
Complexity of weak acceptance conditions in

tree automata

Jakub Neumann1, Andrzej Szepietowski1, Igor Walukiewicz2

Abstract

Weak acceptance conditions for automata on infinite words or trees

are defined in terms of the set of states that appear in the run. This

is in contrast with, more usual, strong conditions that are defined in

terms of states appearing infinitely often on the run. Weak conditions

appear in the context of model-checking and translations of logical

formalisms to automata. We study the complexity of the emptiness

problem for tree automata with weak conditions. We also study the

translations between automata with weak and strong conditions.

1 Introduction

An acceptance condition of an automaton with a set S of states is a set of
infinite sequences Acc ⊆ Sω. A weak acceptance condition is a condition that
does not distinguish between two sequences with the same states in them.
In contrast, a more usual strong acceptance condition does not distinguish
between two sequences which have the same states appearing infinitely often.
Similarly as for strong conditions one can define Muller, Rabin, Streett and
Mostowski weak conditions.

We study the complexity of deciding the emptiness problem of automata
with weak conditions. The problem is PTIME-complete for Mostowski con-
ditions and PSPACE-complete for Rabin and Streett conditions. This can be

1Institute of Mathematics University of Gdańsk ul Wita Stwosza 57, 80952 Gdańsk,

Poland
2LaBRI, Université Bordeaux I, Domaine Universitaire, batiment A30, 351, cours de

la Libération, 33405 Talence Cedex, France

1

compared with the fact that the problem for strong Rabin and Streett condi-
tions is NP-complete and coNP-complete respectively [2]. Given this result
we study the complexity of translations from automata with weak conditions
to automata with strong conditions. We show that in some cases, like that
of Rabin and Streett conditions, the translations need to be exponential.

Weak acceptance conditions were first considered by Staiger and Wagner
[6] for automata on infinite sequences. Weak conditions for automata on infi-
nite trees were considered in [11], [7], [9], and [10]. In particular Mostowski [7]
shows a direct correspondence between the index of a weak condition and the
alternation depth of weak second order quantifiers. Skurczyński [10] consid-
ered the relations between tree automata with weak condition and some
restricted versions of branching temporal logic.

A related notion of weak automata was introduced by Muller et. al. [8].
It is easy to see that weak automata are equivalent to automata with weak
Mostowski conditions (see Section 4). In [8] weak alternating automata were
used to give simpler proofs of the complexity bounds for the satisfiability
problem of some temporal and dynamic logics. This approach was then
extended in [5] also to model-checking problems.

2 Preliminaries

2.1 Automata on trees

The set {0, 1}∗ of all finite strings over alphabet {0, 1} may be viewed as an
infinite binary tree where the root node is the empty string ε. Let Σ be a
finite alphabet. A Σ-tree is a function T : {0, 1}∗ → Σ.

A finite automaton A on Σ-trees is a tuple 〈Σ, S, δ, s0,Acc〉, where: S
is the finite set of states of the automaton, δ : S × Σ → P(S × S) is the
(nondeterministic) transition function, s0 is the initial state of the automa-
ton, Acc ⊆ Sω is the acceptance condition (here Sω is the set of all infinite
strings over S, i.e., functions N → S.)

A run of A on a Σ-tree T is a function r : {0, 1}∗ → S such that:
r(ε) = s0 and for all x ∈ {0, 1}∗, (r(x0), r(x1)) ∈ δ(r(x), T (x)). The run is
accepting iff for every path ε, v1, v2, . . . in T the sequence r(ε)r(v1)r(v2) . . .
is in Acc. A tree T is accepted by A if there is an accepting run of A on T .
By L(A) we denote the set of trees accepted by A.

