Flat counter automata almost everywhere !

Jérôme Leroux and Grégoire Sutre

Projet Vertecs, IRISA / INRIA Rennes, FRANCE Équipe MVTsi, CNRS / LABRI, FRANCE

Counter-automata verification

A simple counter-automata:

Counter-automata verification naturally appears in practice: → Parametrized systems, system abstractions, communication protocols, and so on.

Counter-automata reachability

Verification can often be reduced to the reachability problem.

An agorithm in general ? NO ! Because reachability is undecidable even for 2-counter automata.

However, there exist algorithms for subclasses of counter-automata.

Some of these algorithm use semilinear sets to symbolically represent and manipulate infinite subsets of \mathbb{Z}^n .

Semilinear sets

A semilinear set $X \subseteq \mathbb{Z}^m$ is a finite union of linear sets $b + \{p_1, \ldots, p_n\}^*$.

 $\{(0,0)\} + \{(3,0), (3,2), (6,6)\}^*$

Recall that semilinear sets can be manipulated with:

 \longrightarrow Finite sets of basis and periods, Presburger formulas, digit vector automata.

Subclasses of counter automata

Reversible Petri nets Conflict-free Petri nets BPP nets

Lossy counter machines

Cyclic Petri nets Persistant Petri nets Regular Petri nets Test-free 2-counter machines, ... Lossy test-free counter machines

Petri nets

2-counter machines

Subclasses of counter automata

A generic accelerated algorithm

In practice counter automata are not exactly in a known subclass. \rightarrow we are interested in semi-algorithms for general classes.

Input: A counter automaton S.

Output: The global reachability relation $\xrightarrow{*}$.

let $R \leftarrow Id$ and repeat forever

select one of the following tasks:

- if $\xrightarrow{T} \cdot R \subseteq R$ return R
- select $\pi \in T^*$ and $R', R'' \subseteq R$ let $R \leftarrow R \cup (R' \cdot \xrightarrow{\pi^*} \cdot R'')$
- select $t \in T$ and $R', R'' \subseteq R$ let $R \leftarrow R \cup (R' \cdot \xrightarrow{t} \cdot R'')$

Input: An initialized counter automaton (S, I). **Output:** The reachability set post*(*I*).

let $X \leftarrow I$ and repeat forever select one of the following tasks:

- if $post(T, X) \subseteq X$ return X
- select $\pi \in T^*$ and $X' \subseteq X$ let $X \leftarrow X \cup \text{post}(\pi^*, X')$
- select $t \in T$ and $X' \subseteq X$

let $X \leftarrow X \cup \text{post}(t, X')$

Implemented in tools: FAST, LASH, TReX. \longrightarrow Accelerated symbolic verification works well in practice.

Flatness

S is flat if S is equivalent (w.r.t. reachability) to S' where:

- S' is "extracted" from S (some loops of S may be unrolled)
- S' contains no nested loops

Accelerated $\xrightarrow{*}/\text{post}^*$ computation terminates iff S is flat.

Hence $\xrightarrow{*} / \text{post}^*$ is effectively semilinear for flat counter automata where:

- all loops can be effectively accelerated
- other natural effectivity conditions hold

Improving the acceleration algorithm

Flatness implies effective semilinearity of $post^*$. The converse is not true:

To obtain $post^*(1,0)$, we "need" the path: $(l_1)^1 t_1(l_2)^2 t_2(l_1)^3 t_1(l_2)^4 \cdots$

Is-it possible to improve acceleration techniques with parts of the known dedicated algorithms for semilinear subclasses ? \longrightarrow characterize the effective semilinear subclasses that are not flat ?

Outline

Flat counter automata almost everywhere !

- Introduction.
- \Rightarrow Counter machines and acceleration.
- Flat counter machines.
 - Reversal bounded counter machines.
 - Lossy/inserting counter machines.
 - Test-free 2-dim counter machines.
- Flat Petri nets.
 - Cyclic and reversible Petri nets.
 - Regular Petri nets.
 - BPP-nets.
- Conclusion.

