such that there exist a decidable relation v and recursive functions
t,post satisfying

1 there exists an element ⊥∈ L such that J⊥K2 = ∅.

2 x1 v x2 iff Jx1K2 ⊆ Jx2K2.

3 Jx1 t x2K2 = Jx1K2 ∪ Jx2K2.

4 ∀a ∈ Σ, Jpost(a, x)K2 = JaK1 (JxK2).

Flat acceleration.

Motivations

Symbolic framework - Examples

Ex: Counter Systems

1-Σ = linear assignments, linear
inequalities on variables x , y .

2-D = N
2

3-J·K1: “x ≥ 0? x← x + 2” −→
{(x , y , x ′, y ′)|x ≥ 0∧ x ′ = x +2∧ y ′ = y}

4-L = Presburger formulas over free
variables x , y

5-J·K2: the corresponding semi-linear set
over N

2.

6-post,t,v: corresponding operations
on Presburger formulas

x ≥ 0? x ← x + 2

x ≥ y?

x ← x + 1
y ← y + 1

x ← x − y

Flat acceleration.

Motivations

Symbolic framework - Examples

Ex: Channel Systems

1-Σ = ?a or !a with a ∈ {0, 1, A0, A1}.

2- D = (0, 1)∗ × (A0, A1)∗

3-J·K: !A1 → {((w1, w2), (w1, A1 · w2))}

4-L = regexp({0, 1, A0, A1, #})

5-J·K2: the corresponding language as
channel content (# separates queues).

6-post,t,v: corresponding operations on
regular expressions

1

1

0

0

0

Sender

! 1

! 0

? A0
? A1

? A1 ? A0

? 0

? 1

? 1

? 0

Receiver

! A0

! A1

A0

A0

A1

A1

A1

Flat acceleration.

Motivations

Symbolic framework - Examples

Counter systems: CST, NDD

Timed automata: Difference Bound Matrices

Hybrid systems: Convex polyhedra, RVAs, ≈ PDBM

CFSM: QDD, CQDD, SLRE

lossy CFSM: SRE

Token ring of arbitrary size: APC.

Pushdown systems: regular expressions.

Flat acceleration.

Motivations

Limits of the iterative symbolic computation

1 Given a symbolic framework (I , L) and an initial region x0,
then it may be the case that post∗(Jx0K) 6∈ L.

2 Even for systems for which post∗(Jx0K) ∈ L, reach1 does not
often converge (e.g. timed automata or pushdown).

3 Practical termination is limited to very specific systems.

Flat acceleration.

Outline

Outline

1 Motivations

2 Beyond iterative computation: Acceleration
3 Flat acceleration in depth

4 Framework of flat acceleration, applications

5 Conclusion

Flat acceleration.

Beyond iterative computation: Acceleration

Notion of acceleration

Acceleration

Enhance convergence of the iterative procedure by computing
directly the infinite iteration of some transitions of the system.

If x ≥ 0 then x ← x + 2

If c0 = {0} then

Flat acceleration.

Beyond iterative computation: Acceleration

Notion of acceleration

Acceleration

Enhance convergence of the iterative procedure by computing
directly the infinite iteration of some transitions of the system.

If x ≥ 0 then x ← x + 2

If c0 = {0} then post∗(c0) = 2.N in one step.

Flat acceleration.

Beyond iterative computation: Acceleration

Notion of acceleration

Acceleration

Enhance convergence of the iterative procedure by computing
directly the infinite iteration of some transitions of the system.

?a, !b

If c0 = a∗ then

Flat acceleration.

Beyond iterative computation: Acceleration

Notion of acceleration

Acceleration

Enhance convergence of the iterative procedure by computing
directly the infinite iteration of some transitions of the system.

?a, !b

If c0 = a∗ then post∗(c0) = a∗ · b∗ in one step.

Flat acceleration.

Beyond iterative computation: Acceleration

Different levels of acceleration

Loop acceleration

Compute the transitive closure of simple
loops of the control graph.

Here: t1∗ and t2∗.

t2: x ← x + 1

t1: x ≥ 0? x ← x + 2

t3: x ≥ y?
t4: x ← x − y

y ← y + 1

Flat acceleration.

Beyond iterative computation: Acceleration

Different levels of acceleration

Flat acceleration

Compute the transitive closure of any
circuit of the control graph.

Here: t1∗ and t2∗, but also (t3 · t4)∗

t2: x ← x + 1

t1: x ≥ 0? x ← x + 2

t3: x ≥ y?
t4: x ← x − y

y ← y + 1

Flat acceleration.

