Abstract Regular Model Checking and application to programs over lists

with Ahmed BOUAJJANI, Pierre MORO, Tomas VOJNAR (TU Brno)

Peter Habermehl LIAFA, University Paris 7

May 23rd, 2005

Introduction

- Regular model checking
- Modeling programs with 1-selector-linked structures
 - lists, circular lists, lists with sharing
- Applying abstract regular model checking
- Experimental results
- Conclusion and perspectives

Regular model checking

[Pnueli & al. 97], [Fribourg & al. 97], [Wolper, Boigelot, 98], [Bouajjani & al. 00]

- Configurations of systems are modeled as words over a finite alphabet Σ .
- Finite automata A over Σ represent (infinite) regular sets of words (configurations)
 - *Init*: set of initial configurations
 - *Bad*: set of bad configurations
- Transitions are modeled by a transducer τ (automata over $\Sigma \times \Sigma$).

Regular model checking

- A lot of infinite-state systems can be encoded in this way:
 - (Lossy) FIFO-channel systems, Push-down automata
 - Counter machines
 - Parameterised systems (parameterised number of identical components)
 - Programs over lists (with sharing)
 - Using trees: More general systems
- Given Init and τ
- Reachable configurations in n steps: $\tau^n(Init)$
- $\tau^*(Init) := \bigcup_{k=0}^{\infty} \tau^k(Init)$ (not necessarily regular)

Regular model checking

- Basic model-checking problem : $\tau^*(Init) \cap Bad = \emptyset$?
- Several approaches exist [Abdulla, Boigelot, Bouajjani, Jonsson, Legay, Nilsson, d'Orso, Pnueli, Touili, Wolper,...]
- Calculating exact reachability sets or relations
 - Special classes of systems or transitions where τ^* can be calculated
 - General methods:
 - * quotienting of iterated transducers
 - * extrapolation of automata
- Calculating overapproximations of $\tau^*(Init)$ (invariants of τ)
 - Inference of regular languages [H., Vojnar 04]
 - Abstract regular model-checking [Bouajjani, H., Vojnar 04]
 - * Applying the abstract-check-refine paradigm
 - * Abstraction of automata representing configurations

Applying the abstract regular model-checking framework to programs with 1-selector-linked structures

- Encoding of configurations (stores) as words
 - similar to encoding of PALE [Jensen, Jorgensen, Klarlund, Schwartzbach 97]
- Encoding of program statements as transducers
- Adapting the existing abstraction schemata
- Advantages
 - Automatic verification
 - Automatic loop invariant generation

From programs to transducers

Example C-like program – reversing a list

- reverses a list pointed to by *l*
- Data is abstracted (finite domains can be handled)

List
$$x, y, l;$$

1: $x = null;$
2: while $(l != null)$ {
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y;$ }
7: $l = x;$
8: // end of program

1:
$$x = null;$$

2: while $(l != null)$ {
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y;$ }
7: $l = x;$

$$1 \quad | \quad \mathbf{x}y \quad | \quad | \quad l \to \to \to \to \to \bot \quad |$$

1:
$$x = null;$$

2: while $(l != null)$ {
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y;$ }
7: $l = x;$

1:
$$x = null$$

2: while $(l != null)$ {
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y;$ }
7: $l = x;$

10

I

1:
$$x = null$$

2: while $(l != null)$ {
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y;$ }
7: $l = x;$

$$3 \quad | \qquad | \quad x \to \to \bot \mid ly \to \to \bot$$

1:
$$x = null$$

2: while $(l != null)$ {
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y;$ }
7: $l = x;$

1:
$$x = null$$

2: while $(l != null)$ {
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y;$ }
7: $l = x;$

1:
$$x = null$$

2: while $(l != null)$ {
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y;$ }
7: $l = x;$

1:
$$x = null$$

2: while $(l != null)$ {
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y;$ }
7: $l = x;$

15

1:
$$x = null$$

2: while $(l != null)$ {
3: $y = l \rightarrow next;$
4: $l \rightarrow next = x;$
5: $x = l;$
6: $l = y;$ }
7: $l = x;$

