Abstract Regular Model Checking and application to programs over lists

with Ahmed BOUAJJANI, Pierre MORO, Tomas VOJNAR (TU Brno)

Peter Habermehl
LIAFA, University Paris 7
May 23rd, 2005

Introduction

- Regular model checking
- Modeling programs with 1 -selector-linked structures
- lists, circular lists, lists with sharing
- Applying abstract regular model checking
- Experimental results
- Conclusion and perspectives

Regular model checking

[Pnueli \& al. 97], [Fribourg \& al. 97], [Wolper, Boigelot, 98], [Bouajjani \& al. 00]

- Configurations of systems are modeled as words over a finite alphabet Σ.
- Finite automata A over Σ represent (infinite) regular sets of words (configurations)
- Init: set of initial configurations
- Bad: set of bad configurations
- Transitions are modeled by a transducer τ (automata over $\Sigma \times \Sigma$).

Regular model checking

- A lot of infinite-state systems can be encoded in this way:
- (Lossy) FIFO-channel systems, Push-down automata
- Counter machines
- Parameterised systems (parameterised number of identical components)
- Programs over lists (with sharing)
- Using trees: More general systems
- Given Init and τ
- Reachable configurations in n steps: τ^{n} (Init)
- τ^{*} (Init) $:=\bigcup_{k=0}^{\infty} \tau^{k}$ (Init) (not necessarily regular)

Regular model checking

- Basic model-checking problem : $\quad \tau^{*}($ Init $) \cap B a d=\emptyset$?
- Several approaches exist
[Abdulla, Boigelot, Bouajjani, Jonsson, Legay, Nilsson, d'Orso, Pnueli, Touili, Wolper,...]
- Calculating exact reachability sets or relations
- Special classes of systems or transitions where τ^{*} can be calculated
- General methods:
* quotienting of iterated transducers
* extrapolation of automata
- Calculating overapproximations of τ^{*} (Init) (invariants of τ)
- Inference of regular languages [H., Vojnar 04]
- Abstract regular model-checking [Bouajjani, H., Vojnar 04]
* Applying the abstract-check-refine paradigm
* Abstraction of automata representing configurations

Applying the abstract regular model-checking framework to programs with 1-selector-linked structures

- Encoding of configurations (stores) as words
- similar to encoding of PALE [Jensen, Jorgensen, Klarlund, Schwartzbach 97]
- Encoding of program statements as transducers
- Adapting the existing abstraction schemata
- Advantages
- Automatic verification
- Automatic loop invariant generation

From programs to transducers

Example C-like program - reversing a list

- reverses a list pointed to by l
- Data is abstracted (finite domains can be handled)

$$
\begin{aligned}
& \text { List } x, y, l ; \\
& 1: \quad x=\text { null; } \\
& 2: \quad \text { while }(l!=\text { null })\{ \\
& 3: \quad y=l \rightarrow \text { next; } \\
& \text { 4: } \quad l \rightarrow \text { next }=x ; \\
& \text { 5: } \quad x=l ; \\
& 6: \quad l=y ;\} \\
& 7: \quad l=x ; \\
& \text { 8: } / / \text { end of program }
\end{aligned}
$$

Example

$$
\begin{array}{ll}
1: & x=\text { null; } \\
\text { 2: } & \text { while }(l!=\text { null })\{ \\
\text { 3: } & y=l \rightarrow \text { next; } \\
\text { 4: } & l \rightarrow \text { next }=x ; \\
\text { 5: } & x=l ; \\
\text { 6: } & l=y ;\} \\
7: & l=x ;
\end{array}
$$

Example

$$
\begin{array}{ll}
\text { 1: } & x=\text { null; } \\
\text { 2: } & \text { while }(l!=\text { null })\{ \\
\text { 3: } & y=l \rightarrow \text { next; } \\
\text { 4: } & l \rightarrow \text { next }=x ; \\
\text { 5: } & x=l ; \\
\text { 6: } & l=y ;\} \\
\text { 7: } & l=x ;
\end{array}
$$