Beyond iterative computation: Acceleration

Different levels of acceleration

Global acceleration

Compute the transitive closure of any
regular language over transitions.

Here: t1∗, t2∗, (t1 · t3 · t2 · t4)∗ but also
(t1∗ · t3 · t2∗ · t4)∗

t2: x ← x + 1

t1: x ≥ 0? x ← x + 2

t3: x ≥ y?
t4: x ← x − y

y ← y + 1

Flat acceleration.

Beyond iterative computation: Acceleration

Formal definition

Different levels of acceleration

A symbolic framework SF supports

1 loop acceleration if there exists a recursive function
post star : Σ× L→ L such that ∀a ∈ Σ, ∀x ∈ L,
Jpost star(a, x)K = JaK∗ (JxK);

2 flat acceleration if there exists a recursive function
post star : Σ∗ × L→ L such that ∀π ∈ Σ∗, ∀x ∈ L,
Jpost star(π, x)K = JπK∗ (JxK);

3 global acceleration if there exists a recursive function
post star : RegExp(Σ)× L→ L such that for any regular
expression a over Σ, for any x ∈ L ,
Jpost star(a, x)K = JaK (JxK).

Flat acceleration.

Beyond iterative computation: Acceleration

In practice

Loop acceleration

timed automata,

Minsky machines,

(lossy) cfsm,

linear counter systems (with finite monoid),

...

Flat acceleration.

Beyond iterative computation: Acceleration

In practice

Flat acceleration

linear counter systems (with finite monoid) equipped with
Presburger formulas [Boigelot, Finkel-Leroux].

CFSM with CQDD [Bouajjani-Habermehl’99],

non-counting CFSMs equipped with SLRE [FPS-IC03] or
QDD [BGWW-SAS97],

lossy CFSMs equipped with sre [ABJ-2000].

≈ Restricted counter systems with arithmetics [AAB-SPIN00].

Flat acceleration.

Beyond iterative computation: Acceleration

In practice

Global acceleration

pushdown systems with regular languages

timed automata [Comon-Jurski’99]

Reversal-counter systems [Ibarra2002] with Presburger
formulas,

2-dim VASS [Leroux-Sutre’04], lossy VASS and other
subclasses of VASS with Presburger formulas [LS],

semi-commutative rewriting systems with APC
[Bouajjani-Muscholl-Touilli].

Flat acceleration.

Beyond iterative computation: Acceleration

Comments

Acceleration appears to be a well-spread notion in symbolic
model-checking.

Given a symbolic framework, Global ⇒ Flat ⇒ Loop.

Loop acceleration: easy to obtain, but rarely sufficient to lead
to fixpoint computation.

Flat acceleration is more flexible, but requires good
compositional properties of Σ, and often complex
constructions for post star.

Global acceleration is a very strong property, ensuring the
effective computation of post∗(JxK) for any x ∈ L.

Flat acceleration.

Beyond iterative computation: Acceleration

Comments

For Turing powerful systems, global acceleration is not available.
Then flat acceleration seems to be the best compromise.

Flat acceleration.

Flat acceleration in depth

1 Motivations

2 Beyond iterative computation: Acceleration

3 Flat acceleration in depth
4 Framework of flat acceleration, applications

5 Conclusion

Flat acceleration.

Flat acceleration in depth

Flat systems

For which systems does flat acceleration ensure convergence?

A system is flat iff the control graph has no nested loop.

t1: x ≥ 0? x ← x + 2

t2: x ← x + 1
y ← y + 1

t3: x ≥ y?

q1 q2

Flat acceleration.

Flat acceleration in depth

Flat systems

For which systems does flat acceleration ensure convergence?

A system is flat iff the control graph has no nested loop.

t1: x ≥ 0? x ← x + 2

t2: x ← x + 1
y ← y + 1

t3: x ≥ y?

q1 q2

Reachability set computation:

({x = 0 ∧ y = 0}, q1)
t1∗
−−→ ({∃k, x = 2k ∧ y = 0}, q1)

t3
−→

({∃k, x = 2k ∧ y = 0}, q2)
t2∗
−−→ ({∃θ, ∃k, x = 2k + θ∧ y = θ}, q2)

Flat acceleration.

Flat acceleration in depth

Flat systems

For which systems does flat acceleration ensure convergence?

A system is flat iff the control graph has no nested loop.

t1: x ≥ 0? x ← x + 2

t2: x ← x + 1
y ← y + 1

t3: x ≥ y?

q1 q2

Given a symbolic framework (I , L) supporting flat acceleration, if S
is flat then for all x0 ∈ L, post∗(Jx0K) is effectively definable in L.

Flat acceleration.

