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Abstract. Monadic second order logic (MSOL) over transition systems
is considered. It is shown that every formula of MSOL which does not dis-
tinguish between bisimilar models is equivalent to a formula of the propo-
sitional p-calculus. This expressive completeness result implies that every
logic over transition systems invariant under bisimulation and translat-
able into MSOL can be also translated into the p-calculus. This gives
a precise meaning to the statement that most propositional logics of
programs can be translated into the p-calculus.

1 Introduction

Transition systems are structures consisting of a nonempty set of states, a set
of unary relations describing properties of states and a set of binary relations
describing transitions between states. It was advocated by many authors [26, 3]
that this kind of structures provide a good framework for describing behaviour
of programs (or program schemes), or even more generally, engineering systems,
provided their evolution in time is discrete.

Take as an example an operational semantics of a (scheme of a) programming
language, say CCS. It is given in two steps. First one associates with every
program a transition system describing all possible executions of the program.
This can be done using SOS rules [25] or similar formalism. Next one defines an
equivalence relation between transition systems which depends on the intended
notion of observable. The meaning of the program is an equivalence class of the
associated transition system. Bisimulation relation is often considered to be the
finest relation which is interesting in this context [22, 30].
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In the setting described above, checking that a modelled system (say a pro-
gram) has some property amounts to checking that the corresponding transition
system has the property. The fact that the meaning of the program is really
an equivalence relation and not a transition system itself is reflected in the fact
that the properties we are interested in do not distinguish between equivalent
systems. This motivates our claim that logics suitable for verification should
not distinguish between bisimilar systems. Indeed most of the program logics
proposed in the literature have this property.

Since this approach to verification has been suggested [26] a big variety of
logics over transition systems has been proposed. New logics were introduced
because they were more manageable, more expressive, or represented a better
balance between these two kinds of properties. Manageability is concerned with
axiomatisations, the complexity of the validity problem, and the complexity of
the model checking problem (i.e. a problem of verifying whether a given formula
is satisfied in a given transition system). These complexity issues are important
especially for computer aided verification. Of course there is no point in consid-
ering even very manageable logic if it is not capable of expressing the properties
we are interested in.

The question arises: how one does decide which properties are interesting.
Of course it is important to list first some example properties which one would
like to express (see [13, 10] for such lists), but how can one be sure that we have
listed all the properties of potential interest? The solution is to find a “yardstick”
which is usually some well established logic. If we can express all the properties
from our list in the “yardstick” logic then we know that the set of properties
expressible in the logic is complete, in a sense that it is closed under logical
operations and contains our interesting properties. This approach was initiated
by Kamp [20] who investigated expressive power of propositional temporal logic
(PTL) with respect to expressive power of the first order logic over (w, <). This
lead him to the discovery of the until operator and the proof that PTL with
the until operator is expressively complete with respect to first order logic, i.e.:
a class of models is definable by a PTL formula with until iff it is definable in
the first order logic. PTL is still widely used but it turned out that there are in-
teresting properties which are not expressible in the first order logic and MSOL
over (w, <) was proposed as a new yardstick. This choice was particularly useful
as it brought new insights and a wealth of automata theoretic methods to the
field. The logic expressively complete with respect to MSOL over (w, <) is the
p-calculus of linear time [4].

As noted by Emerson ([10] p. 1026) the situation for branching time logics is
not so well understood. Known results are limited to transition systems which
are binary trees. For this restricted class of models the yardstick is MSOL theory
of the binary tree (525). It is known that the binary p-calculus is expressively
complete with respect to full $25[24, 11] and CTL* is expressively complete
with respect to the fragment of S2S where only quantification over paths is
allowed [16].

As far as we are aware, the only expressive completeness results dealing



with the general case of logics over all transition systems were given by van
Benthem [5] and van Benthem and Bergstra [6]. They show that a bisimulation
closed class of transition systems is definable in first order logic (resp. in infinitary
first order logic) iff it is definable in (system K) modal logic (resp. infinitary
modal logic). For these results to hold it is essential that one admits disconnected
transition systems. This makes properties like “there is a transition from every
node” not closed under bisimulation. These kind of properties also show that
these results are not true when restricted only to connected transition systems.
Expressive completeness of temporal logic with respect to first order logic over
various kinds of orders was investigated among others in [14, 2].