Example

$$
\begin{aligned}
& \text { 1: } \quad x=\text { null } \\
& \text { 2: } \\
& \text { 3: } \\
& \text { while }(l!=\text { null })\{ \\
& \text { 4: } \quad l \rightarrow l \rightarrow \text { next; } \\
& \text { 5: } \\
& \text { 6: } \quad x=l ; \\
& \text { 7: } \\
& l=y ;
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { 1: } \quad x=\text { null } \\
& \text { 2: } \quad \text { while }(l!=\text { null }) \text { \{ } \\
& \text { 3: } \quad y=l \rightarrow \text { next; } \\
& \text { 4: } \quad l \rightarrow n e x t=x ; \\
& \text { 5: } \quad x=l ; \\
& \text { 6: } \quad l=y ;\} \\
& \text { 7: } \quad l=x ; \\
& 3|\quad| \quad|\quad x \rightarrow \rightarrow \rightarrow \perp| l y \rightarrow \longrightarrow \rightarrow \perp \mid
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { 1: } \quad x=\text { null } \\
& \text { 2: } \\
& \text { 3: } \\
& \text { while }(l!=\text { null })\{ \\
& \text { 4: } \quad l \rightarrow l \rightarrow \text { next; } \\
& \text { 5: } \\
& \text { 6: } \\
& \text { 7: } \\
& \text { 7: } \\
& l=y ;
\end{aligned}
$$

Example

1:	$x=$ null
2:	while $(l!=$ null $)\{$
3:	$y=l \rightarrow$ next $;$
4:	$l \rightarrow$ next $=x ;$
5:	$x=l ;$
6:	$l=y ;\}$
7:	$l=x ;$

Example

$$
\begin{aligned}
& \text { 1: } \quad x=\text { null } \\
& \text { 2: } \\
& \text { 3: } \quad \text { while }(l!=\text { null })\{ \\
& \text { 4: } \quad l \rightarrow l \rightarrow \text { next; } \\
& \text { 5: } \\
& \text { 6: } \quad x=l ; \\
& \text { 7: } \\
& l=y ;
\end{aligned}
$$

$$
\begin{array}{l|l|l}
3 \\
4 & \mid & \mid \\
5 & \mid & \left\lvert\, \begin{array}{l}
x \rightarrow \rightarrow \rightarrow \perp \mid l y \rightarrow \rightarrow \rightarrow \perp \\
x \rightarrow \rightarrow \rightarrow \perp \mid l \rightarrow y \rightarrow \rightarrow \perp \\
x m_{t} \rightarrow \rightarrow \rightarrow \perp\left|l \rightarrow m_{f}\right| y \rightarrow \rightarrow \perp
\end{array}\right.
\end{array}
$$

Example

$$
\begin{aligned}
& \text { 1: } \quad x=\text { null } \\
& \text { 2: } \\
& \text { 3: } \quad \text { while }(l!=\text { null })\{ \\
& \text { 4: } \quad l \rightarrow l \rightarrow \text { next; } \\
& \text { 5: } \\
& \text { 6: } \quad x=l ; \\
& \text { 7: } \\
& l=y ;
\end{aligned}
$$

$$
\begin{array}{l|l|l}
3 \\
4 & \mid \\
5 & \mid & \left\lvert\, \begin{array}{l}
x \rightarrow \rightarrow \rightarrow \perp \mid l y \rightarrow \rightarrow \rightarrow \perp \\
5
\end{array}\right.
\end{array} \quad \left\lvert\, \begin{aligned}
& x \rightarrow \rightarrow \rightarrow \perp \mid l \rightarrow y \rightarrow \rightarrow \perp \\
& x m_{t} \rightarrow \rightarrow \rightarrow \perp\left|l \rightarrow m_{f}\right| y \rightarrow \rightarrow \perp \\
& l \rightarrow x \rightarrow \rightarrow \rightarrow \perp \mid y \rightarrow \rightarrow \perp
\end{aligned}\right.
$$

Example

$$
\begin{aligned}
& \text { 1: } \quad x=\text { null } \\
& \text { 2: } \\
& \text { 3: } \\
& \text { while }(l!=\text { null })\{ \\
& \text { 4: } \\
& \text { 5: } \quad l \rightarrow \text { next }=x ; \\
& \text { 6: } \\
& \text { 7: } \\
& \text { 7: } \quad l=x ;
\end{aligned}
$$

$$
8 \quad|\quad| \quad y \quad \mid \quad x l \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \perp
$$