Flat acceleration in depth

Flattening

The issue is to deal with a non flat system S .

Remark that if

1 we know a flat system S ′ such that S and S ′ are equivalent
w.r.t. reachability, and

2 we can compute post∗S(c) from post∗S ′(c)

Then we can compute easily post∗S(c).

A way to achieve these conditions is to consider flattenings (≈
unfoldings) of S .

Flat acceleration.

Flat acceleration in depth

Flattening - 2

q1

q2

t1: x ≥ 0? x ← x + 2

t2: x ← x + 1

t3: x ≥ y?t4: x ← x − y

y ← y + 1

q1 q1

q2

t1

t3
q2

t4

t1

t2

q1q2

t3

t3 t4

t4

Flat acceleration.

Flat acceleration in depth

Flattening

S ′ = (Q ′, Σ, T ′, D, J·K) is a flattening of S = (Q, Σ, T , D, J·K) if

1 S ′ is flat

2 there is a mapping z : Q ′ → Q such that ∀(q1, w , q2) ∈ T ′,
(z(q1), w , z(q2)) ∈ T .

flattable

A system S = (Q, Σ, T , D, J·K) is L-forward flattable iff for any
x ∈ L, there exists a flattening S ′ = (Q ′, Σ, T ′, D, J·K) of S and
x
′ ∈ L such that S and S ′ are equivalent w.r.t. reachability.

Let S be a L-forward flattable system supporting flat acceleration.
Then post∗(JxK) is effectively L-definable.

Flat acceleration.

Flat acceleration in depth

Flattable systems everywhere!!

1

1

0

0

0

Sender

! 1

! 0

? A0
? A1

? A1 ? A0

? 0

? 1

? 1

? 0

Receiver

! A0

! A1

A0

A0

A1

A1

A1

Flat acceleration.

Flat acceleration in depth

Flattable systems everywhere!!

1 1 0 0 0

A0 A0 A1 A1 A1
? A0

? A1

Sender

init transmission
first message

end transmission
last message

abortion

abortion

!1

TimeOut

TimeOut

? A0? A1

!0

Flat acceleration.

Flat acceleration in depth

Flattable systems everywhere!!

/ CF=0,CW=N,Cp=0
d=0,dF=0

/ C1>=0, C0>=0,
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1

later

round1normalinit

d=0,dF=0

Cp=N /
CW=C1+C0,Cp=0,

Cp=0,d=0,dF=0
Cp=N /

dF<CF /
dF++, Cp++

d1<C1 & C1+C0−2d0>0 /
d1++, Cp++

C1−−,dF++,CF++,Cp++
d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0 /
d0++, Cp++

d0<C0 & C1+C0−2d1<=0 /
C0−−,dF++,CF++,Cp++

dF<CF /
dF++,Cp++

d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

d<CW / d++,Cp++

dF<CF / dF++,Cp++

Cp=N / d1=0,d0=0,dF=0,Cp=0

Flat acceleration.

Flat acceleration in depth

Flattable systems everywhere!!

More generally

timed automata [Comon-Jurski’99],

2-dim VASS [Leroux-Sutre’04], lossy VASS and other
subclasses of VASS, k-reversal counter machines [to appear]

WSTS (backward from upward closed sets)

most successful case-studies from Alv, Fast, Lash, TReX,
and so on.

Limits

“Is a system S flattable?” is undecidable

For some systems S , post∗(c0) is L-definable for all c0, but S
is still not flattable (lossy channels).

Flat acceleration.

Flat acceleration in depth

Procedure

Procedure for flattable systems:

1 enumerate all flattenings S ′ of S
2 compute post∗S ′(c ′), test if it is the fixpoint of S

yes: return
no: goto 1

Flattenings are not very easy to manipulate.

A restricted regular linear expression over Σ is a regular expression
of the form w∗

1 w∗
2 . . .w∗

n , where wi ∈ Σ∗.

A system S = (Q, Σ, T , D, J·K) is L-forward flattable iff for all
x ∈ L, there exists a rlre ρ over T such that
post∗(JxK) = post(ρ, JxK) (computable with flat acceleration).

Flat acceleration.

Flat acceleration in depth

Procedure - 2

procedure reach2(x0)
input: x0 ∈ L

1: x← x0

2: while post(x) 6v x do

3: Choose fairly w ∈ T ∗

4: x← post star(w , x)
5: end while

6: return x

1 When reach2 terminates, Jreach2(x0)K = post∗(Jx0K)
(partial correction).

2 reach2 terminates on any input iff S is L-forward flattable
(termination).

Flat acceleration.

