
1

Habilitation à Diriger des Recherches
  

École doctorale de Mathématiques et d'Informatique
Université de Bordeaux 1

 
 
 

Contributions au partitionnement de graphes parallèle 
multi-niveaux

 

(Contributions to parallel multilevel graph partitioning)

François Pellegrini

3 décembre 2009



2

Summary of the talk

• An introduction to combinatorial scientific computing and 
graph partitioning

• The multi-level framework

• Parallelization of the coarsening phase

• Parallelization of the refinement phase

• Conclusion and future directions for research



3

An introduction to combinatorial scientific computing and 
graph partitioning



4

Context

• Combinatorial scientific computing
• Community “concerned with the formulation, application 

and analysis of discrete methods in scientific 
applications” [Hendrickson & Pothen, 2007]

• Takes its mindset and toolset from two main streams of 
informatics :

• Graph theory
– Discrete algorithms

• Parallel computing
– Main problems and applications in the field of 

scientific computing



5

Sparse matrix ordering (1)

• Solve the linear system :

A.x = b

 where :

• A is symmetric (S) : A = AT (real) or A = A* (complex)

• A is definite-positive (DP) : ∀ x  0, xT.A.x > 0
– Brings numerical stability properties

• A is sparse : the number of non-zero terms in A is 
small compared to the size of the matrix

– Depends on problem type (not size)
– Usually in O(1) per row or column
– Reduced storage and computations



6

Sparse matrix ordering (2)

• When A is SDP, the linear system can be solved by means 
of Cholesky factorization :

A = L.LT

 where :
• L is lower triangular

• The factored system L.LT.x = b can then be solved by 
triangular solving :

• L.y = b

• LT.x = y



7

Fill-in (1)

• Storage for these additional terms has 
to be allocated even if they will hold 
numerical zeros

• Value cannot be known in advance
• Symbolic factorization

• When factorizing A into L.LT, L incurs fill-in
• In addition to preexisting terms of A, potential non-zero 

terms are created in L during the factorization process
• Variant of Gaussian elimination : for each column in 

index order, terms are added by merging patterns of left 
columns having non-zero entries of smallest index 
facing the current diagonal entry



8

Fill-in (2)

• Fill-in only depends on the order in which unknowns are 
processed

• Amounts to solving the permuted system PAPT.x = b
• Numerical stability of Cholesky factorization is not 

impacted by the order of the unknowns
• Yet, different orders can produce very different fill-ins



9

Adjacency graph

• Symmetric (and sparse) matrices can be represented on 
the form of adjacency graphs

• Vertices represent unknowns
• Edges represent extra-diagonal non zeros

– Unoriented edges (not arcs)
– No loop edges



10

Fill-reducing orderings (1)

• By nature of Gaussian elimination, a zero ai,j term of the 
matrix will incur fill-in during factorization if there exists in 
the adjacency graph a path linking vertices vi and vj, such 
that all intermediate vertices have indices smaller than 
min(i,j)



11

Fill-reducing orderings (2)

• Fill-reducing orderings are orderings which prevent as 
much fill-inducing paths as possible

• Two main classes of heuristics :
• Minimum degree methods [Tinney & Walker, 1967]

– Order first vertices with smaller degrees, so that 
fewer fill-inducing paths will be likely to pass 
through them

– Bottom-up strategy

• Nested dissection methods [George, 1973]
– Raise impassable barriers of high index vertices to 

break as many paths as possible
– Top-down strategy



12

Nested dissection (1)

• Top-down strategy for removing potential fill-inducing paths

• Principle [George, 1973]
• Find a vertex separator of the graph
• Order separator vertices with available indices of 

highest rank
• Recursively apply the algorithm on the separated 

subgraphs

A

S
B

A S B



13

Nested dissection (2)

• The problem of finding fill-reducing orderings has been 
transformed into a graph partitioning problem

• Balanced bisections are not the only way to go :
• Unbalanced bisections amount to one-way dissections

– Useful for graphs with large aspect ratio [George, 
1980]

• Bi-level multisections [Ashcraft & Liu, 1998]

• Yet, recursive bisection has useful properties suitable for 
parallel linear system solving :

• Balanced bipartitions provide broad and balanced 
elimination trees



14

Graph partitioning (1)

• Graph partitioning has proven useful in a wide number of 
application fields

• Used to model domain-dependent optimization 
problems

• “Good solutions” take the form of partitions which 
minimize vertex or edge cuts, while balancing the 
weight of graph parts

