
PT-Scotch: A tool for efficient parallel graph
ordering

Cédric Chevalier and François Pellegrini

I. Introduction

Graph partitioning is an ubiquitous technique which has
applications in many fields of computer science and en-
gineering. It is mostly used to help solving domain-
dependent optimization problems modeled in terms of
weighted or unweighted graphs, where finding good solu-
tions amounts to computing, eventually recursively in a
divide-and-conquer framework, small vertex or edge cuts
that balance evenly the weights of the graph parts.

Because there always exists large problem graphs which
cannot fit in the memory of sequential computers and cost
too much to partition, parallel graph partitioning tools
have been developed [1], [2], but their outcome is mixed. In
particular, in the context of parallel graph ordering which
is the one of this paper, they do not scale well, as parti-
tioning quality tends to decrease, and thus fill-in tends to
increase much, when the number of processors which run
the program increase.

Consequently, graph ordering is the first target application
of the PT-Scotch (“Parallel Threaded Scotch”) soft-
ware, a parallel extension of the sequential Scotch graph
partitioning and ordering tool that we are currently de-
veloping within the ScAlApplix project. Graph order-
ing is a critical problem for the efficient factorization of
symmetric sparse matrices, not only to reduce fill-in and
factorization cost, but also to increase concurrency in the
elimination tree, which is essential in order to achieve high
performance when solving these linear systems on paral-
lel architectures. We outline in this extended abstract the
algorithms which we have implemented in PT-Scotch to
parallelize the Nested Dissection ordering method [3].

II. Algorithms for efficient parallel
reordering

The parallel computation of orderings in PT-Scotch uses
three levels of concurrency. The first level is the imple-
mentation of the nested dissection method itself, which
is straightforward thanks to the intrinsically concurrent
nature of the algorithm. Starting from the initial graph,
arbitrarily distributed across p processors, the algorithm
proceeds as follows: once a separator has been computed
in parallel, by means of a method described below, each
of the p processors participates in the building of the dis-
tributed induced subgraph corresponding to the first sep-
arated part. This subgraph is then folded on the first ⌈p

2
⌉

processors, such that the average number of vertices per

LaBRI and INRIA Futurs
Université Bordeaux I
351, cours de la Libération, 33405 TALENCE, FRANCE
{cchevali|pelegrin}@labri.fr

processor, which guarantees efficiency as it allows the shad-
owing of communications by a subsequent amount of com-
putation, remains constant. The same procedure is used to
build, on the ⌊p

2
⌋ remaining processors, the folded induced

subgraph corresponding to the second part. These two
constructions being completely independent, each of the
computations of an induced subgraph and of its folding
can be done in parallel, thanks to the temporary creation
of an extra thread per processor. At the end of the fold-
ing process, the nested dissection process can recursively
proceed independently on each subgroup of p

2
processors,

until each of the subgroups is reduced to a single proces-
sor. From then on, the nested dissection process will go
on sequentially, using the nested dissection routines of the
Scotch library.

The second level of concurrency regards the computation
of separators. The approach we have chosen is the now
classical multi-level one [4]. It consists in repeatedly com-
puting a set of increasingly coarser versions of the graph to
separate, by finding vertex matchings which collapse ver-
tices and edges, until the coarsest graph obtained is no
larger than a few hundreds of vertices, then computing a
separator on this coarsest graph, and projecting back this
separator, from coarser to finer graphs, up to the original
graph. Most often, a local optimization algorithm, such as
Fiduccia-Mattheyses (FM) [5], is used in the uncoarsening
phase to refine the partition that is projected back at ev-
ery level, such that the granularity of the solution is the
one of the original graph and not the one of the coarsest
graph. The matching of vertices is performed in parallel
by means of an asynchronous probabilistic multi-threaded
algorithm. At the end of each coarsening step, the coarser
graph is folded onto half of the processors that held the
finer graph, in order to keep a constant number of vertices
per processors, but it is also duplicated on the other half
of the processors too. Therefore, the coarsening process
can recursively proceed independently on each of the two
halves, which results in an improvement of the quality of
the separators, as only the best separator produced by the
two halves is kept at the upper level.