2

2.2 Types of acceptance conditions

The most common way to define an acceptance condition Acc ⊆ Sω is to put
some restrictions on states appearing infinitely often in the sequences. Here
we call such conditions strong conditions. In contrast, weak conditions put
restrictions on all the states that appear in the sequence. More formally, if
we have an infinite sequence of states σ : N → S then we can define two sets:

σ(N) ={s ∈ S | σ(i) = s for some i ∈ N}

Inf(σ) ={s ∈ S | σ(i) = s for infinitely many i ∈ N}

Strong conditions define a set of sequences σ through the properties of the
set Inf(σ). Weak conditions refer to the properties of σ(N). Here are the
weak forms of some standard [12, 13] acceptance conditions:

weak Muller condition is specified by a set F ⊆ P(S). We have
Acc = {σ : σ(N) ∈ F}.

weak Rabin condition is specified by a set {(R1, G1), . . . , (Rk, Gk)}, where
Ri, Gi ⊆ S. We have Acc = {σ : ∃i. σ(N)∩Ri = ∅ and σ(N)∩Gi 6= ∅}

weak Streett condition is also specified by a set {(R1, G1), . . . , (Rk, Gk)},
where Ri, Gi ⊆ S. We have Acc = {σ : ∀i. σ(N)∩Ri = ∅ or σ(N)∩Gi 6=
∅}

weak Mostowski condition Is specified by a function Ω : S → N. We
have Acc = {σ : min(σ(N)) is even}

Rabin condition is sometimes called “pairs condition”; Streett condition is
called “complemented pairs condition”; Mostowski condition is called “parity
condition”.

A weak automaton is a Mostowski automaton A = 〈Σ, S, δ, s0, Ω : S →
{0, 1}〉 for which there exists a quasi-order (reflexive and transitive relation)
on states 4 such that: (i) whenever (s0, s1) ∈ δ(s, a) then s0 4 s and s1 4 s;
(ii) if s 4 s′ and s′ 4 s then Ω(s) = Ω(s′). Observe that on each path a run of
A is eventually trapped in some equivalence class defined by 4. Acceptance
is then determined according to the value of Ω for this class (Ω has the same
value on all the states in the same class).

3

2.3 Games

A game G = 〈V, V0, V1, E ⊆ V × V,Acc ⊆ V ω
0 〉 is a bipartite labelled graph

with the partition V0, V1 ⊆ V . We say that a vertex v′ is a successor of a
vertex v if E(v, v′) holds. The set Acc defines the winning condition of the
game.

A play from some vertex v0 ∈ V0 proceeds as follows: first player 0
chooses a successor v1 of v0, then player 1 chooses a successor v2 of v1, and
so on ad infinitum unless one of the players cannot make a move. If a player
cannot make a move he looses. The result of an infinite play is an infinite
path v0, v1, v2, . . . This path is winning for player 0 if the projection of the
sequence to V0 belongs to Acc. Otherwise player 1 is the winner.

A strategy σ for player 0 is a function assigning to every sequence of
vertices ~v ending in a vertex v from V0 a vertex σ(~v) ∈ V1 which is a successor
of v. A strategy is memoryless iff σ(~v) = σ(~w) whenever ~v and ~w end in the
same vertex. A strategy is winning from a vertex v iff it guarantees a win for
player 0 whenever he follows the strategy. Similarly we define a strategy for
player 1. We will often consider strategies which are partial functions. To fit
our definition one can assume that these are total functions whose values for
some elements don’t matter.

A nondeterministic automaton A = 〈Σ, S, δ, s0,Acc〉 defines a game
G(A) = 〈S ∪ δ, S, δ, E,Acc〉, where the set of vertices of player 0 is the
set of states of the automaton; the set of vertices of player 1 is the set of
its transitions; Acc consists of those sequences over S ∪ δ which projection
on S is accepted by the acceptance condition of the automaton; finally E is
defined by:

• (s, (s, a, s′, s′′)) ∈ E if (s′, s′′) ∈ δ(s, a),

• ((s, a, s′, s′′), s′) ∈ E and ((s, a, s′, s′′), s′′) ∈ E.

Immediately from the definitions we get the following two facts relating
automata and games.

Fact 1 For an automaton A with an initial state s0: L(A) 6= ∅ iff there is a
strategy for player 0 in G(A) which is winning from the vertex s0.