• NP-hard problem in the general case

• Many algorithms have been proposed in the literature :

• Graph algorithms, evolutionary algorithms, spectral 
methods, linear optimization methods, …



15

Graph partitioning (2)

• Two main problems for our team :
• Sparse matrix ordering for direct methods
• Domain decomposition for iterative 

methods

• These problems can be modeled as graph 
partitioning problems on the adjacency graph 
of symmetric positive-definite matrices

• Edge separator problem for domain 
decomposition

• Vertex separator problem for sparse 
matrix ordering by nested dissection



16

The multi-level framework



17

Graph partitioning algorithms

• Two main classes of partitioning algorithms :
• Global methods (e.g. genetic algorithms, simulated 

annealing, greedy graph algorithms)
– Consider all of the graph data
– Are most often very slow when quality is desired

• Local optimization heuristics (e.g. Fiduccia-
Mattheyses)

– Optimize an existing partition
– Applied after some global method
– Fast but have limited scope



18

Multi-level framework

• Principle [Hendrickson & Leland, 1994]
• Create a family of topologically equivalent coarser 

graphs by clustering groups of vertices
• Compute an initial partition of the smallest graph
• Propagate back the result, with local refinement



19

Coarsening (1)

• Coarsening amounts to quotienting finer graphs according 
to some clustering partition, to obtain a coarser graph of 
similar topological structure

• Several variants exist :
• Matching of vertex pairs [Hendrickson & Leland, 1994]

– Matchings do not need to be maximal
• Weighted aggregation of groups of vertices [Chevalier 

& Safro, 2009]
– Aims at reducing the impact of coarsening artifacts



20

Refinement

• The partition computed on the coarser graph is 
prolongated to the finer graphs

• All of the vertices in every cluster are assigned to the 
same part as the one of the associated coarse vertex

• The prolongated solution has the granularity of the 
coarser graph, because of coarsening artifacts

• The prolongated partition must be refined

• Only local refinement is needed since global shape is 
assumed to be good

• Use of local optimization algorithms



21

Local optimization algorithms (1)

• Try to improve a current partition by moving vertices 
between parts across the frontier

• The most widely used algorithms are greedy iterative graph 
algorithms

• Both fast and efficient

• Several variants exist :
• Kernighan-Lin (KL) [1970] : swaps of pairs of vertices 

between their two parts
• Fiduccia-Mattheyses (FM) [1982] : individual moves 

from one part to another
• Helpful sets [Diekmann et. al., 1995] : moves of clusters



22

Local optimization algorithms (2)

• Frontier vertices are moved according to their “gain value”, 
i.e. the improvement of the cut that results in moving them

• Gains are updated after every move
• Creates strong sequentiality constraints

• Detrimental moves can be accepted, provided that further 
beneficial moves are performed afterwards, which will 
result in an overall gain

• Hill-climbing from local minima of the cut cost function



23

The need to go parallel

• Problem size keeps increasing
• Graphs of more than ten million vertices cannot be 

handled on sequential computers
• Need for scalable parallel graph partitioning tools

• Some parallel graph partitioning tools already exist
• ParMeTiS [Schloegel, Karypis & Kumar, 1997]

• ParJOSTLE [Walshaw et al., 1997]

• Existing parallel tools evidence performance problems :
• Quality of partitions most often decreases when the 

number of processors increase
• State-of-the art local optimization algorithms are 

intrinsically sequential and do not parallelize well



24

The Scotch roadmap

• Devise robust parallel graph partitioning methods
• Should handle graphs of more than a billion vertices 

distributed across one thousand processors

• Improve sequential graph partitioning methods if possible
• Multi-level FM-like algorithms are both fast and efficient 

on a very large class of graphs but FM algorithms are 
intrinsically sequential

• Investigate alternate graph models (meshes/hypergraphs)

• Provide a software toolbox for scientific applications
• Scotch sequential software tools

• PT-Scotch parallel software tools



25

Design constraints

• Parallel algorithms have to be carefully designed
• Algorithms for distributed memory machines
• Preserve independence between the number of parts 

k and the number of processing elements P on which 
algorithms are to be executed

• Algorithms must be “quasi-linear” in |V| and/or |E|
• Constants should be kept small !

– Theory is not likely to help much...

