
Flat counter automata almost
everywhere !

Jérôme Leroux and Grégoire Sutre

Projet Vertecs, IRISA / INRIA Rennes, FRANCE
Équipe MVTsi, CNRS / LABRI, FRANCE

Counter-automata verification
A simple counter-automata:

q1 q2

l1 :

{

x′ = x − 1

y′ = y + 1
l2 :

{

x′ = x + 1

y′ = y − 1t1 :

{

x = 0?

y′ = y + 1

t2 :

{

y = 0?

x′ = x + 1

q1

q1

q2

q2

q2

q2

q2 q1

q1

Counter-automata verification naturally appears in practice:
−→ Parametrized systems, system abstractions, communication
protocols, and so on.

Counter-automata reachability
Verification can often be reduced to the reachability problem.

Init Error· · ·

An agorithm in general ?
NO ! Because reachability is undecidable even for 2-counter automata.

However, there exist algorithms for subclasses of counter-automata.

Some of these algorithm use semilinear sets to symbolically represent
and manipulate infinite subsets of Z

n.

Semilinear sets
A semilinear set X ⊆ Z

m is a finite union of linear sets b+{p1, . . . , pn}∗.

� � � � � � �

� � 	
 � �

 � � � �

� � � � �

� � � �

� � �

� �

! "
#

$

{(0, 0)} + {(3, 0), (3, 2), (6, 6)}∗

Recall that semilinear sets can be manipulated with:
−→ Finite sets of basis and periods, Presburger formulas, digit vector
automata.

Subclasses of counter automata

∗
−→ eff.

semilinear
post∗ eff.

semilinear
post∗

semilinear
post∗

recursive
post∗

rec. enum.

Reversible Petri nets
Conflict-free Petri nets
BPP nets

Cyclic Petri nets
Persistant Petri nets
Regular Petri nets
Test-free 2-counter machines, . . .
Lossy test-free counter machinesLossy counter machines

Petri nets 2-counter machines

Each (decidable) class has a dedicated algorith
m

Subclasses of counter automata

∗
−→ eff.

semilinear
post∗ eff.

semilinear
post∗

semilinear
post∗

recursive
post∗

rec. enum.

Reversible Petri nets
Conflict-free Petri nets
BPP nets

Cyclic Petri nets
Persistant Petri nets
Regular Petri nets
Test-free 2-counter machines, . . .
Lossy test-free counter machinesLossy counter machines

Petri nets 2-counter machines
Each (decidable) class has a dedicated algorith

m

A generic accelerated algorithm
In practice counter automata are not exactly in a known subclass.
−→ we are interested in semi-algorithms for general classes.

Input: A counter automaton S.

Output: The global reachability relation ∗

−→.

let R← Id and repeat forever

select one of the following tasks:

• if
T
−→ ·R ⊆ R return R

• select π ∈ T ∗ and R′, R′′ ⊆ R

let R← R ∪ (R′·
π
∗

−−→ ·R′′)

• select t ∈ T and R′, R′′ ⊆ R

let R← R ∪ (R′·
t
−→ ·R′′)

Input: An initialized counter automaton (S, I).

Output: The reachability set post∗(I).

let X ← I and repeat forever

select one of the following tasks:

• if post(T, X) ⊆ X return X

• select π ∈ T ∗ and X ′ ⊆ X

let X ← X ∪ post(π∗, X′)

• select t ∈ T and X ′ ⊆ X

let X ← X ∪ post(t, X ′)

Implemented in tools: FAST, LASH, TReX.
−→ Accelerated symbolic verification works well in practice.

Flatness
S is flat if S is equivalent (w.r.t. reachability) to S′ where:

• S′ is “extracted” from S (some loops of S may be unrolled)

• S′ contains no nested loops

θ1 θ2 θ3 θk−1 θk

σ0 σ1 σ2 σk−1 σk

Accelerated ∗
−→ / post∗ computation terminates iff S is flat.

Hence ∗
−→ / post∗ is effectively semilinear for flat counter automata where:

• all loops can be effectively accelerated

• other natural effectivity conditions hold

Improving the acceleration algorithm
Flatness implies effective semilinearity of post∗. The converse is not true:

q1 q2

l1 :

{

x′ = x − 1

y′ = y + 1
l2 :

{

x′ = x + 1

y′ = y − 1t1 :

{

x = 0?

y′ = y + 1

t2 :

{

y = 0?

x′ = x + 1

q1

q1

q2

q2

q2

q2

q2 q1

q1

To obtain post∗(1, 0), we “need” the path: (l1)
1t1(l2)

2t2(l1)
3t1(l2)

4 · · ·

Is-it possible to improve acceleration techniques with parts of the
known dedicated algorithms for semilinear subclasses ?
−→ characterize the effective semilinear subclasses that are not flat ?