Sets of configurations

• The set of initial configurations

$$Init = (1 \mid xy \mid \mid l \to \to^* \bot \mid)$$

• The set of reachable configurations at line 8 is given by

$$\tau^*(Init) = (8 \mid |y \mid xl \to t \perp |)$$

• A loop invariant

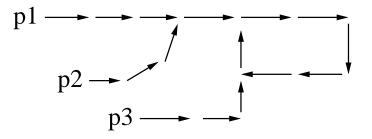
 $(2 \mid y \mid x \mid l \to \to^* \bot \mid) + (2 \mid \mid yl \mid x \to \to^* \bot \mid) + (2 \mid \mid \mid x \to \to^* \bot \mid ly \to \to^* \bot \mid)$

Properties checked

- Basic properties
 - No garbage is created
 - No null pointer dereference
 - The result is a list
- more complex properties
 - The list is really reversed

 $- \ l \to^* fst \to snd \to^* \to \bot \quad \text{leads to} \quad l \to^* snd \to fst \to^* \to \bot$

Using markers for shared (or circular) lists



- The store can contain shared parts and cycles
- Property: a store with k pointer variables without garbage can be encoded with at most k pairs of markers.
 here : p1 →→→ n_t → m_t → m_t →→→→ h_t → m_f | p2 →→→ n_f | p3 →→→ h_f
- We fix a number of markers : A configuration contains the set of unused markers
- Available pairs of markers are used "on demand" by the transducer
- If no pair of markers is available, a pair is eliminated if possible

Elimination of a pair of markers

Example $| y m_t \rightarrow \cdots \rightarrow \bot | x \rightarrow \cdots \rightarrow m_f |$ is changed to $| x \rightarrow \cdots \rightarrow y \rightarrow \cdots \rightarrow \bot$

- Involves shifting of parts words of arbitrary size
- Non-regular relation: can not be described as the application of one transducer
- But shifting of one symbol can be done with a transducer
- Transitive closure of this transducer on an input set realizes the shifting.

Encoding program statements as transducers

Automatic translation from program statements to transducers

- free, new
- Tests x == y and x == null
- Assignments x = null and x = y
- Assignment $y = x \rightarrow next$
- Assignment $x \rightarrow next = y$
 - realized using a new pair of markers if available
 - If no pair of markers is available, a pair is eliminated (if possible)

Abstract regular model-checking [04]

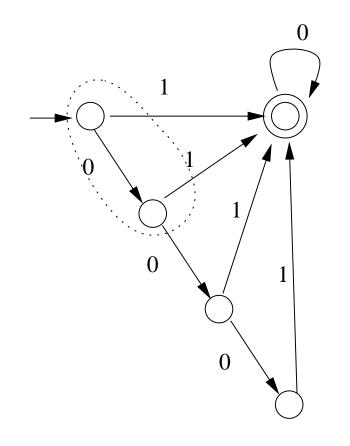
- $\tau^*(Init) \cap Bad = \emptyset$?
- Define a finite-range abstraction function α on automata
- Compute iteratively $(\alpha \circ \tau)^*(Init)$,
- If $(\alpha \circ \tau)^*(Init) \cap Bad = \emptyset$ then answer YES
- Otherwise, let θ be the computed symbolic path from Init to Bad,
- Check if θ includes a concrete counterexample,
 - If yes, then answer NO,
 - Otherwise, define a refinement of α which excludes θ , and redo computation

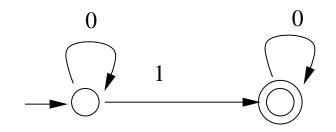
Abstractions

- In earlier work [CAV 04] we have defined representation-oriented abstractions
 - define a (finite index) equivalence relation on states of automata representing configurations
 - * Equivalence based on languages of words up to finite length
 - * Equivalence based on same status wrt "predicate" automata
 - collapse equivalent states

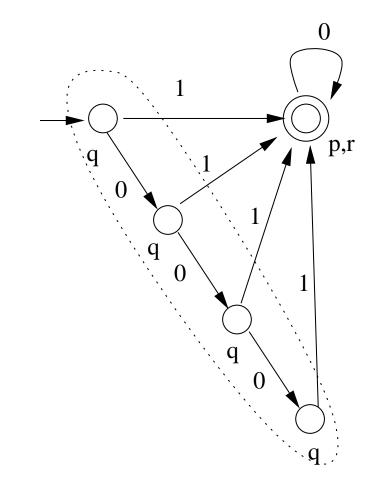
Example finite-length abstraction

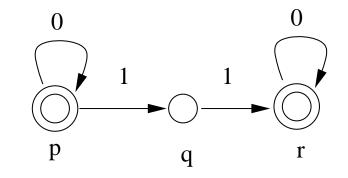
with words up to length 3

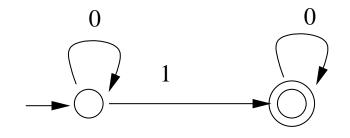




Example predicate abstraction







New abstractions

- Here, we propose configuration-oriented abstractions
 - defined on configurations
 - piecewise 0-k counter abstractions
 - Closure abstractions