• Data structures must be scalable :
• In |V| and/or |E| : graph data must not be duplicated

• In P and k : arrays in k|V| , k2, kP, P|V| or P2 are 
forbidden



26

Parallelization of the coarsening phase



27

Questions about parallel coarsening

• Is there an efficient and scalable way to compute 
matchings in parallel ?

• Matchings do not need to be minimal
• Matching process should avoid any bias

– Should not depend in any way on data distribution

• What do we do when coarse graphs are “too small” ?

• Processing time is dominated by communication start-
up time

– More processes mean more operating system and 
synchronization hazards



28

Parallel matching (1)

• All existing parallel coarsening algorithms base on parallel 
matching to cluster pairs of adjacent vertices

• Coarse graphs are built according to this clustering

• Doing the matching in parallel is not easy because :
• The quality of the matching is critical for cut quality

– Biases in the matching algorithm lead to significant 
loss of quality

• Synchronization is required between processes which 
bear adjacent vertices, to propagate part ownership 

• Graphs may be distributed in a way that requires much 
communication

– Else, the task would be too easy...



29

Parallel matching (2)

• Synchronization between non-local neighbors is critical
• Dependency chains or loops between mating requests 

can stall the whole algorithm because of sequential 
constraints

• Some distributed tie-breaking is required

• Too many requests decrease matching probability



30

Parallel matching by graph coloring (1)

• Principle [Karypis and Kumar, 1999]
• Compute a vertex coloring of the finer graph

– No two neighbor vertices have the same color
• A matching sweep is made of as many rounds as there 

are colors in the graph coloring
– Only vertices of the current color can ask for mating 

during their round

 

• Removes chains, as well as many collisions



31

Parallel matching by graph coloring (2)

• Vertex colorings are computed using a distributed version 
of Luby's algorithm

• Every vertex draws a random number
• Vertices which are local maxima are painted with the 

first color, after which they are removed from the graph
• The algorithm iterates until all vertices are colored

• Some colors have very few vertices
• Partial sequentialization of the algorithm
• Too many rounds for coloring, and for mating

Graph: 10millions, |V| =10,424 k, |E| = 78,649 k, =15.09, type: 3D electromagnetics mesh, CEA/CESTA 



32

Parallel probabilistic matching (1)

• Principle [Her & Pellegrini, 2009] [Chevalier, 2007]
• The algorithm consists in a fixed number of passes
• During each pass, yet unmatched vertices draw a 

random bit value.
– If it is zero, the vertex is inactive during the pass
– If it is one, the vertex sends a mating request to any 

one of its presumably unmatched neighbors
– Sought for vertices reply positively or negatively

• Reduces topological biases

• Improves mating probability when data are irregularly 
distributed



33

Parallel probabilistic matching (2)

• Unlike all of its predecessors, this algorithm makes no 
assumption on the distribution of the graph vertices

• Cannot induce any bias due to distribution artifacts
• Converges quickly

– 5 collective passes are enough to match 80 % of 
the vertices 



34

Parallelization of the coarsening phase (1)

• Once the parallel matching algorithm terminates, the 
coarsened graph is built

• Using the same number of processes as the one used 
by the finer graph

• At this stage, the coarsened graph can either be :
• Kept on the same number of processes

– Decreases memory and processing cost
• Folded on half of the processes [Karypis et al., 1997]

– To reduce communication cost and improve data 
locality (reduces bias of biased algorithms)

• Folded and duplicated on two subsets of processors 
[Chevalier & Pellegrini, 2008]



35

Parallelization of the coarsening phase (2)

• It is preferable to use folding and duplication only in the last 
stages of the coarsening process

• All of the processes will compute distinct initial 
partitions



36

Parallelization of the refinement phase



37

Questions about parallel refinement

• Can we find a way to use global algorithms instead of local 
optimization algorithms ?

• Local optimization algorithms do not parallelize well...

 
 

 

• Can we preserve as much as possible the quality of 
existing local optimization algorithms ?