From Gaifman’s characterisation of expressive power of first order logic over
transition systems [15] it follows that first order logic is not a very interesting
logic from a verification point of view. In our opinion the proper yardstick for
logics over transition systems should be MSOL, or rather, bisimulation invariant
properties expressible in MSOL. This choice is motivated by the fact that it
is a very expressive logic, capable of expressing most of the properties consid-
ered in the literature. Moreover the set of properties of MSOL is closed under
quantification over sets which makes it possible to express for example: path
quantification, reachability, least and greatest fixpoints of the properties.

Let us briefly comment why S2S is not a good candidate for defining an
expressibility standard over transition systems of arbitrary degree. It is of course
possible to code every countable transition system into a binary tree but this
comes with a price. Any such coding introduces an ordering between siblings
which is not available in the original structure. This order allows even a very
weak logics over binary trees to express properties of codings not expressible in
MSOL over transition systems (see [28] p. 540 for an example).

Finally observe that MSOL over trees of arbitrary degree is very different
from monadic second order theory of w-successors (SwS). In the later theory
even the relation “z is a son of y” is not definable (one would need an infinite
formula to do this).

1.1 Synopsis

Our main result is that, every bisimulation closed MSOL definable property of
transition systems is definable in the propositional p-calculus. This shows that
among all possible behavioural specification languages whose semantics is ex-
pressible in MSOL over transition systems, the p-calculus is the most expressive
one. In particular, this immediately shows that CTL* and ECT L* are translat-
able into the p-calculus [9] since these logics are easily translatable into MSOL
over unwindings of transition systems and formulas resulting from the transla-
tion are bisimulation closed, hence invariant under unwinding operation.
Maybe an interesting aspect of this result is that the set of MSOL formulas
closed under bisimulation is not recursive (it is even not arithmetical). On the
other hand it turns out to be decidable whether a MSOL formula defines a
bisimulation closed set of trees. Let us also remark that unlike van Benthem and



Bergstra’s results mentioned above our expressibility result also holds when we
restrict to connected transition systems or even finite branching trees.

The main tools we will be using are recently developed automata character-
isations of the p-calculus [19] and MSOL [31] over trees. It turns out that there
is a more general notion of automata of which both characterisations are special
cases. This gives us a common ground to compare the two logics.

The paper is organised as follows. We start with the section introducing tran-
sition systems and the bisimulation relation. We also introduce there a notion
of w-expansion which we will need in the main proof. Next we give definitions
of MSOL and the p-calculus. In Section 4 we define a general notion of automa-
ton and give characterisations of MSOL and the p-calculus in terms of these
automata. These characterisations are used in the following section where we
prove our main result.

2 Transition systems and bisimulation

Let Pred = {p,p',...} be a set of unary predicate symbols and let Rel =
{r,r',...} be aset of binary predicate symbols. A transition system with a source,
simply called transition system in the sequel, is a tuple:

M= <SM, STM, {TM}reRel’ {pM}pEPT'Op>

where: Sy is a nonempty set of states; sry € S is a source; each rM is a binary
relation on Sy and each p™ is a subset of SM.
For every r € Rel, let:

succM (s) = {s' € SM | (s,5") € rM}

Transition system M is called a transition tree (or simply a tree) if for every
state s € M there exists a unique path to the root, or more formally there
exists a unique sequence So, ..., s, such that so = s, s,, = s and for every
i=1,...,n we have (s;,s;41) € rM for some r; € Rel.

Transition systems M and N are called bisimilar when there exists a relation
R C SM x SN called a bisimulation relation, such that (sr™,sr™) € R and for
every (s,t) € R, p € Prop and r € Rel:

—sepMifftepM,

— whenever (s,s') € r™ for some s', then there exists ¢ such that (,t') € r
and (s',t') € R,

— whenever (t,t') € rV for some #', then there exists s’ such that (s,s') € r
and (s',t') € R.