Piecewise 0-k counter abstractions

- Let S be the set of *strong* symbols: they have a bounded number of occurrences in every word (e.g., separators, markers, pointer variables).
- Given a word w, consider its decomposition according to strong symbols:

 $w = w_0 s_1 w_1 s_2 w_2 \cdots s_n w_n$

where $s_i \in S$ and $w_i \in (\Sigma \setminus S)^*$.

• For $k \in \mathbb{N}^{>0}$, define the relation α_k such that, for every word w:

$$\begin{aligned} \alpha_k(w) &= L_0 s_1 L_1 s_2 L_2 \cdots s_n L_n \\ \text{where } L_i &= \{ u \in (\Sigma \setminus S)^* \ : \ \forall a \in \Sigma \setminus S. |w_i|_a < k \text{ and } |u|_a = |w_i|_a, \text{ or } \\ |w_i|_a \geq k \text{ and } |u|_a \geq k \} \end{aligned}$$

• The relation α_k is regular (definable by a finite transducer) and finite range.

Closure abstractions

• Given $u \in \Sigma^+$, and $k \in \mathbb{N}^{>0}$, define an extrapolation relation:

$$R_{(u,k)} = \{(w,w') : w = u_1 u^k u_2 \text{ and } w' = u_1 u^k u^* u_2\}$$

- R an extrapolation relation and L a regular set $\Rightarrow R^*(L)$ is regular.
- An extrapolation system is a finite union of extrapolation relations.

- Let
$$\prec \subseteq \Sigma^* \times \Sigma^*$$
 such that:

- * u is not a factor of v (i.e., u does not appear as a subword of v),
- * u cannot be written as $w_1v^pw_2$ for any $p \in \mathbb{N}$, and two words w_1, w_2 such that w_1 is a suffix of v and w_2 is a prefix of v.
- $\forall u, v \in \Sigma^*$, if $u \prec v$ then $\forall p \ge 0. \forall w_1, w_2 \in \Sigma^*. v^p \neq w_1 u w_2$.
- Let $R = R_{(u_1,k_1)} \cup \cdots \cup R_{(u_n,k_n)}$. R is serialisable if the reflexive-transitive closure of \prec is a partial ordering on the set $\{u_1^{k_1}, \ldots, u_n^{k_n}\}$.

-
$$\rightsquigarrow$$
 Let i_1, i_2, \ldots, i_n be a total ordering compatible with \prec .
Then $R^* = R^*_{(u_{i_n}, k_{i_n})} \circ \cdots \circ R^*_{(u_{i_1}, k_{i_1})}$.

Experimental results

using new abstractions (up to 100 times faster)

Program	Markers	$ M _{st.+tr.}^{max}$	T_{sec}
Reverse, basic consistency	0	51+105	0.3
Reverse, full	0	281+369	4.2
Faulty reverse	1	61+138	0.2
Insert, bas. cons.	0	81+102	0.5
Insert, bas. cons.	2	165 + 577	0.15
Insert, full	0	755+936	10.8
Delete, bas. cons.	0	55+113	0.3
Merge, bas. cons.	0	209+279	2.7
Merge, corr.mix.	0	1080 + 1415	40.4
Bubblesort, bas. cons.	2	2095+2872	305
Bubblesort, full	2	2339+2887	279
Circular list reverse, bas. cons.	3	655+764	5.4
Circular list reverse, full	3	2349+2822	50.6
Circular list rem.seg., bas. cons.	2	116+291	1.0

Conclusion and perspectives

- We have applied and adapted the abstract regular model-checking framework to programs over lists
 - Encoding
 - New abstractions based on configurations
- Current and future work:
 - Extension to trees done recently (Adam Rogalewicz)
 - Specialised treatment for counter automata with integers (using NDDs) and reals (using RVA)
 - Handling more general classes of dynamic data structures (using trees)
 - Combining with other sources of infinity (recursion, multithreading, unbounded data domains)