• Especially needed for sparse matrix ordering
– Concerns “small” graphs, with less than one 

hundred million vertices



38

Band graphs (1)

• Principle [Chevalier & Pellegrini, 2006]
• Since only local improvements are necessary on the 

finer graph, it is not necessary to provide the refinement 
algorithm with all of the graph data, as only a small 
band around the projected separator is necessary



39

Band graph (2)

• Interests
• Band graphs need only be of width 3 around the 

projected separator
– Maximum distance at which fine vertices can be 

when their coarse vertices are neighbors
• Since band graphs are several orders of magnitude 

smaller than full graphs, expensive algorithms can be 
applied to them more easily

• Band graphs constrain refinement algorithms and 
prevent them from falling into local optima resulting 
from coarsening artifacts

• Distributed band graphs are easy to create



40

Multi-centralization (1)

• Principle [Chevalier & Pellegrini, 2008]
• Since band graphs are supposed to be small, they can 

be multi-centralized such that sequential local 
optimization algorithms can still be applied to their 
copies 



41

Multi-centralization (2)

Not scalable, but :
• Rather inexpensive for mesh graphs
• Yields results which are equivalent to, or even better 

than, the sequential version
– Better exploration of problem space

• Is fine, to date, for sparse matrix ordering

• Parallel algorithms can also be used
• Genetic algorithms [Chevalier & Pellegrini, 2006]
• Diffusion-based algorithms



42

Parallelization of nested dissection (1)

• Three levels of concurrency : [Chevalier & Pellegrini, 2006]
• In the nested dissection process itself

– Straightforward, coarse grain parallelism
– Redistribution of subgraph data across processors

• In the coarsening phase of the multi-level algorithm
– Synchronous probabilistic matching algorithm
– Folding and duplication in the coarser stages

• In the refinement process during the uncoarsening 
phase

– Multi-sequential optimization



43

Parallelization of nested dissection (2)

• After a separator has been computed, the two separated 
subgraphs are folded and redistributed each on a half of 
the available processors

• The two sub-trees are separated logically but also 
physically, which reduces network congestion

• Temporary folding thread (if MPI is thread-safe)



44

Results for parallel sparse matrix ordering (1)

• Metrics are :
• NNZ, the number of non zeros in L
• OPC, the operation count of Cholesky factorization

• Indirect metrics
• Many parameters impact solver performance
• Can't even be computed a priori

– We use separator size as the metric for bipartitions

Graph
Average 

Description|V| |E| degree
audikw1 944 38354 81.28 5.48E+12 3D mechanics mesh, Parasol
cage15 5154 47022 18.24 4.06E+16 DNA electrophoresis, UU

Size (×103) O
SS



45

Results  for parallel sparse matrix ordering (2)
Test Number of processes
case 2 4 8 16 32 64

audikw1

5.73E+12 5.65E+12 5.54E+12 5.45E+12 5.45E+12 5.45E+12

5.82E+12 6.37E+12 7.78E+12 8.88E+12 8.91E+12 1.07E+13

64.14 43.72 31.25 20.66 13.86 9.83

32.69 23.09 17.15 9.80 5.65 3.82

O
PTS

O
PM

t
PTS

t
PM



46

Results for parallel sparse matrix ordering (3)
Test Number of processes
case 2 4 8 16 32 64

cage15

4.58E+16 5.01E+16 4.64E+16 4.94E+16 4.58E+16 4.50E+16

4.47E+16 6.64E+16 † 7.36E+16 7.03E+16 6.64E+16

396.72 318.54 225.46 238.96 290.68 235.80

195.93 117.77 † 40.30 22.56 17.83

O
PTS

O
PM

t
PTS

t
PM



47

Recursive graph bipartitioning

• K-way graph partitioning can be approximated by a 
sequence of recursive bipartitionings

• Bipartitioning is easier to implement than k-way 
partitioning

– No need to choose the destination part of vertices
• It is only an approximation, but a rather good one for 

mesh graphs [Simon & Teng, 1993]



48

Diffusion algorithms (1)

• Principle [Walshaw, Cross & Everett, 1995]
• Optimize shapes of subdomains by analogy with the 

auto-organization of soap bubbles with respect to the 
shape of their interfaces

• Randomly select seeds, grow subdomains, and iterate 
to re-center seeds until convergence

Taken from [Meyerhenke & Schamberger, 2006]



49

Diffusion algorithms (2)

• Interest
• Improves partition shapes for FEM iterative methods
• Randomly select seeds, grow subdomains, and iterate 

to re-center seeds until convergence

• Drawbacks
• Do not explicitly enforce load balance
• Global iterative methods, slow for large graphs



50

Jug of the Danaides (1)