Counter machines

An *n*-dim counter machine *S* is a tuple $S = (Q, T, (\stackrel{t}{\rightarrow})_{t \in T}, \alpha, \beta, \#, \mu, \delta)$:

- *Q* is a non-empty finite set of locations.
- *T* is a set of transitions.
- Relation ^t→ is defined over the set of configurations Q × Nⁿ by

 (q, x) ^t→ (q', x') if and only if q = α(t), q' = β(t), x #(t) μ(t) and
 x' = x + δ(t), where:

 α, β: T → Q are the source and target mappings,
 #: T → {=, ≥}ⁿ, and
 μ: T → Nⁿ and δ: T → Zⁿ are such that μ(t) + δ(t) ≥ 0.

 An initialized *n*-dim counter machine is a pair (S, I) where S is an *n*-dim counter machine and I ⊆ Q × Nⁿ.

 $\xrightarrow{\pi}$ and $post(\pi, I)$ are naturally defined for any path $\pi \in T^*$.

Global reachability relation $\xrightarrow{*}$ is $\xrightarrow{T^*}$. Reachability set $post^*(I)$ is $post(T^*, I)$.

Acceleration for counter machines

A semilinear path scheme $\rho \subseteq T^*$ is a finite union of linear path schemes $\sigma_0 \theta_1^* \sigma_1 \cdots \theta_k^* \sigma_k$.

Thm[Finkel&Leroux'02, ...]: For any SLPS ρ in a counter machine S, the reachability subrelation $\xrightarrow{\rho}$ is effectively semilinear.

Flatness for counter machines (1/2)

A semilinear path scheme $\rho \subseteq T^*$ is a finite union of linear path schemes $\sigma_0 \theta_1^* \sigma_1 \cdots \theta_k^* \sigma_k$.

A counter machine S is globally flat if $\xrightarrow{*} = \xrightarrow{\rho}$ for some SLPS ρ . An initialized counter machine (S, I) is flat if $post^*(I) = post(\rho, I)$ for some SLPS ρ .

 \rightarrow Global flatness implies flatness for any *I*. Converse is not true.

- $\xrightarrow{*}$ is effectively semilinear for any globally flat §
- $post^*(I)$ is effectively semilinear for any flat (S, I)

Flatness for counter machines (2/2)

Input: A counter automaton S.

Output: The global reachability relation $\xrightarrow{*}$.

let $R \leftarrow Id$ and repeat forever select one of the following tasks:

- if $\xrightarrow{T} \cdot R \subseteq R$ return R
- select $\pi \in T^*$ and $R', R'' \subseteq R$ let $R \leftarrow R \cup (R' \cdot \xrightarrow{\pi^*} \cdot R'')$
- select $t \in T$ and $R', R'' \subseteq R$ let $R \leftarrow R \cup (R' \cdot \xrightarrow{t} \cdot R'')$

Input: An initialized counter automaton (S, I). **Output:** The reachability set post*(*I*).

let $X \leftarrow I$ and repeat forever select one of the following tasks:

- if $post(T, X) \subseteq X$ return X
- select $\pi \in T^*$ and $X' \subseteq X$ let $X \leftarrow X \cup post(\pi^*, X')$
- select $t \in T$ and $X' \subseteq X$

let $X \leftarrow X \cup \text{post}(t, X')$

Thm: These semi-algorithms are correct, and they admit a terminating execution iff the counter machine is (globally) flat.

 \longrightarrow The exploration strategy should be "fair" to ensure termination

Outline

Flat counter automata almost everywhere !

- Introduction.
- Counter machines and acceleration.
- \Rightarrow Flat counter machines.
 - Reversal bounded counter machines.
 - Lossy/inserting counter machines.
 - Test-free 2-dim counter machines.
 - Flat Petri nets.
 - Cyclic and reversible Petri nets.
 - Regular Petri nets.
 - BPP-nets.
 - Conclusion.

Reversal-bounded (1/2)

Recall: *T* set of transitions, $\delta : T \to \mathbb{Z}^n$ displacement labeling. Let $\varphi_i^{\delta} : T^* \to \{+, -\}^*$ be the morphism defined by:

$$\varphi_i^{\delta}(t) = \begin{cases} + & \text{if } \delta(t)[i] > 0\\ \varepsilon & \text{if } \delta(t)[i] = 0\\ - & \text{if } \delta(t)[i] < 0 \end{cases}$$

Example: $T = \{t_1, t_2, t_3\}, \delta(t_1) = 3, \delta(t_2) = 0$, and $\delta(t_3) = -1$. Then $\varphi_1^{\delta}(t_1t_2t_3t_3) = + - -$.