N

M

Definition 1 w-expansion. Given a transition system M, an w-indezed path of
M is a sequence u of the form:

u = so(a1,71,81)(az,72,82) - - - (G, T, Sn)

where s = srM, a; € IN and (s;_1,s;) €M fori=1,...,n.
The w-expansion M of the system M is defined by :



1. Sﬁ is the set of w-indexed paths of M,

2. srﬁ = srM, R R

3. for every r € Rel, every u and v € SM: (u,v) € rM iff v is an w-indexed path
of the form wu(a,r,s), for some a and s,

4. for every p € Prop:

=)

oM = {u(a,r,s): s € p™, w,a,r arbitrary} U {sr™ : srM € pM}

In the rest of this section let us briefly point out how the concept of w-
expansion arises from a general consideration about bisimulation relation.

Definition 2. Given two transition systems M and N, we say that M is an
expansion of N, denoted M > N, when there exists a partial function h
Sy — Sy such that :

1. h(srM) = sr,
2. for every s € SM, p € Prop and r € Rel:
sepM < h(s) € p" and h(succ(s)) = succ (h(s))

Remark. In [8], with distinct notations and names, Castellani shows that M; and
M> are bisimilar iff there exists IV such that N < M; and N < Ms. Intuitively
N is a quotient of M; and M, under bisimulation relation, henceforth a minimal
representative. Next fact states that w-expansions are, in the countable case,
maximal representatives of behaviours.

Fact 3. Considering only transition systems with at most countably many states:
for every transition system M we have M X M, and, for every transition system
N, if M and N are bisimilar then M and N are isomorphic.

3 Monadic second order logic and the propositional
p~-calculus

In this section we will define monadic second order logic (MSOL) and the propo-
sitional p-calculus [21]. Both logics will be interpreted over transition systems
of the signature containing only unary symbols from Prop and binary symbols
from Rel. These sets were fixed at the beginning of the previous section. Let
Var={X,Y,...} be a countable set of (second order) variables.

3.1 MSOL

Monadic second order logic over the signature {Rel, Prop} and constant sr can
be defined as follows. The set of MSOL formulas is the smallest set containing
formulas:

p(X), r(X,Y), X CY, sr(X)



for p € Prop, r € Rel, X,Y € Var; and closed under negation, disjunction and
existential quantification. A sentence is a formula without free variables.

The definition of the truth of a formula in a given transition system M and a
valuation V : Var — P(SM) is defined by induction on the length of the formula:

MV Ep(X) i V(X)Cp"

M,V Er(X,Y) iff V(X)={s},V(Y)={t} and (s,t) € 1M
M,V |= sr(X) iff V(X) = {srM}

MVEXCY iffV(X)CV(Y)

M,V i=aVp it M,V Eaor M,V ES

M,V E -« iff not M,V |«

M,V = 3X. o(X) iff there is T C SM s.t. M,V[T/X]  a(X)

We will concentrate here on definability by sentences. Of course it makes
no difference for MSOL because the quantification is available, but it will make
the difference in the case of the p-calculus. We write M = ¢ to mean that the
sentence ¢ is true in M. A sentence ¢ of MSOL defines a class of transition
systems: {M : M | ¢}. A class of transition systems is MSOL definable if there
exists an MSOL sentence defining this class. A class C of transition systems is
bisimulation closed if whenever M € C and M’ is bisimilar to M then M' € C.
A sentence is bisimulation invariant if the class of transition systems it defines
is bisimulation closed.

Remark. There exist formulas of MSOL which are not bisimulation invariant.
Take for example a formula stating that there is exactly one r—transition from
the source. Observe that the problem of checking whether an MSOL formula
is bisimulation invariant is not arithmetical because the validity problem is not
arithmetical.

3.2 Propositional p-calculus

The set of the p-calculus formulas is the smallest set containing PropUVar which
is closed under negation, disjunction and the following two formation rules:

— if a is a formula and r € Rel then (r)« is a formula,
— if @(X) is a formula and X occurs only positively (i.e. under even number
of negations) in a(X) then puX.a(X) is a formula.

Observe that we use relation names in the modalities.