Outline
Flat counter automata almost
everywhere !

• Introduction.

⇒ Counter machines and acceleration.

• Flat counter machines.
− Reversal bounded counter machines.
− Lossy/inserting counter machines.
− Test-free 2-dim counter machines.

• Flat Petri nets.
− Cyclic and reversible Petri nets.
− Regular Petri nets.
− BPP-nets.

• Conclusion.

Counter machines
An n-dim counter machine S is a tuple S = (Q,T, (

t
−→)t∈T , α, β,#, µ, δ):

• Q is a non-empty finite set of locations.

• T is a set of transitions.

• Relation t
−→ is defined over the set of configurations Q × N

n by

(q, x)
t
−→ (q′, x′) if and only if q = α(t), q′ = β(t), x#(t)µ(t) and

x′ = x + δ(t), where:
− α, β : T → Q are the source and target mappings,
− # : T → {=,≥}n, and
− µ : T → N

n and δ : T → Z
n are such that µ(t) + δ(t) ≥ 0.

An initialized n-dim counter machine is a pair (S, I) where S is an n-dim
counter machine and I ⊆ Q × N

n.
π
−→ and post(π, I) are naturally defined for any path π ∈ T ∗.

Global reachability relation ∗
−→ is T ∗

−→.
Reachability set post∗(I) is post(T ∗, I).

Acceleration for counter machines
A semilinear path scheme ρ ⊆ T ∗ is a finite union of linear path
schemes σ0θ

∗
1σ1 · · · θ

∗
kσk.

θ1 θ2 θ3 θk−1 θk

σ0 σ1 σ2 σk−1 σk

Thm[Finkel&Leroux’02, . . .]: For any SLPS ρ in a counter machine S,
the reachability subrelation ρ

−→ is effectively semilinear.

Flatness for counter machines (1/2)
A semilinear path scheme ρ ⊆ T ∗ is a finite union of linear path
schemes σ0θ

∗
1σ1 · · · θ

∗
kσk.

θ1 θ2 θ3 θk−1 θk

σ0 σ1 σ2 σk−1 σk

A counter machine S is globally flat if ∗−→ =
ρ
−→ for some SLPS ρ.

An initialized counter machine (S, I) is flat if post∗(I) = post(ρ, I) for
some SLPS ρ.

−→ Global flatness implies flatness for any I. Converse is not true.

•
∗
−→ is effectively semilinear for any globally flat S

• post∗(I) is effectively semilinear for any flat (S, I)

Flatness for counter machines (2/2)
Input: A counter automaton S.

Output: The global reachability relation ∗

−→.

let R← Id and repeat forever

select one of the following tasks:

• if
T
−→ ·R ⊆ R return R

• select π ∈ T ∗ and R′, R′′ ⊆ R

let R← R ∪ (R′·
π
∗

−−→ ·R′′)

• select t ∈ T and R′, R′′ ⊆ R

let R← R ∪ (R′·
t
−→ ·R′′)

Input: An initialized counter automaton (S, I).

Output: The reachability set post∗(I).

let X ← I and repeat forever

select one of the following tasks:

• if post(T, X) ⊆ X return X

• select π ∈ T ∗ and X ′ ⊆ X

let X ← X ∪ post(π∗, X′)

• select t ∈ T and X ′ ⊆ X

let X ← X ∪ post(t, X ′)

Thm: These semi-algorithms are correct, and they admit a terminating
execution iff the counter machine is (globally) flat.

−→ The exploration strategy should be “fair” to ensure termination

Outline
Flat counter automata almost
everywhere !

• Introduction.

• Counter machines and acceleration.

⇒ Flat counter machines.
− Reversal bounded counter machines.
− Lossy/inserting counter machines.
− Test-free 2-dim counter machines.

• Flat Petri nets.
− Cyclic and reversible Petri nets.
− Regular Petri nets.
− BPP-nets.

• Conclusion.