An initialized counter machine (S, I) is called reversal-bounded if there exists $r \in \mathbb{N}$ such that for any $\pi \in T^*$:

$$\operatorname{post}(\pi, I) \neq \emptyset \implies \varphi_i^{\delta}(\pi) \in (\{+\}^* \cup \{-\}^*)^{\leq r}$$

An counter machine S is called globally reversal-bounded if $(S, Q \times \mathbb{N}^n)$ is reversal-bounded.

Reversal-bounded (2/2)

Thm: Every initialized reversal-bounded counter machine is flat. Every globally reversal-bounded counter machine is globally flat.

Key ideas:

- Reduce to the case $post(\pi, I) \neq \emptyset$ implies $\varphi_i^{\delta}(\pi) \in \{+\}^* \cup \{-\}^*$.
- Remove the intermediate guards along π . Example: $T = \{t_1, t_2\}$ with $\delta(t_1) = (1, -2)$ and $\delta(t_2) = (2, -1)$.
- Extract from the regular langage \mathcal{L} defined by the control graph, an SLPS $\rho \subseteq \mathcal{L}$ such that $\delta(\mathcal{L}) = \delta(\rho)$ with a variant of Parikh's theorem.

Lossy/inserting counter machines

A counter machine \$ is called lossy (resp. inserting) when there are loss loops (resp. insertion loops) on each location and for each counter.

Thm: Every initialized lossy test-free counter machine is flat.

Key ideas:

- Karp&Miller's algorithm can be seen as a (deterministic) "refinement" of the generic accelerated $post^*$ computation.
- This accelerated $post^*$ semi-algorithm has a terminating execution iff the initialized counter machine is flat.

Thm: Every initialized inserting counter machine is flat.

Key ideas:

- As $Min(post^*(I))$ is finite, we have $post(\rho_m, I) = Min(post^*(I))$ for some finite SLPS ρ_m .
- Append insertion loops to ρ_m .

Test-free 2-dim counter machines

A counter machine S is called test-free when $\mu: T \to \{\geq\}^n$.

Thm: Every test-free 2-dim counter machine is globally flat.

Key ideas:

• Every path $\pi \in T^*$ can be re-ordered into a zigzag-free path:

- For large counter values, we obtain some kind of reversal-bounded counter machine.
- Split \mathbb{N}^n into four zones: $\{[0, c], [c, \infty]\}^2$ and show flatness for each.

Outline

Flat counter automata almost everywhere !

- Introduction.
- Counter machines and acceleration.
- Flat counter machines.
 - Reversal bounded counter machines.
 - Lossy/inserting counter machines.
 - Test-free 2-dim counter machines.
- \Rightarrow Flat Petri nets.
 - Cyclic and reversible Petri nets.
 - Regular Petri nets.
 - BPP-nets.
 - Conclusion.

Cyclic Petri nets

A Petri net is a test-free counter machine "without control location", i.e. such that $Q = \{q_0\}$.

An initialized Petri net (S, I) is called cyclic if $I \subseteq post^*(X)$ for every $X \subseteq post^*(I)$.

Thm: Every cyclic initialized Petri net is flat.

Key idea:

- $post^*(I) = post^*(\{x_0\})$, where $x_0 \in I$.
- $\operatorname{post}^*(I) = \operatorname{Min}(\operatorname{post}^*(\{x_0\})) + (\operatorname{Min}((\operatorname{post}^*(x_0) x_0) \cap \mathbb{N}^n))^*.$

Reversible Petri nets

A Petri net S is called globally cyclic if $\xrightarrow{*}$ is symmetric.

Thm: Every globally cyclic Petri net is globally flat. Key idea:

- $\xrightarrow{*}$ is a congruence on \mathbb{N}^n and hence it is semilinear.
- Consider $(x, x') + \{(p_1, p'_1), \dots, (p_k, p'_k)\} \subseteq \xrightarrow{*}$.
- $x \xrightarrow{\pi_0} x'$ and $x + p_i \xrightarrow{\pi_i} x' + p'_i \xrightarrow{\overline{\pi_i}} x + p_i$.