The meaning of a formula «a in a transition system M and a valuation V :
Var — P(SM) is a set of states, ||, where it is true. It is defined by induction
on the length of the formula:

Il =pM

[-aly = SM —Jalyf

lavaly = lalyf UlBlY

[(r)aly ={s:3t.(s,t) erM At € |af{f}

|uX.a(X)|¥ = (T € SM : [a(X)lyz)x C T}



For a sentence ¢ we write M, s = ¢ when s € ||V (the choice of a valuation
V is irrelevant as ¢ is a sentence). A sentence ¢ of the u-calculus defines a class
of transition systems {M : M, sr™ | ¢}. The class of transition systems is y-
definable if there exists a u-calculus sentence defining this class. It is well known
that:

Fact 4. Every p-definable class is bisimulation closed.

Remark. Let us comment on the fact that we consider only definability by sen-
tences. Call a class C, p-f-definable (u-formula-definable) if there is a formula ¢
of the p-calculus such that:

C={M:sr™ € |p|¥ for arbitrary V : Var — SM}

There are u-f-definable classes which are not closed under bisimulation. Consider
for example the class defined by the formula —({r})X A (r)-X). This formula
defines a class of structures M where there is at most one s € SM such that
(sr™,s) € r™ . This class is clearly not bisimulation closed. The u-f-definability
corresponds to definability of frames in modal logic. It is easy to see that the
notion of p-f-definability is not closed under complement. Hence this notion of
definability is not interesting from expressive completeness point of view.

4 Automata characterisations

Here we will define automata running on transition systems. Then we will give
characterisations of the expressive power of MSOL and the p-calculus in terms
of these automata.

First problem we have to deal with is the description of a transition function.
In case of words, a transition function of an automaton with alphabet X and
states @ is an element of @ x ¥ — P(Q). In case of binary trees, it is an element
from Q x X' — P(Q x Q). This suggest that for trees of degree less than or equal
to &, a transition function should be an element of @ x X — P(Q*). But surely
it cannot be an arbitrary such function because MSOL has limited expressive
power. The idea is to shift the attention a little. Let us consider the set S of sons
of a node. An assignment of states to the elements of S can be seen as a function
m : Q — P(S), which for each state ¢ € @ gives a set of elements to which
q is assigned. We call such a function a marking. The set of markings can be
described by a formula with free second order variables { Z, } ¢ representing the
sets of elements assigned ¢. For example in case of binary trees, S will be always
a two element set {/,r} and a transition, say, 6(g,a) = {(q1,¢2), (¢3,44)} will be
translated into the formula: (Zg, (I) A Zg, (7)) V (Zgs (1) A Zg, (r)). This approach
extends easily to alternating automata on binary trees [23] but this time formulas
obtained in the translation will be arbitrary positive boolean combinations of
atomic formulas of the from Zg, (I) or Zg (r). In the case of trees of arbitrary
degree the use of formulas to describe markings allows us to abstract from the
cardinality of S. By restricting to specific classes of formulas we can control the



expressive power of the obtained automata. It turns out that this gives us enough
control to characterise the p-calculus or MSOL over trees. Hence we obtain a
common ground to compare the two logics.

Let us proceed with the formal definition of these automata.

Definition 5 Basic formulas. For every finite set U/, let BF ({{) be some set of
sentences of the first order logic, possibly with the equality predicates, over the
signature consisting of unary predicates {p}peys. A marking of a given set S is
a function m : U — P(S). We say that m satisfies a sentence ¢ € BF(lf) iff ¢
is satisfied in the structure (S, {m(p)}pecu), i-e., the structure with the carrier S
and each predicate p € U interpreted as m(p).

An automaton is a tuple:

A=(Q, %, C Prop, X, C Rel,qo € Q, (1)
5:Q xP(Z,) = BF(Z, xQ),2:Q — IN)

where () is a finite set of states, X}, is a finite subset of Prop and X, is a
finite subset of Rel. Observe that the automaton has two alphabets. One is
for examining properties of states and the other is for checking labels of taken
transitions.

We find it convenient to give the definition of acceptance in terms of games.