Sets of configurations

- The set of initial configurations

$$
\text { Init }=\left(1|x y|\left|l \rightarrow \rightarrow^{*} \perp\right|\right)
$$

- The set of reachable configurations at line 8 is given by

$$
\tau^{*}(\text { Init })=\left(8| | y\left|x l \rightarrow \rightarrow^{*} \perp\right|\right)
$$

- A loop invariant
$\left(2|y| x\left|l \rightarrow \rightarrow^{*} \perp\right|\right)+\left(2| | y l\left|x \rightarrow \rightarrow^{*} \perp\right|\right)+\left(2| | \mid x \rightarrow\right.$ * $^{*} \perp \mid l y \rightarrow$ * $\left.^{*} \perp \mid\right)$

Properties checked

- Basic properties
- No garbage is created
- No null pointer dereference
- The result is a list
- more complex properties
- The list is really reversed
$-l \rightarrow^{*} f s t \rightarrow$ snd $\rightarrow^{*} \rightarrow \perp$ leads to $l \rightarrow^{*}$ snd $\rightarrow f s t \rightarrow^{*} \rightarrow \perp$

Using markers for shared (or circular) lists

- The store can contain shared parts and cycles
- Property: a store with k pointer variables without garbage can be encoded with at most k pairs of markers.
here $: p 1 \rightarrow \rightarrow \rightarrow n_{t} \rightarrow m_{t} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow h_{t} \rightarrow m_{f}\left|p 2 \rightarrow \rightarrow \rightarrow n_{f}\right| p 3 \rightarrow \rightarrow \rightarrow h_{f}$
- We fix a number of markers: A configuration contains the set of unused markers
- Available pairs of markers are used "on demand" by the transducer
- If no pair of markers is available, a pair is eliminated if possible

Elimination of a pair of markers

Example
$\left|y m_{t} \rightarrow \rightarrow \cdots \rightarrow \perp\right| x \rightarrow \rightarrow \cdots \rightarrow m_{f} \mid$ is changed to
$\mid x \rightarrow \rightarrow \cdots \rightarrow y \rightarrow \rightarrow \cdots \rightarrow \perp$

- Involves shifting of parts words of arbitrary size
- Non-regular relation: can not be described as the application of one transducer
- But shifting of one symbol can be done with a transducer
- Transitive closure of this transducer on an input set realizes the shifting.

Encoding program statements as transducers

Automatic translation from program statements to transducers

- free, new
- Tests $x==y$ and $x==$ null
- Assignments $x=$ null and $x=y$
- Assignment $y=x \rightarrow n e x t$
- Assignment $x \rightarrow$ next $=y$
- realized using a new pair of markers if available
- If no pair of markers is available, a pair is eliminated (if possible)

Abstract regular model-checking [04]

- $\tau^{*}($ Init $) \cap$ Bad $=\emptyset$?
- Define a finite-range abstraction function α on automata
- Compute iteratively $(\alpha \circ \tau)^{*}($ Init $)$,
- If $(\alpha \circ \tau)^{*}($ Init $) \cap B a d=\emptyset$ then answer YES
- Otherwise, let θ be the computed symbolic path from Init to Bad,
- Check if θ includes a concrete counterexample,
- If yes, then answer NO,
- Otherwise, define a refinement of α which excludes θ, and redo computation

Abstractions

- In earlier work [CAV 04] we have defined representation-oriented abstractions
- define a (finite index) equivalence relation on states of automata representing configurations
* Equivalence based on languages of words up to finite length
* Equivalence based on same status wrt "predicate" automata
- collapse equivalent states

Example finite-length abstraction

with words up to length 3

Example predicate abstraction

New abstractions

- Here, we propose configuration-oriented abstractions
- defined on configurations
- piecewise 0-k counter abstractions
- Closure abstractions

Piecewise 0-k counter abstractions

- Let S be the set of strong symbols: they have a bounded number of occurrences in every word (e.g., separators, markers, pointer variables).
- Given a word w, consider its decomposition according to strong symbols:

$$
w=w_{0} s_{1} w_{1} s_{2} w_{2} \cdots s_{n} w_{n}
$$

where $s_{i} \in S$ and $w_{i} \in(\Sigma \backslash S)^{*}$.