Flat acceleration in depth

Refinements

procedure reach3(x0)
parameters: S, L
input: x0 ∈ L

1: x← x0 ; k ← 0
2: k ← k + 1
3: start

4: while post(x) 6v x do /* k-flattable */
5: Choose fairly w ∈ T≤k

6: x← post star(w , x)
7: end while /* end k-flattable */
8: with

9: when Watchdog stops goto 2
10: return x

Flat acceleration.

Flat acceleration in depth

Refinements -2

reach3 still correct and complete for flattable systems.

Technical issues:

implementation of Choose

implementation of Watchdog

Still a problem: cardinal of T≤k . Adapt reduction techniques
[Finkel-Leroux 2002].

Flat acceleration.

Flat acceleration in depth

Refinements -2

Reduction

Replace T≤k by T ′
k such that

equivalent w.r.t. reachability. post∗(T≤k) = post∗(T ′
k)

flat acceleration can still be performed on T ′
k

|T ′
k | is much smaller than |T≤k |

Flat acceleration.

Flat acceleration in depth

Refinements -2

Example: reduction technique of Fast [Finkel-Leroux 2002].

apply to finite monoid linear systems

Φ1? x ′ ← f (x) and Φ2? x ′ ← f (x): transform into
Φ1 ∨ Φ2? x ′ ← f (x).

|T ′
k | is polynomial in k.

Remark

acceleration of particular nested loops.

go outside strict flat acceleration.

Flat acceleration.

Framework of flat acceleration, application

1 Motivations

2 Beyond iterative computation: Acceleration

3 Flat acceleration in depth

4 Framework of flat acceleration, applications
5 Conclusion

Flat acceleration.

Framework of flat acceleration, application

Framework

Key points

1 a system S

2 a symbolic framework
(I , L)

3 an acceleration function

4 a procedure to find cycles

Problems

1 S closed enough to the
real world?

2 post∗(c0) not
representable in L

3 post∗(c0) not
computable through
acceleration

4 practical (time, memory)

Flat acceleration.

Framework of flat acceleration, application

Applications

Comparison of techniques/tools

Alv, Fast, Lash and TReX are very close tools designed to
compute reachability sets of counter systems.

Alv Lash Fast TReX

system full linear restricted

symbolic fram. Presburger (automata) Arith.
(undec. v)

acceleration no flat flat
(partial. rec.)

termination 0-F 1-F F k-F (+ oracle v)

F: flattable systems.
k-F: flattable using elementary cycles of length ≤ k.

Flat acceleration.

Framework of flat acceleration, application

Applications

System Alv Lash Fast

TTP no yes yes (1)
prod/cons (2) no yes yes (1)
prod/cons (N) no no yes (2)
lift control, N no no yes (2)
train no no yes (2)
consistency no no yes (3)
CSM, N no no yes (2)
PNCSA no no no
IncDec no no no
BigJAVA no no no

forward computation
yes =termination within 1200 seconds.

Experiments are closely related with the comparison through our
framework.

Flat acceleration.

Framework of flat acceleration, application

Applications

Improvement of existing tools

TReX for lossy channels [??]

system: lossy channels systems (?read , !write)

symbolic framework: SRE ((a + ε) · (a + b + c)∗ + . . .)

flat acceleration

procedure: search cycles of length ≤ k (k statically defined)

Propositions to improve TReX

TReX respects almost all the flat acceleration framework.

increase k dynamically to have a complete heuristics,

adapt reduction techniques to reduce the number of cycles

Flat acceleration.

Conclusion

1 Motivations

2 Beyond iterative computation: Acceleration

3 Flat acceleration in depth

4 Framework of flat acceleration, applications

5 Conclusion

Flat acceleration.

Conclusion

Conclusion (1)

Summary

A generic framework for acceleration

Three levels of acceleration (loop, flat, global). For each case,

characterization of termination
complete procedure to compute post∗(c0) when feasible

Refinements for flat acceleration

heuristic
algorithmic

Flat acceleration.

Conclusion

Conclusion (2)

Accelerated symbolic model-checking

Acceleration is a central issue in infinite model-checking.

Flat acceleration is a good compromise: most usual systems
support it, many subclasses are flattable, and many successful
case-studies exist (Fast, Lash, TReX).

Framework for flat acceleration

A generic framework for acceleration in 4 key points

clarify and unify existing work

meaningful comparison of techniques/tools

guidelines to build new tools or improve existing ones.

given a symbolic framework and a flat acceleration we provide
an efficient heuristic, complete for flattable systems.

	Motivations
	Outline
	Beyond iterative computation: Acceleration
	Flat acceleration in depth
	Framework of flat acceleration, application
	Applications

	Conclusion