Fact 2 For every finite game G and its vertex v there is an automaton
A(G, v) over one letter alphabet such that: L(A(G, v)) 6= ∅ iff player 0 has
winning strategy from vertex v in G. The size of A(G, v) is linear in the size

4

of G. The acceptance condition of A(G, v) is of the same kind as the winning
condition in G.

3 The emptiness problem

The emptiness problem for tree automata is: “given A decide if L(A) 6= ∅”.
In this section we will establish the computational complexity of this problem
for automata with various kinds of weak accepting conditions. By the facts
mentioned above the emptiness problem is linear time equivalent to finding
a winner in respective games.

Fact 3 The emptiness problem is PTIME-complete for automata with weak
parity conditions.

Proof

PTIME-hardness is easy by reduction of the alternating reachability problem
(see [3]).

For the membership in PTIME it is enough, by Fact 1, to show an
algorithm for deciding a winner in parity games with weak parity conditions.
Let G = 〈V, V0, V1, E, Ω〉 be a game where Ω : V0 → N is the function defining
a weak parity condition. Without a loss of generality we can assume that
the range of Ω is {0, . . . , n} for some n. For each i = 0, . . . , n the algorithm
calculates the set of vertices Bi such that: v ∈ Bi iff Ω(v) = i and there
is a strategy for player 0 which guarantees that every play starting from v
satisfies:

• for even i: if the play reaches a vertex outside {v ′ : Ω(v′) ≥ i} then the
first such vertex must belong to

⋃

j<i Bj;

• for odd i: the play must reach a vertex outside {v ′ : Ω(v′) ≥ i}, and
the first such vertex must belong to

⋃

j<i Bj.

So for each i we need to solve an alternating reachability problem (for even
i we rather calculate the complement of Bi). One can check that there is a
winning strategy from a vertex v iff v ∈ BΩ(v). �

�

Theorem 4

The emptiness problem is PSPACE-complete for automata with weak Rabin

and weak Streett conditions.

5

The theorem is a consequence of the two following facts.

Fact 5 A problem of establishing a winner in a game with weak acceptance
condition (Muller, Rabin, or Streett) can be solved by a deterministic Ω(n2)
space bounded Turing machine, where n is the number of positions in the
game.

Proof

Let G = 〈V, V0, V1, E,Acc〉 be a game and let Acc = AccF be a Muller
acceptance condition defined by a set F ⊆ P(V0). Observe that our algorithm
will not depend on the size of representation of Acc.

For a set B ⊆ V0 denote by AccB the Muller condition defined by the
set FB = {S : S ∪ B ∈ Acc}. For each B ⊆ V0 define the set Accept(B)
consisting of the vertices v from which player 0 has a winning strategy in G
with the winning condition AccB. In other words, we consider plays from v
but we assume that B is the set of vertices that was already visited on the
way to v.

We have that v ∈ Accept(∅) if player 0 has a winning strategy in the
game G. We also have that v ∈ Accept(V0) iff V0 ∈ Acc and there is strategy
allowing player 0 to always make a move.

We want to show an algorithm to compute Accept(B) for all sets B ⊆
V0. As noted above, calculating Accept(V0) is equivalent to an alternating
reachability problem, so it can be solved in linear time and space. To decide
if v ∈ Accept(B) for some other B, we first calculate the set F = {v ′ ∈
V0 \B : v′ ∈ Accept(B ∪ {v′})}. Then we proceed as follows:

• If B 6∈ F then v ∈ Accept(B) holds iff player 0 has a strategy from v
to reach a vertex outside B and with the first such vertex being in F .

• If B ∈ F then v ∈ Accept(B) holds iff player 0 has a strategy from v
to stay in vertices in B or to leave to some vertex in F .

It is not difficult to check that the algorithm is correct.
Calculating Accept(B) is an alternating reachability problem, once we

know F . We can calculate F using recursion. As the depth of recursion is
bounded by the size of V0, we can calculate Accept(∅) in the space O(|V |2).
� �

Fact 6 The problem of finding a winner in games with weak Rabin or Streett
conditions is PSPACE-hard.