• Principle [Pellegrini 2007]
• Analogous to “bubble growing” algorithms but natively 

integrates the load balancing constraint
• The graph is modeled as a set of leaking barrels
• Two antagonistic liquids (Scotch and anti-Scotch) flow 

from two source vertices
• Liquids vanish when they meet



51

Jug of the Danaides (2)

• Sketch of the algorithm



52

Jug of the Danaides (3)

• Outline of the algorithm
• Iterative algorithm
• Every barrel leaks (at most) one unit of liquid per unit of 

vertex weight and of time
– Similar to return drain edges in the Bubble-FOS/C 

algorithm of [Meyerhenke & Schamberger, 2006]

• Injecting |WV|/2 units of each of the liquids ensures 
convergence (whole system leaks at most |Wv| per turn)

– Anchor vertices of band graphs taken as sources
• No need to wait for full convergence

– We just want to know which liquid dominates in each 
of the barrels



53

Jug of the Danaides (4)

• While the nature of the algorithm is very similar to diffusion 
methods, it has some specificities

• Current diffusion-based methods compute and stabilize 
flows from each of the seeds, then select for each 
vertex the flow of maximum value

– Data of size k|V| has to be maintained
– Our algorithm elects the winner at each step and 

requires only data of size |E|
• The amount of liquid leaked is not a fraction of the 

amount present on each vertex, but a fixed value
– Flows cannot span on more than the prescribed 

amount of weights



54

Jug of the Danaides (5)

• Using JotD as the optimization algorithm in the multi-level 
process :

• Smooths interfaces
• Is slower than sequential FM (20 times for 500 

iterations)



55

Jug of the Danaides (6)

• Average, on a set of test graphs, of recursive bipartitioning 
results with respect to cut size (Cut), load imbalance ratio 
(MaCut) and maximum diameter of parts (MDi), 
compared to multi-level banded Fiduccia-Mattheyses

Method RMBD RMBDF
500 200 100 40 500 40 40

+19.51 +20.02 +18.15 +21.49 +2.26 +3.10 3.17
+0.58 +1.12 +1.80 +9.76 0.95 0.29 0.21
+3.86 +1.92 +4.69 +5.43 +2.26 +3.10 3.24
21.31 9.33 5.33 2.93 21.47 2.99 3.07

RMBaDF

Cut  (%)
 MaCut (%)
 MDi (%)
 Time ()



56

Parallel graph partitioning by R.B. (1)

Graph |V| (×103) |E| (×103) Avg.Deg. Description

10MILLIONS 10424 78649 15.09 3D electromagnetics

23MILLIONS 23114 175686 15.20 3D electromagnetics

45MILLIONS 45241 335749 14.84 3D electromagnetics

82MILLIONS 82294 609508 14.81 3D electromagnetics

AUDIKW1 944 38354 81.28 3D mechanics mesh

BRGM 3699 151940 82.14 3D geophysics mesh

CAGE15 5154 47022 18.24 DNA electrophoresis

COUPOLE8000 1768 41657 47.12 3D structural mechanics

THREAD 30 2220 149.32 Connector problem

• Sample test graphs



57

Runtime and partition quality (1)

1 10 100 1000

10

100

1000

PT-Scotch

45MILLIONS

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

# of Proc [log]

T
im

e
 (

se
c .

) 
[lo

g
]

1 10 100 1000

0

2000000

4000000

6000000

8000000

10000000

12000000

PT-Scotch

45MILLIONS

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

# of Proc [log]

C
ut

 s
iz

e



58

1 10 100 1000

10.00

100.00

1000.00

PT-Scotch

82MILLIONS 2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

# of Proc. [log]

T
im

e
 (

se
c.

) 
[lo

g]

1 10 100 1000

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

PT-Scotch

82MILLIONS

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

# of Proc. [log]

C
ut

 s
iz

e

Runtime and partition quality (2)



59

Runtime and partition quality (3)

Test
case Number of processes:Number of parts

32:2 32:32 32:1024 384:2 384:256 384:1024 PPeak:2 

45MILLIONS

CPTS 1.15E+05 1.13E+06 7.24E+06 1.06E+05 3.65E+06 7.29E+06 1.05E+05

CPM 1.26E+05 1.38E+06 7.57E+06 1.39E+05 3.81E+06 7.62E+06 1.26E+05

tPTS 24.24 102.29 150.56 13.85 28.08 30.04 10.26(192) 

tPM 84.55 48.24 36.21 28.72 25.65 23.15 21.51(256) 