- For $k \in \mathbb{N}^{>0}$, define the relation α_{k} such that, for every word w :

$$
\alpha_{k}(w)=L_{0} s_{1} L_{1} s_{2} L_{2} \cdots s_{n} L_{n}
$$

where $L_{i}=\left\{u \in(\Sigma \backslash S)^{*}: \forall a \in \Sigma \backslash S .\left|w_{i}\right|_{a}<k\right.$ and $|u|_{a}=\left|w_{i}\right|_{a}$, or

$$
\left.\left|w_{i}\right|_{a} \geq k \text { and }|u|_{a} \geq k\right\}
$$

- The relation α_{k} is regular (definable by a finite transducer) and finite range.

Closure abstractions

- Given $u \in \Sigma^{+}$, and $k \in \mathbb{N}^{>0}$, define an extrapolation relation:

$$
R_{(u, k)}=\left\{\left(w, w^{\prime}\right): w=u_{1} u^{k} u_{2} \text { and } w^{\prime}=u_{1} u^{k} u^{*} u_{2}\right\}
$$

- R an extrapolation relation and L a regular set $\Rightarrow R^{*}(L)$ is regular.
- An extrapolation system is a finite union of extrapolation relations.
- Let $\prec \subseteq \Sigma^{*} \times \Sigma^{*}$ such that: * u is not a factor of v (i.e., u does not appear as a subword of v), * u cannot be written as $w_{1} v^{p} w_{2}$ for any $p \in \mathbb{N}$, and two words w_{1}, w_{2} such that w_{1} is a suffix of v and w_{2} is a prefix of v.
- $\forall u, v \in \Sigma^{*}$, if $u \prec v$ then $\forall p \geq 0 . \forall w_{1}, w_{2} \in \Sigma^{*} . v^{p} \neq w_{1} u w_{2}$.
- Let $R=R_{\left(u_{1}, k_{1}\right)} \cup \cdots \cup R_{\left(u_{n}, k_{n}\right)} . R$ is serialisable if the reflexive-transitive closure of \prec is a partial ordering on the set $\left\{u_{1}^{k_{1}}, \ldots, u_{n}^{k_{n}}\right\}$.
- \rightsquigarrow Let $i_{1}, i_{2}, \ldots, i_{n}$ be a total ordering compatible with \prec.

Then $R^{*}=R_{\left(u_{i_{n}}, k_{i_{n}}\right)}^{*} \circ \cdots \circ R_{\left(u_{i_{1}}, k_{i_{1}}\right)}^{*}$.

Experimental results

using new abstractions (up to 100 times faster)

Program	Markers	$\|M\|_{\text {st. }+ \text { tr. }}^{m a x}$	$T_{\text {sec }}$
Reverse, basic consistency	0	$51+105$	0.3
Reverse, full	0	$281+369$	4.2
Faulty reverse	1	$61+138$	0.2
Insert, bas. cons.	0	$81+102$	0.5
Insert, bas. cons.	2	$165+577$	0.15
Insert, full	0	$755+936$	10.8
Delete, bas. cons.	0	$55+113$	0.3
Merge, bas. cons.	0	$209+279$	2.7
Merge, corr.mix.	0	$1080+1415$	40.4
Bubblesort, bas. cons.	2	$2095+2872$	305
Bubblesort, full	2	$2339+2887$	279
Circular list reverse, bas. cons.	3	$655+764$	5.4
Circular list reverse, full	3	$2349+2822$	50.6
Circular list rem.seg., bas. cons.	2	$116+291$	1.0

Conclusion and perspectives

- We have applied and adapted the abstract regular model-checking framework to programs over lists
- Encoding
- New abstractions based on configurations
- Current and future work:
- Extension to trees done recently (Adam Rogalewicz)
- Specialised treatment for counter automata with integers (using NDDs) and reals (using RVA)
- Handling more general classes of dynamic data structures (using trees)
- Combining with other sources of infinity (recursion, multithreading, unbounded data domains)