Reversal-bounded (1/2)
Recall: T set of transitions, δ : T → Z

n displacement labeling.
Let ϕδ

i : T ∗ → {+,−}∗ be the morphism defined by:

ϕδ
i (t) =











+ if δ(t)[i] > 0

ε if δ(t)[i] = 0

− if δ(t)[i] < 0

Example: T = {t1, t2, t3}, δ(t1) = 3, δ(t2) = 0, and δ(t3) = −1. Then
ϕδ

1(t1t2t3t3) = + −−.

An initialized counter machine (S, I) is called reversal-bounded if there
exists r ∈ N such that for any π ∈ T ∗:

post(π, I) 6= ∅ =⇒ ϕδ
i (π) ∈ ({+}∗ ∪ {−}∗)≤r

An counter machine S is called globally reversal-bounded if (S, Q×N
n)

is reversal-bounded.

Reversal-bounded (2/2)
Thm: Every initialized reversal-bounded counter machine is flat. Every
globally reversal-bounded counter machine is globally flat.

Key ideas:

• Reduce to the case post(π, I) 6= ∅ implies ϕδ
i (π) ∈ {+}∗ ∪ {−}∗.

• Remove the intermediate guards along π.
Example: T = {t1, t2} with δ(t1) = (1,−2) and δ(t2) = (2,−1).

x%

x′&

• Extract from the regular langage L defined by the control graph, an
SLPS ρ ⊆ L such that δ(L) = δ(ρ) with a variant of Parikh’s
theorem.

Lossy/inserting counter machines
A counter machine S is called lossy (resp. inserting) when there are
loss loops (resp. insertion loops) on each location and for each counter.

Thm: Every initialized lossy test-free counter machine is flat.
Key ideas:

• Karp&Miller’s algorithm can be seen as a (deterministic)
“refinement” of the generic accelerated post∗ computation.

• This accelerated post∗ semi-algorithm has a terminating execution
iff the initialized counter machine is flat.

Thm: Every initialized inserting counter machine is flat.
Key ideas:

• As Min(post∗(I)) is finite, we have post(ρm, I) = Min(post∗(I)) for
some finite SLPS ρm.

• Append insertion loops to ρm.

Test-free 2-dim counter machines
A counter machine S is called test-free when µ : T → {≥}n.

Thm: Every test-free 2-dim counter machine is globally flat.
Key ideas:

• Every path π ∈ T ∗ can be re-ordered into a zigzag-free path:

m

(q, x)

(q, x′)

• For large counter values, we obtain some kind of reversal-bounded
counter machine.

• Split N
n into four zones: {[0, c], [c,∞]}2 and show flatness for each.

Outline
Flat counter automata almost
everywhere !

• Introduction.

• Counter machines and acceleration.

• Flat counter machines.
− Reversal bounded counter machines.
− Lossy/inserting counter machines.
− Test-free 2-dim counter machines.

⇒ Flat Petri nets.
− Cyclic and reversible Petri nets.
− Regular Petri nets.
− BPP-nets.

• Conclusion.

Cyclic Petri nets
A Petri net is a test-free counter machine “without control location”, i.e.
such that Q = {q0}.

An initialized Petri net (S, I) is called cyclic if I ⊆ post∗(X) for every
X ⊆ post∗(I).

Thm: Every cyclic initialized Petri net is flat.
Key idea:

• post∗(I) = post∗({x0}), where x0 ∈ I.

• post∗(I) = Min(post∗({x0})) + (Min((post∗(x0) − x0) ∩ N
n))∗.

Reversible Petri nets
A Petri net S is called globally cyclic if ∗−→ is symmetric.

Thm: Every globally cyclic Petri net is globally flat.
Key idea:

•
∗
−→ is a congruence on N

n and hence it is semilinear.

• Consider (x, x′) + {(p1, p
′
1), . . . , (pk, p′k)} ⊆

∗
−→ .

• x
π0−→ x′ and x + pi

πi−→ x′ + p′i
πi−→ x + pi.

• Take ρ = (π1π0)
∗ . . . (πkπ0)

∗ · π0.

A Petri net S is called reversible if for every t ∈ T , there is t′ ∈ T with
t′
−→= (

t
−→)−1.

Thm: Every reversible Petri net is globally flat.

Persistent and conflict-free Petri nets
An initialized Petri net (S, I) is called persistent if for any x ∈ post∗(I):

x
t1−→ and x

t2−→ =⇒ x
t1t2−−→

Thm: Every semilinearly-initialized persistent Petri net is flat.
Key idea:

• Use the proof in [Landweber&Robertson’78] showing semilinearity
of post∗ for persistent Petri nets.