Definition 6 Acceptance. Let M be a transition system and let A be an au-
tomaton as above. We define a game G(M, A) as follows:

— The initial position is a pair (sr™,qo).
— If the current position is a pair (s, ¢) then player I is to move. Let

L(s)={p€ Prop:sepM}nx,

be a set of relevant propositions holding in s. Player I chooses a marking
m: 5. x Q = P(U,ex, succ:(s)) such that for every r, g we have m(r,q) C
sucer(s) and

< U SUCCT(S)7{m(T7 q)}(r,q)EErXQ> |= 5(qi7L(s))

The marking m becomes the current position.

— If the current position is a marking m then player IT chooses some r € Y.,
some automaton state ¢ € @ and some state s € m(r,q). The pair (s,q)
becomes the current position.

If one of the players cannot make a move then the other player wins. If the play
is infinite then as the result we obtain an infinite sequence:

(307 q0)7m17 (817q1)7m27 e

Let j be the smallest number appearing infinitely often in the sequence:

Q(CJO), Q(Ql)’ R



Player I wins if j is even, otherwise player II is the winner.

We say that M is accepted by A iff there is a winning strategy for player I in
the game G(M, A). A language recognised by A is the class of transition systems
accepted by A.

From now on, let « = X, x Q. The following is a reformulation of a result
from [19].

Theorem 7. A class of transition systems is definable by a p-calculus sentence
iff it is a language recognised by an automaton as in (1) with BF(U) containing
only disjunctions of sentences of the form:

1, @ (Pr(@) A Apr(TR) AVZp1(2) VoLV pr(2)) (2)
where p; €U fori=1,...,k.
The goal in [19] was to find the simplest possible form of automaton. Here

we will be content with more liberal formalisation. The proof of the fact below
can be found in [18], it also follows from [31].

Fact 8. A class of transition systems is definable by some p-calculus formula
iff it is a language recognised by an automaton as in (1) with BF(U) containing
only disjunctions of formulas of the form:

3z, @k (pr(zn) A Api(zr) AV2.6(2))

where B(z) is a disjunction of conjunctions of formulas of the form p(z) for
peU.

Example 1. As an example we construct an automaton equivalent to the u-
calculus formula pX.pV (r)X. This automaton is:

{a}{p}, {r}. 4,6, 92)
where 2(¢q) = 1 and § is defined by:

5(¢q,0) = 3Fz. (r,q)(z) A Vz.true
0(g, {p}) = Vz. true

The following was shown in [31]:

Theorem 9. A class of trees is definable by a MSOL sentence iff it is a language
recognised by an automaton as in (1) with BF(U) containing only disjunctions
of formulas of the form:

A1, 2. diff(x1, .. 28) ADig (1) A A pig () A
Vz. diff(z, 21, ..., 2) = B(2)

where B3(z) is a disjunction of conjunctions of formulas of the form p(z), for
p € U, and diff(x1,...,2x) is o formula stating that the meanings of all the
variables are different.



Remark. In the above theorem we can allow arbitrary first or even monadic
second order formulas as basic formulas. The set of basic formulas specified
above is the smallest set which was shown to be sufficient in [31]. Of course, the
simpler the set of basic formulas, the easier would be our task of translating
MSOL formulas into p-calculus formulas.

Because the construction of an automaton equivalent to a given formula is
effective and because the emptiness problem for these automata can be shown
to be decidable we obtain:

Corollary 10. MSOL theory of trees is decidable.

For countably branching trees this corollary is a consequence of Rabin’s the-
orem about decidability of S25 [27].

5 Expressive completeness

Theorem 9 together with Fact 8 suggest that there is a very strong connection
between the two logics. Basic formulas in case of MSOL automata are more
expressive because, for example, they can compare the number of sons with a
constant (by the use of existential quantification together with diff(x) formula).
Intuitively if an MSOL formula is bisimulation closed, an equivalent automaton
should not use diff(x) formulas, hence it should be equivalent to a p-calculus
formula. A precise argument confirming this intuition must take into account the
fact that automata are nondeterministic which means that the automaton may
have only runs which use diff(x) formulas but nevertheless accept a bisimulation
closed set.