6

Proof

We reduce the QBF (Quantified Boolean Formulas) problem. Let X =
{x1, x1, . . . , xk, xk} be a set of literals and let

∃x1.∀x2 . . .∃xk. (α1
1 ∨ α1

2 ∨ α1
3) ∧ · · · ∧ (αn

1 ∨ αn
2 ∨ αn

3)

be a QBF formula where each αi
j ∈ X is a literal. Consider the game:

p1 p2

. . .

pk

pkp2p1

α
1

1

α
1

2

α
1

3

α
n
1

α
n
2

α
n
3

...

The vertices for player 0 and player 1 are denoted by circles and squares
respectively. The rest of the vertices has degree 1 so it does not matter who
makes a move in them. Moreover there are self loops, that are not shown, in
each of the vertices αi

j. The graph of the game is not bipartite but it can be
easily made so by introducing some dummy vertices of degree 1.

The intuition behind the game is easy. The players choose a valuation of
variables (who chooses a value depends on the quantifier binding the variable
in the formula). Then, player 1 points to a clause which he thinks is not
satisfied in the chosen valuation. Finally, player 0 has to show that some
literal from the chosen clause belongs to the chosen valuation.

The relevant Rabin condition is:

({p1}, {x1}), ({p1}, {x1}), . . . , ({pk}, {xk}), ({pk}, {xk})

The condition says that if xi is chosen in the play then the play does not go
through pi; and similarly for xi. Observe that on every play there is only one
appearance of a literal, i.e., an element of X. It should be clear that player
0 has a winning strategy iff the given formula is satisfiable.

The relevant Streett condition is:

{({pi}, X \ {xi}), ({pi}, X \ {xi}) : i = 1, . . . , k}

The condition says that if pi does not appear in the play then xi cannot
appear in the play; and similarly for pi. It should be clear that player 0 has

7

a winning strategy in the game with this condition iff the given formula is
satisfiable. � �

Corollary 7 Unlike the case of games with strong Rabin conditions [1, 4],
the memoryless determinacy theorem does not hold for games with weak
Rabin conditions.

Proof

In the reduction above consider the formula ∀x2.∃x3. x2 ⇔ x3. Then in the
above game, player 0 has a winning strategy, but in this strategy he has to
choose p3 if player 1 has chosen p2 and to choose p3 otherwise. � �

4 Translations

In this section we will consider the translations between weak automata and
automata with weak conditions of various types. The translation from weak
automata to automata with weak parity conditions is straightforward and
does not produce any blowup.

Fact 8 For every weak automaton A there is an equivalent automaton with
weak parity conditions with the same set of states as A.

The translations in the opposite direction are slightly more difficult.
Later we will show that the blowups in the given translations are in general
necessary.

Fact 9 LetA be an automaton with a set of states S and a winning condition
Acc.

1. If Acc is a weak Muller condition then there is an equivalent weak
automaton A′ of size |S|2|S|.

2. If Acc is a weak parity condition with the range {i, . . . , j} then there
is an equivalent weak automaton A′ of size |S|(j − i + 1).

3. If Acc is a weak Rabin or Streett condition given by a set of pairs
{(Ri, Gi)}i=1,...,k then there is an equivalent weak automaton A′ of size
|S|3k.

8

Proof

For the first statement, about a Muller condition F ⊆ P(S), we construct
an automaton A′ with the set of states S × P(S). Intuitively, the second
component will contain all the states seen so far. The initial state of A′ is
(q0, {q0}), where q0 is the initial state of A. We have ((q0, B ∪{q0}), (q1, B ∪
{q1})) ∈ δ′((q, B), a) iff (q0, q1) ∈ δ(q, a). We make a state (q, B) accepting
if B ∈ F . It is easy to show that A′ is a weak automaton and that L(A) =
L(A′).

