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Counter-automata verification

A simple counter-automata:
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Counter-automata verification naturally appears in practice:
— Parametrized systems, system abstractions, communication
protocols, and so on.




Counter-automata reachability

Verification can often be reduced to the reachability problem.

An agorithm in general ?
NO | Because reachability is undecidable even for 2-counter automata.

However, there exist algorithms for subclasses of counter-automata.

Some of these algorithm use semilinear sets to symbolically represent
and manipulate infinite subsets of Z".



Semilinear sets

A semilinear set X C Z™ is a finite union of linear sets b+ {p1,...,pn}*.
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Recall that semilinear sets can be manipulated with:
— Finite sets of basis and periods, Presburger formulas, digit vector
automata.
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A generic accelerated algorithm

In practice counter automata are not exactly in a known subclass.
—— we are interested in semi-algorithms for general classes.

Input: A counter automaton 8.
Output: The global reachability relation —.

let R+ Id and repeat forever
select one of the following tasks:
° ifl-RgRreturnR
e selectmeT*and R',R" CR

*
T

let R— RU(R- — -R")
¢ selectteTand R',R"CR
let R— RU(R'- % -R")

Input: An initialized counter automaton (8, I).
Output: The reachability set post™* ().

let X « I and repeat forever
select one of the following tasks:
o ifpost(T,X)C X return X
e selectmeT*and X' C X
let X «+ X Upost(m*, X/)
e selectt€eTand X' C X
let X «— X Upost(t, X')

Implemented in tools: FAST, LASH, TReX.
— Accelerated symbolic verification works well in practice.




Flatness

S is flat if § is equivalent (w.r.t. reachability) to 8’ where:
e 8 is “extracted” from § (some loops of § may be unrolled)

e &' contains no nested loops
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Accelerated =/ post* computation terminates iff § is flat.

Hence = /post* is effectively semilinear for flat counter automata where:
e all loops can be effectively accelerated
e other natural effectivity conditions hold



Improving the acceleration algorithm

Flatness implies effective semilinearity of post*. The converse is not true:

, x=x—1 , , x=x+1
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To obtain post*(1,0), we “need” the path: (I1)'t1(l2)%ta(11)3t1(12)* - - -

Is-it possible to improve acceleration techniques with parts of the
known dedicated algorithms for semilinear subclasses ?
— characterize the effective semilinear subclasses that are not flat ?
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Counter machines

An n-dim counter machine S is atuple 8§ = (Q, T, (i)tET, o, B, F, 1, 0):

e () is a non-empty finite set of locations.
e T'is a set of transitions.

e Relation % is defined over the set of configurations @ x N” by

(q,) 4 (¢',x") ifand only if ¢ = «a(t), ¢’ = B(t),  #(¢t) u(t) and
' = x4+ (t), where:

— a,0:T — @ are the source and target mappings,
— #:T —{=,>}",and
— pu:T—N"and § : T — Z™ are such that u(t) + 6(¢t) > 0.

An initialized n-dim counter machine is a pair (8, ) where § is an n-dim
counter machine and I C () x N™.

~, and post (7, I) are naturally defined for any path = € T*.

Global reachability relation = is .
Reachability set post*(7) is post(T*,1).




Acceleration for counter machines

A semilinear path scheme p C T* is a finite union of linear path
schemes o¢0701 - - - 0, 0.

01 02 03 Or—1 0%

Thm[Finkel&Leroux’'02, ...]: For any SLPS p in a counter machine 8,
the reachability subrelation % is effectively semilinear.




Flatness for counter machines (1/2)

A semilinear path scheme p C T* is a finite union of linear path
schemes o¢0701 - - - 0, 0.

01 02 03 Or—1 0%

A counter machine 8 is globally flat if = = £ for some SLPS p.
An initialized counter machine (8, 1) is flat if post*(I) = post(p, ) for
some SLPS p.

— Global flatness implies flatness for any I. Converse is not true.

e = is effectively semilinear for any globally flat S
e post®(1) is effectively semilinear for any flat (3, I)



Flatness for counter machines (2/2)

Input: A counter automaton 8. Input: An initialized counter automaton (8, I).
Output: The global reachability relation —. Output: The reachability set post™* (1).
let R+ Id and repeat forever let X «+ I and repeat forever
select one of the following tasks: select one of the following tasks:
e if -.RC RreturnR o ifpost(7T,X)C X return X
o selectmeT*and R',R" CR e selectmeT*and X' C X
letR<—RU(R’-1>-R”) let X «— X Upost(n*, X')
¢ selectteTandR',R'"CR ¢ selectteTand X' C X
letR<—RU(R’-i>-R”) let X «— X Upost(t, X')

Thm: These semi-algorithms are correct, and they admit a terminating
execution iff the counter machine is (globally) flat.

— The exploration strategy should be “fair” to ensure termination
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Reversal-bounded (1/2)

Recall: T set of transitions, ¢ : T' — Z™ displacement labeling.
Let 0 : T* — {+, —}* be the morphism defined by:
(+ i S@)[i] > 0

HLt)y=Le ifs@)[i]=0
- ()] <0

ample T = {tl,tg,tg} 5(t1) = 3, 5(t2) = 0, and 5(t3) = —1. Then
© (t1tatsts) =

An initialized counter machine (8, I) is called reversal-bounded if there
exists » € N such that for any = € T*:

post(m, I) £0 —> i(r) € {+}* U{=})<

An counter machine § is called globally reversal-bounded if (S, Q x N*)
IS reversal-bounded.