Theorem 11 Expressive completeness. A bisimulation closed class of tran-
sition systems is MSOL definable iff it is pu-definable.

Proof. Tt is easy to see that every u-definable class is also MSOL definable. For
converse we use the following lemma:

Lemma1l2. For every MSOL sentence ¢ one can build a p-calculus sentence

oV such that for every transition system M :

MEg' iff MEg

Assume that the lemma was proved. Let ¢ be a MSOL sentence defining a
bisimulation closed class of transition systems. This in particular means that for
every transition system M we have: M [ ¢ if and only if M | . Let ¢V be
the formula given by the lemma above. We have:

MEqo iff JT/I\Ich if MEpY



Proof of Lemma 12. For every formula v of the form:

Az1, -z diff(er, .- 2) Apr(x) A Ap(m)A 3)
Vz.diff(z, 21, ..., 21) = [(2)

we let 9 to be a formula obtained by substituting true for diff in the above:
Azy, ...,z pr{xz) AL Ap(x) AV2.B(2) (4)

For a disjunction 6 = 4, V.. .V4); of formulas as in 3 we define: 6¥ = o' V...v).

By Theorem 9 there is an automaton A = (Q, X, ¢, d, 2) accepting the class
of tree models of . We know that for every ¢ € @ and a € P(X,), formula
d(g,a) is a disjunction of formulas of the form (3). We define the automaton AV
which has all the same components as A but the transition function §V. For
every ¢ € Q and P € X}, we let 6Y(q, P) = (6(¢q, P))".

Observation 13. The automaton AV accepts M iff A accepts M.

It is quite easy to see that if M is accepted by AV then M is accepted by A.
Conversely, suppose M is accepted by A. We will show that M is accepted by
AV,

By the definition, A accepts M iff player I has a winning strategy & in the
game G = G(M, A). We define a winning strategy ¢V for player I in the game
GY = G(M, AV). The idea of the strategy is to play simultaneously the games
GV and G and transfer each move of player II from GV to G. Then one can
consult the strategy & for G and transfer the suggested move of player I back to
GV.

The initial position of GV is (sr™, go) and it is also the initial position of G.

Assume that each of the players has made k moves. Assume also that the
histories of the two plays are respectively:

(57qu0)am17 (slaql)a s amka (Skaqk)

for GV and
(S7M7q0)7m17 (u17QI)7 s 7’r/ﬁ'k7 (ukv qk)

for @7 where for every i = 1...,k we have u; = uj(a;,r;,s;) for some w-indexed
path u}, a; € IN and r; € Rel.

In this position player I is to move. Let m**! = G(ug,qx) be a marking
suggested by the strategy o. Let us introduce a notation for the two structures

My, = (U, e, succe
Msk = <Ur€2r succ

(uk)v {mk+1 (’I", q)}(r,q)EET ><Q>
(sk)v {mk+1 (T‘, Q)}(r,q)EET ><Q>

SRR

~

By definition the marking m**! : X, x Q — P(succ™ (uy)) satisfies:

Mo, = 6(qr, L(uk)) ()



We define m*+1 : £, x Q — P(succ™ (s;)) by letting:
m**(r,q) = {s : ug(a,r,s) € M**1(r,q) for some a € IN} (6)

Let us check that:
M, I= 6" (qr, L(sk))

We know that §(gx, L(ug)) is a disjunction of formulas of the form (3). By
definition of M and the fact that uj, = u}(ag, Tk, sp) we have: L(uy) = L(sg).
Hence 6V (qx, L(sk)) = (6(qx, L(ug)))Y by the definition of AV.

Assume that M, [ ¢ for some disjunct ¢ of §(qx, L(ux)). We will show
that M, =Y.

We know that ¢V is of the form (4) where each p; is of the form (r;, g;). Let
us first check that for every j = 1,...,l there is s € m**!(r;, g;). For this it is
enough to take u(a,r;,s) € Mm**1(r;, ¢;) known to exist by property (5). To see
that M, |= Vz. B(z) observe that for every s € succ(s) there is a € IN such
that M, = B((a,r,s)). By the fact that 3 is monotone in predicates {p}pe s, xQ
and the definition of m, we obtain: M, = B(s).