A Petri net S is called conflict-free if (S, Q × N
n) is persistent.

Thm: Every conflict-free Petri net is globally flat.
Key idea:

• Duplicate counters: the new counters remain unchanged (not used).

• Use the semilinear set I = {(x, x′) ∈ N
2n | x = x′}.

Regular Petri nets
A singly initialized Petri net (S, {x0}) is said regular if the following trace
language L is regular:

L = {π ∈ T ∗ | post(π, {x0}) 6= ∅}

Thm: Every regular singly initialized Petri net is flat.
Key idea:

• Extract from L an SLPS ρ ⊆ L such that δ(L) = δ(ρ) with a variant
of Parikh’s theorem.

BPP-nets
A Petri net S is called a BPP-net if for any t ∈ T , we have:

µ(t) = (0, . . . , 0, 1, 0, . . . , 0)

Thm[Fribourg&Olsen’97]: Every BPP-net is globally flat.
Key idea: Let R be defined by t1Rt2 iff µ(t1) + δ(t1) ≥ µ(t2).

• post(t1, {x}) 6= ∅ implies post(t1t2, {x}) 6= ∅ for any t1Rt2.

• Moreover if θ = t1 . . . tn with t1R · · ·RtnRt1, then δ(θ) ≥ 0.

• Build an SLPS ρ = θ∗1 . . . θ∗k where θi ∈ T or θi = t1 . . . tn
with t1, ..., tn 2 by 2 distincts and t1R · · ·RtnRt1.

Outline
Flat counter automata almost
everywhere !

• Introduction.

• Counter machines and acceleration.

• Flat counter machines.
− Reversal bounded counter machines.
− Lossy/inserting counter machines.
− Test-free 2-dim counter machines.

• Flat Petri nets.
− Cyclic and reversible Petri nets.
− Regular Petri nets.
− BPP-nets.

⇒ Conclusion.

Summary

∗
−→ eff.

semilinear
post∗ eff.

semilinear

Reversible Petri nets
BPP nets

Cyclic Petri nets
Persistant Petri nets
Conflict-free Petri nets
Regular Petri nets
Reversal-bounded counter machines
Test-free 2-counter machines
Lossy test-free counter machines

Reversible Petri nets
Conflict-free Petri nets
BPP nets
Test-free 2-counter machines

Cyclic Petri nets
Persistant Petri nets
Regular Petri nets
Reversal-bounded counter machines
Lossy test-free counter machines

globally flat flat

Summary

∗
−→ eff.

semilinear
post∗ eff.

semilinear

Reversible Petri nets
Conflict-free Petri nets
BPP nets
Test-free 2-counter machines

Cyclic Petri nets
Persistant Petri nets
Regular Petri nets
Reversal-bounded counter machines
Lossy test-free counter machines

globally flat flat

Future work
−→ Flatness for subclasses of 2-counter machines
Remark: post∗ and pre∗ are effectively semilinear of lossy 2-counter
machines, but these counter machines are not flat in general.

−→ Extend acceleration techniques to compute post∗ for:

q1 q2

l1 :

{

x′ = x − 1

y′ = y + 1
l2 :

{

x′ = x + 1

y′ = y − 1t1 :

{

x = 0?

y′ = y + 1

t2 :

{

y = 0?

x′ = x + 1

q1

q1

q2

q2

q2

q2

q2 q1

q1

−→ Is flatness decidable for Petri nets ?
−→ Is flatness equivalent to semilinearity of post∗ for Petri nets ?

	Counter-automata verification
	Counter-automata reachability
	Semilinear sets
	Subclasses of counter automata
	Subclasses of counter automata

	A generic accelerated algorithm
	Flatness
	Improving the acceleration algorithm
	Outline
	Counter machines
	Acceleration for counter machines
	Flatness for counter machines (1/2)
	Flatness for counter machines (2/2)
	Outline
	Reversal-bounded (1/2)
	Reversal-bounded (2/2)
	Lossy/inserting counter machines
	Test-free 2-dim counter machines
	Outline
	Cyclic Petri nets
	Reversible Petri nets
	Persistent and conflict-free Petri nets
	Regular Petri nets
	BPP-nets
	Outline
	Summary
	Summary

	Future work