Reversal-bounded (2/2)

Thm: Every initialized reversal-bounded counter machine is flat. Every
globally reversal-bounded counter machine is globally flat.

Key ideas:

e Reduce to the case post(r, I) # 0 implies ¢?(r) € {+}* U {-}*.
e Remove the intermediate guards along .

Example: T' = {tl,tg} with 5(t1) = (1, —2) and 5(t2) = (2, —1).
A%
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e Extract from the regular langage L defined by the control graph, an
SLPS p C L such that §(£) = é(p) with a variant of Parikh’s
theorem.



Lossy/inserting counter machines

A counter machine § is called lossy (resp. inserting) when there are
loss loops (resp. insertion loops) on each location and for each counter.

Thm: Every initialized lossy test-free counter machine is flat.

Key ideas:

o Karp&Miller's algorithm can be seen as a (deterministic)
“refinement” of the generic accelerated post* computation.

e This accelerated post* semi-algorithm has a terminating execution
Iff the initialized counter machine is flat.

Thm: Every initialized inserting counter machine is flat.

Key ideas:

e As Min(post*([1)) is finite, we have post(p,, ) = Min(post*(I)) for
some finite SLPS p,,.

e Append insertion loops to p,,.



Test-tree 2-dim counter machines

A counter machine S8 is called test-free when p : T' — {>}".

Thm: Every test-free 2-dim counter machine is globally flat.
Key ideas:

e Every path = € T* can be re-ordered into a zigzag-free path:

e [or large counter values, we obtain some kind of reversal-bounded
counter machine.

e Split N" into four zones: {[0, c], [c, o] }* and show flatness for each.
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Cyclic Petri nets

A Petri net is a test-free counter machine “without control location”, i.e.
such that @ = {qo}-

An initialized Petri net (S, 1) is called cyclic if I C post*(X) for every
X C post*(1).

Thm: Every cyclic initialized Petri net is flat.

Key idea:
e post®(I) = post*({xo}), where zg € I.
e post*(I) = Min(post*({zo})) + (Min((post*(zg) — x9) N N™))*.



Reversible Petri nets

A Petri net § is called globally cyclic if = is symmetric.

Thm: Every globally cyclic Petri net is globally flat.

Key idea:
e = isacongruence on N" and hence it is semilinear.
o Consider (z,2') + {(p1,p}),-- -, (P, D))} €= .
e z %2 and z +p; - 2’ + P T 2+ p.

o Take p = (mmo)* ... (mp70)" - mo.

A Petri net 8 is called reversible if for every t € T, there is ¢ € T with

Yoe (51

Thm: Every reversible Petri net is globally flat.




Persistent and conflict-free Petri nets

An initialized Petri net (8, I) is called persistent if for any x € post*([):

¢ ¢ £t
r— andzrz > — 71—

Thm: Every semilinearly-initialized persistent Petri net is flat.
Key idea:

e Use the proof in [Landweber&Robertson’78] showing semilinearity
of post™ for persistent Petri nets.

A Petri net § is called conflict-free if (8,Q x N™) is persistent.

Thm: Every conflict-free Petri net is globally flat.
Key idea:

e Duplicate counters: the new counters remain unchanged (not used).

e Use the semilinear set I = {(z,2') € N*" | x = 2'}.



Regular Petri nets

A singly initialized Petri net (8, {z¢}) is said regular if the following trace
language L is regular:

L={meT"|post(m,{xo}) # 0}

Thm: Every regular singly initialized Petri net is flat.

Key idea:

e Extract from L an SLPS p C L such that 6(L) = §(p) with a variant
of Parikh’s theorem.



BPP-nets

A Petri net S is called a BPP-net if for any t € T', we have:

u(t) = (0,...,0,1,0,...,0)

Thm[Fribourg&Olsen’97]: Every BPP-net is globally flat.

Key idea: Let R be defined by ¢ Rty iff u(ty) + 6(t1) > p(ta).
e post(ty,{x}) # () implies post(tits, {x}) # () for any t; Ris.
e Moreoverif =t;...t, witht;R--- Rt,Rt1, then §(8) > 0.

e Buildan SLPS p=07...0; where 0, e T or0; =1t;...1,
with 1, «oiy Upy 2 by 2 distincts and t1R--- Rt,,Rty.
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Future work

— Flatness for subclasses of 2-counter machines
Remark: post* and pre* are effectively semilinear of lossy 2-counter
machines, but these counter machines are not flat in general.

— Extend acceleration techniques to compute post™* for:

, x=x—1 , , =x+1
1 - — (" 2 .
y =y +1 tlz{m y=y-1],

. Yy =y+1 . J%j\]
“ Sl [N

— Is flatness decidable for Petri nets ?
— |s flatness equivalent to semilinearity of post* for Petri nets ?
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