In order to prove the second and the third statements of the fact we will
show how to identify some of the states of the automaton A′.

If the accepting condition of A is a parity condition Ω : S → N then for
the automaton A′ we have that (q, B) is accepting iff min(B) = min{Ω(q) :
q ∈ B} is even. Because min(min(B), Ω(q)) = min(B ∪ {q}) it is enough
to know min(B) and q to calculate min(B ∪ {q}). So in the case of the
parity condition we can reduce the set of states of A′ to S×{i, . . . , j} where
{i, . . . , j} is the range of Ω. The second component is used to keep the current
minimum.

If the accepting condition is a Rabin condition {(Ri, Gi)}i=1,...,k then a
state (q, B) ofA′ is accepting iff there is i such that B∩Ri = ∅ and B∩Gi 6= ∅.
Consider the function f : P(S) → ({1, . . . , k} → {0, 1,⊥}) defined by

f(B)(i) =











0 if B ∩ (Ri ∪Gi) = ∅

⊥ if B ∩ Ri 6= ∅

1 otherwise

We have that (q, B) is an accepting state of A′ iff f(B)(i) = 1 for some
i. It is not difficult to define a function Update such that f(B ∪ {q}) =
Update(f(B), q). So we can reduce the set of states ofA′ to S×({1, . . . , k} →
{0, 1,⊥}).

Finally, the case of Streett condition {(Ri, Gi)}i=1,...,k is very similar but
now we define

f(B)(i) =











0 if B ∩ (Ri ∪Gi) = ∅

1 if B ∩Gi 6= ∅

⊥ otherwise

We have that (q, B) is accepting iff f(B)(i) 6= ⊥ for all i. The update
function is also easily definable in this case. � �

9

It is easy to show that for every n there is a language Ln which is
recognized by a O(n) size automaton with weak Muller conditions but not
recognized by any automaton with strong conditions with less than 2n states.
Below we show that the exponential blowup is also necessary in the case of
Rabin and Streett conditions.

Fact 10 For every n there are languages LR
n and LS

n such that:

• there is an O(n) size automaton with weak Rabin (resp. Streett) con-
ditions accepting LR

n (resp. LS
n).

• every automaton with strong conditions recognizing LR
n or LS

n has Ω(2n)
states.

Proof

Fix n ∈ N and consider the alphabet Σn = {pi, qi : i = 0, . . . , n− 1} ∪ {λ}.
Let LR

n be the set of trees over Σn such that for every path there is
i ∈ {0, . . . , n − 1} with qi and no pi on the path. This property can be
expressed by a weak Rabin condition {({p0}, {q0}), . . . , ({pn−1}, {qn−1})}. It
is easy to construct an automaton with 2n + 1 states and a weak Rabin
condition of the above form accepting LR

n .
We are going to show that every automaton with strong conditions ac-

cepting LR
n needs 2n states. Take a subset Γ ⊆ {0, . . . , n − 1}. Construct a

tree TΓ ∈ LR
n with a node v on the leftmost path such that:

1. the set of labels of the nodes between the root and v is precisely {pi :
i ∈ Γ};

2. on every path from v, the sequence of labels is of the form λ∗qiλ
ω with

i 6∈ Γ;

3. for every i 6∈ Γ there is a node labelled qi after v.

Let A be an automaton accepting LR
n . Consider an accepting run of A on

TΓ and let sΓ be the state labelling the node v in this run. It should be clear
that if Γ1 6= Γ2 then sΓ1

and sΓ2
must be different. This shows that there

must be at least 2n states in A.
Let LS

n be the set of trees of such that for every i ∈ {0, . . . , n − 1}: if
pi appears on the path then qi appears on the path. This condition can be
expressed by a Street condition {({p0}, {q0}), . . . , ({pn−1}, {qn−1})}. This is

10

the same set of pairs as before but now considered as a Streett condition.
Similarly to the case of Rabin conditions one can show that there is an
automaton recognizing Ln that has weak Streett conditions and 2n+1 states.
Also a similar argument shows that every automaton with strong conditions
recognizing the language must have 2n states. � �

The translations from Fact 9 show that if an automaton with weak
conditions accepts some tree then it accepts a regular tree. Below we show
that sometimes the smallest such a tree is exponentially bigger than the
automaton.