The third level of concurrency regards the refinement
heuristic which is used to improve the separators. FM-like
algorithms do not parallelize well, as they are intrinsically
sequential, and attempts to relax this strong sequential
constraint can lead to severe loss of partition quality when
the number of processors increase [1]. We have proposed
and successfully tested in [6] a solution to this problem:
since every refinement is performed by means of a local al-
gorithm, which perturbs only in a limited way the position
of the projected separator, the local refinement algorithm



Graph
Size (×103) Average

V E degree

audikw1 944 38354 81.28
conesphere1m 1055 8023 15.21
coupole8000 1768 41657 47.12
thread 29 2220 149.32

TABLE I

Some of our test graphs.

needs only to be passed a subgraph that contains the ver-
tices that are very close to the projected separator. We
have experimented that, when performing the refinement
algorithm on band graphs that contains only the vertices
that are at distance at most 3 from the projected separa-
tors, the quality of the finest separator is not significantly
altered, and can even be improved in some cases. The
advantage of constrained band FM is that band graphs
are of a much smaller size than their parent graphs, and
can therefore be used to run algorithms that would else
be too costly to consider, such as evolutionary algorithms.
What we have implemented is a multi-sequential approach:
at every distributed uncoarsening step, a distributed band
graph is created by using the very same algorithms as the
one used to build each of the two separated subgraphs in
the nested dissection process. Centralized copies of this
band graph are then created on every participating proces-
sor. These copies can be used collectively to run a scalable
parallel multi-deme genetic optimization algorithm [6], or
fully independent runs of a full-featured sequential FM
algorithm. The best refined band separator is projected
back to the distributed graph, and the uncoarsening pro-
cess goes on. Centralizing band graphs is an acceptable
solution because for most graphs the size of the separators
is of several orders of magnitude smaller that the size of
the separated graphs: it is for instance in O(n

1

2 ) for 2D

meshes, and in O(n
2

3 ) for 3D meshes [7].

III. Experimental results

PT-Scotch is written in ANSI C, with calls to the POSIX
thread and MPI APIs. Some of the graphs that we used
to run our tests are shown in Table I.
Table II presents the operation count of Cholesky factor-
ization (OPC) yielded by the orderings computed with
PT-Scotch and ParMeTiS. The improvement in quality
yielded by PT-Scotch is clearly evidenced, and increases
along with the number of processes, as our local optimiza-
tion scheme is not sensitive to the number of processes.

IV. Conclusion

We have outlined in this paper the parallel algorithms that
we have implemented in PT-Scotch to compute in par-
allel efficient orderings of large graphs. The first results
are encouraging, as they meet the expected performance
requirements in term of quality, but have to be improved
in term of scalability, because the current version of our

Test Number of processes

case 2 16 128

audikw1
S 5.59e+12 5.32e+12 5.47e+12
P 5.98e+12 7.42e+12 1.52e+13

conesphere1m
S 1.86e+12 1.86e+12 1.94e+12
P 2.14e+12 3.05e+12 3.48e+12

coupole8000
S 7.44e+10 7.41e+10 7.41e+10
P 8.14e+10 8.21e+10 9.19e+10

thread
S 3.70e+10 4.32e+10 4.65e+10
P 4.38e+10 1.12e+11 –

TABLE II

Cholesky operation count (OPC) for PT-Scotch (S, top

lines) and ParMeTiS (P, bottom lines).

asynchronous matching algorithm does too many commu-
nications that are not shadowed by computations. A multi-
buffer version of the matching algorithm is therefore being
developed.
Although it corresponds to a current need within the
ScAlApplix project, to obtain as quickly as possible high
quality orderings of graphs with a size of a few tens of mil-
lions of vertices, sparse matrix ordering is not the appli-
cation field in which we expect to find the largest prob-
lem graphs, as existing parallel direct sparse linear system
solvers cannot currently handle full 3D meshes of a size
larger than about fifty million unknowns.
Therefore, basing on the software building blocks that we
have already written, we plan to extend the capabilities
of PT-Scotch to compute k-ary edge partitions of large
meshes for subdomain-based iterative methods, as well as
static mappings of process graphs, as the Scotch library
does sequentially.

References

[1] “MeTiS: Family of multilevel partitioning algorithms,” http://
glaros.dtc.umn.edu/gkhome/views/metis.

[2] “Jostle: Graph partitioning software,” http://staffweb.cms.
gre.ac.uk/~c.walshaw/jostle/.

[3] A. George and J. W.-H. Liu, Computer solution of large sparse
positive definite systems, Prentice Hall, 1981.

[4] S. T. Barnard and H. D. Simon, “A fast multilevel implementa-
tion of recursive spectral bisection for partitioning unstructured
problems,” Concurrency: Practice and Experience, vol. 6, no. 2,
pp. 101–117, 1994.

[5] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic
for improving network partitions,” in Proceedings of the 19th
Design Automation Conference. 1982, pp. 175–181, IEEE.

[6] C. Chevalier and F. Pellegrini, “Improvement of the efficiency
of genetic algorithms for scalable parallel graph partitioning
in a multi-level framework,” http://www.labri.fr/~pelegrin/
papers/scotch efficientga.pdf, submitted to EuroPar’2006.

[7] R. J. Lipton, D. J. Rose, and R. E. Tarjan, “Generalized nested
dissection,” SIAM Journal of Numerical Analysis, vol. 16, no. 2,
pp. 346–358, Apr. 1979.