Hence taking m is a legal move of player I in the game GV. After this move
we obtain the position:

(S7M7q0)7m17 (317QI)7 s 7mk7 (Ska qk)7mk+1

and at the same time in G we obtain the position:

(erv q0)7 mlv (u17 q1)7 EERE] mkv (ukH qk)v mk+1

with m*+1 defined from m**! by (6). From this position player IT chooses some
a1 € Xr, gre1 € Q and a state sy € M (rgy1, qry1). The history of the
play G becomes:

k+17(

(S7M7q0)7m17 (817(]1), .. -mka (skvqk)vm Sk+1, qk+1)

We make player II in G to choose gr+1 and a state ug(@ps1, k41, Sk+1) €
M*+ (rry1, qre1) which exists by (6). We arrive at the position satisfying our
initial assumptions so we can repeat the whole argument.

By definition of the strategy player I can always make a move hence he cannot
lose in a finite number of steps. If the play is infinite then the result of the play
is an infinite sequence:

(ervqo)vmlv (317QI)7 -, Mg, (8k7 Qk) R

At the same time we know that the corresponding play in the game G has been
infinite and its result is:

(37M7q0)7m17 (ulaql)v s 7mka (ukv qk) cee

Because in the game G player T used the winning strategy ¢ we know that the
smallest integer appearing infinitely often in the sequence 2(q1), 2(g2),... is



even. But this implies that player I won in the game GV. Hence the strategy we
have defined is winning and AV accepts M.
Function 6V was defined in such a way that the automaton AV is of the form
required in Fact 8. Hence there is a u-calculus sentence ¢V equivalent to AY. O
From Corollary 10 and the fact that the sentence ¢V from Lemma 12 can be
constructed effectively it follows:

Corollary 14. [t is decidable whether a MSOL sentence defines a bisimulation
closed set of trees.

Remark. Analysing the proof of Theorem 11 one can observe that the theorem
remains true also when we restrict to finite branching transition systems.

Remark. One may ask what is the meaning of $ given in Lemma 12 if ¢ is not
bisimulation invariant. Unfortunately the class defined by ¢ is not so easy to
describe and it does not seem to be very interesting. On the other hand we have
the following fact.

Fact 15. Bisimulation closure of a MSOL sentence is not always MSOL defin-
able.

Let us give an example of such a sentence. Let ¢ be a sentence saying that
every node has exactly one successor and that on the unique path from the
source there is exactly one state where a predicate p holds. The bisimulation
closure of ¢ contains all the trees with the property that on every two paths p
holds at exactly the same distance from the root. If all such trees are models
of some MSOL formula then from the automata characterisation it follows that
some tree which does not have this property is also a model of this formula. But
this last tree is not bisimilar to a model of ¢.

6 Concluding remarks

We have investigated the expressive completeness problem for branching time
logics. For this we have introduced a new kind of automata capable of recognising
classes of transition systems. The definition of automata has been parametrised
by the set of basic formulas. This has given us a common ground to compare
expressive power of MSOL and the p-calculus. The fact that the proof of Theo-
rem 11 is relatively easy suggest that this notion of automata may be an inter-
esting one.

Of course not all properties of potential interest can be expressed in MSOL.
Some logics capable of expressing nonregular properties were proposed in the
literature (see for example [17, 7]). We think that in this case it is also important
to look for some new standards to compare expressive power with.

There is one new area of verification were the need for “yardsticks” seems to
be particularly pressing. We have in mind verification with respect to so called
non-interleaving semantics [32, 1, 29]. There are good reasons for considering



these semantics, as for example, some problems undecidable for transition sys-
tems semantics become decidable in this setting [12]. Nevertheless if we consider
the number of different non-interleaving semantics and multiply it by the number
of logics proposed to date for transition systems semantics we can see that there
is a possibility of “problem explosion”. That is at some point we may have a big
number of incomparable approaches. We think that it would be very useful to
find some expressibility standards in this area and we hope that a generalisation
of automata presented here may be also a small step in this direction.
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