Fact 11 For every n there are automata with O(n) states and with weak
Rabin or Streett conditions such that any regular tree accepted by these
automata has 2n non-isomorphic subtrees.

Proof

Consider the alphabet Σn = {pi, qi : i = 0, . . . , n−1}∪{λ} as in the previous
fact.

Let L1 be the language of trees t over Σ such that t(ε) = λ, and for
every i = 0, . . . , n/2− 1 we have:

t({0, 1}i0) = p2i and t({0, 1}i1) = p2i+1

Let L2 be the language of trees t such that t({0, 1}n/20i) ∈ {q2i, q2i+1} (for
i = 0, . . . , n/2− 1) and t(v) ∈ {p0, . . . , pn−1} for all other nodes v.

Consider the language LS
n from the previous lemma. It is not difficult

to construct an automaton recognizing LS
n ∩ L1 ∩ L2 that has 5n states and

a weak Streett condition with n pairs. It is also not difficult to check that
for every tree t in this language, if v, v′ ∈ {0, 1}n/2 are two different nodes at
level n/2 then the subtrees of t rooted at v and v ′ must be different. This
settles the case of Streett conditions.

Let L3 be the language of trees t over Σ such that t({0, 1}n/20i1) ∈
{q2i, q2i+1} (for i = 0, . . . , n/2 − 1) and t(v) ∈ {p0, . . . , pn−1} for all other
nodes v. Let KR

n consist of trees t such that for every path P of t: either
only the letters from {λ, p0, . . . , pn−1} appear in P or there is i such that qi

appears on P and no pi appears on P . This language is very similar to the
language LR

n from the previous lemma, but here we allow also paths where no
qi appears. It is not difficult to find an automaton recognizing KR

n ∩L1 ∩L3

that has 5n states and a weak Rabin condition with n + 1 pairs. The same

11

argument as before shows that every tree in this language has at least 2n/2

non-isomorphic subtrees. �

References

[1] E. A. Emerson. Automata, tableaux, and temporal logics. In Workshop

on Logics of Programs, pages 79–87, 1985.

[2] E. A. Emerson and C. S. Jutla. The complexity of tree automata and
logics of programs. In 29th IEEE Symposium on Fundation of Computer

Science, pages 368–377, 1988.

[3] N. Immerman. Number of quantifiers is better than number of tape
cells. Journal of Computer and System Sciences, 22:384–406, 1981.

[4] N. Klarlund. Progress measures, immediate determinacy and a subset
construction for tree automata. In LICS ’92, pages 382–393, 1992.

[5] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. Journal of the ACM,
47(2):312–360, 2000.

[6] K. Wagner L. Staiger. Automatentheoretische und automatenfreie
charakterisierungen topologischer klassen regulärer folgenmengen. EIK,
10:379–392, 1974.

[7] A. W. Mostowski. Hierarchies of weak automata and weak monadic
formulas. Theoretical Computer Science, 83:323–335, 1991.

[8] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the
weak monadic theory of the tree and its complexity. TCS, 97:233–244,
1992.

[9] J. Skurczyński. Tree automata with weak acceptance conditions. PhD
thesis, University of Gdańsk, 1989.

[10] J. Skurczyński. A negative result for chain logic. Technical report,
University of Gdańsk, 1997.

12

[11] S. Miyano T. Hayashi. Finite tree automata on infinite trees. Bull. of

Informatics and Cybernetics, 21:71–82, 1985.

[12] W. Thomas. Automata on infinite objects. In J. van Leeuven, edi-
tor, Handbook of Theoretical Computer Science Vol.B, pages 133–192.
Elsevier, 1990.

[13] W. Thomas. Languages, automata, and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3. SV,
1997.

13