• Take
$$\rho = (\pi_1 \overline{\pi_0})^* \dots (\pi_k \overline{\pi_0})^* \cdot \pi_0$$
.

A Petri net S is called reversible if for every $t \in T$, there is $t' \in T$ with $\xrightarrow{t'} = (\xrightarrow{t})^{-1}$.

Thm: Every reversible Petri net is globally flat.

Persistent and conflict-free Petri nets

An initialized Petri net (S, I) is called persistent if for any $x \in post^*(I)$:

$$x \xrightarrow{t_1} \text{ and } x \xrightarrow{t_2} \implies x \xrightarrow{t_1 t_2}$$

Thm: Every semilinearly-initialized persistent Petri net is flat.

Key idea:

 Use the proof in [Landweber&Robertson'78] showing semilinearity of post* for persistent Petri nets.

A Petri net S is called conflict-free if $(S, Q \times \mathbb{N}^n)$ is persistent.

Thm: Every conflict-free Petri net is globally flat.

Key idea:

- Duplicate counters: the new counters remain unchanged (not used).
- Use the semilinear set $I = \{(x, x') \in \mathbb{N}^{2n} \mid x = x'\}.$

Regular Petri nets

A singly initialized Petri net $(S, \{x_0\})$ is said regular if the following trace language \mathcal{L} is regular:

$$\mathcal{L} = \{ \pi \in T^* \mid \text{post}(\pi, \{x_0\}) \neq \emptyset \}$$

Thm: Every regular singly initialized Petri net is flat.

Key idea:

• Extract from \mathcal{L} an SLPS $\rho \subseteq \mathcal{L}$ such that $\delta(\mathcal{L}) = \delta(\rho)$ with a variant of Parikh's theorem.

BPP-nets

A Petri net S is called a BPP-net if for any $t \in T$, we have:

 $\mu(t) = (0, \dots, 0, 1, 0, \dots, 0)$

Thm[Fribourg&Olsen'97]: Every BPP-net is globally flat.

Key idea: Let R be defined by t_1Rt_2 iff $\mu(t_1) + \delta(t_1) \ge \mu(t_2)$.

- $post(t_1, \{x\}) \neq \emptyset$ implies $post(t_1t_2, \{x\}) \neq \emptyset$ for any t_1Rt_2 .
- Moreover if $\theta = t_1 \dots t_n$ with $t_1 R \dots R t_n R t_1$, then $\delta(\theta) \ge 0$.
- Build an SLPS $\rho = \theta_1^* \dots \theta_k^*$ where $\theta_i \in T$ or $\theta_i = t_1 \dots t_n$ with t_1, \dots, t_n 2 by 2 distincts and $t_1 R \dots R t_n R t_1$.

Outline

Flat counter automata almost everywhere !

- Introduction.
- Counter machines and acceleration.
- Flat counter machines.
 - Reversal bounded counter machines.
 - Lossy/inserting counter machines.
 - Test-free 2-dim counter machines.
- Flat Petri nets.
 - Cyclic and reversible Petri nets.
 - Regular Petri nets.
 - BPP-nets.
- \Rightarrow Conclusion.

Summary

Reversible Petri nets BPP nets Cyclic Petri nets Persistant Petri nets Conflict-free Petri nets Regular Petri nets Reversal-bounded counter machines Test-free 2-counter machines Lossy test-free counter machines

Summary

Reversible Petri nets Conflict-free Petri nets BPP nets

Test-free 2-counter machines

Cyclic Petri nets Persistant Petri nets Regular Petri nets Reversal-bounded counter machines Lossy test-free counter machines

flat

globally flat

Future work

 \rightarrow Flatness for subclasses of 2-counter machines Remark: $post^*$ and pre^* are effectively semilinear of lossy 2-counter machines, but these counter machines are not flat in general.

 \longrightarrow Extend acceleration techniques to compute $post^*$ for:

→ Is flatness decidable for Petri nets ?

 \longrightarrow Is flatness equivalent to semilinearity of $post^*$ for Petri nets ?