82MILLIONS

CPTS 1.46E+05 1.90E+06 1.08E+07 1.40E+05 5.57E+06 1.09E+07 1.45E+05

CPM 1.78E+05 2.12E+06 1.13E+07 1.73E+05 5.95E+06 1.14E+07 1.61E+05

tPTS 46.48 189.42 297.76 23.26 46.91 61.54 16.93(192) 

tPM 176.4 85.87 76.42 32.83 30.22 26.9 30.00(256)



60

Runtime and partition quality (4)

Test
case Number of processes:Number of parts

32:2 32:32 32:1024 384:2 384:256 384:1024 PPeak:2 

AUDIKW1

CPTS 1.08E+05 2.08E+06 1.00E+07 1.05E+05 5.81E+06 9.96E+06 1.11E+05

CPM 1.14E+05 2.04E+06 9.76E+06 1.15E+05 5.76E+06 9.76E+06 1.12E+05

tPTS 3.51 11.84 17.35 5.87 10.72 10.06 3.01(128) 

tPM 3.9 3.59 5.27 4.45 4.62 4.51 2.37(192) 

THREAD

CPTS 5.60E+04 6.15E+05 1.82E+06 5.60E+04 1.29E+06 1.82E+06 5.62E+04

CPM 5.62E+04 6.03E+05 1.84E+06 5.73E+04 1.29E+06 1.84E+06 5.63E+04

tPTS 0.53 0.97 1.07 0.85 1.27 1.28 0.47(16) 

tPM 0.77 0.75 1.99 2 0.89 2.07 0.52(8) 



61

Runtime and partition quality (5)

                                              
                                 

• Partition quality of 
ParMeTiS is irregular for 
small numbers of parts

• Gets worse when 
number of parts 
increases as recursive 
bipartitioning prevents 
global optimization 
(greedy algorithm)

10 100 1000
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

• Cut size ratio is most often in favor of PT-Scotch vs. 
ParMeTiS up to 2048 parts

             82MILLIONS



62

Runtime and partition quality (6)

• In most cases, PT-Scotch produces better partitions
• About 20% better when bipartitioning graph 

82MILLIONS

• For a large number of parts, ParMeTiS provides slightly 
better for graphs AUDIKW1, THREAD and BRGM

• These graphs have a high average degree
• The greedy nature of recursive bipartitioning negatively 

impacts cut quality on the long term



63

Conclusion



64

Where we are now...

• Parallel sparse matrix ordering
• Bottleneck removed for the near future

– More work to be done as size of problems increases
• Graph of 82+ million unknowns ordered and system 

solved by the PaStiX parallel direct solver on the 
Tera10 machine at CEA

• Parallel graph partitioning
• Parallel k-way graph partitioning by recursive 

bipartitioning



65

The Scotch software package

• All of the algorithms are available to the community
• Scientific reproducibility
• Freely available from the INRIA Gforge
• Modular and documented code (≈100k lines of C)

• Upgrades on a regular basis
• Version 4.0 : February 2004 : 2500+ direct downloads

• About one major release per year (5.2 almost ready)

• Usage by third-party software
• Emilio (CEA/CESTA), Code_Aster (EDF), Dolfin/Fenics 

(Simula), MUMPS (ENSEEITH, LIP & LaBRI), PaStiX 
(LaBRI), SuperLU (U. C. Berkeley), Zoltan (Sandia), ...



66

Where we are heading to...

• Upcoming machines will comprise very large numbers of 
processing units, and will possess NUMA / heterogeneous 
architectures

• More than a million processing elements on the Blue 
Waters machine to be built at UIUC (joint lab with 
INRIA)

• Impacts on our research :

• Topology of target architecture has to be taken into 
account

– Static mapping and not only graph partitioning
• Dynamic repartitioning capabilities are mandatory



67

• Extension to k parts of the multilevel framework used for 
recursive bipartitioning

• Straightforward for the multi-level framework itself
• K-way band graphs are already available

 
 
 

 
 

• Stability problems with our diffusion-based algorithms

Parallel direct k-way graph partitioning



68

Parallel static mapping (1)

• • Compute a mapping of V(S) and E(S) of source graph S to 
V(T) and E(T) of target architecture graph T, respectively

• Communication cost function accounts for distance

S

T

• Static mapping features 
are already present in the 
sequential Scotch library

• We have to go parallel



69

Parallel static mapping (2)

• Partial cost function in the context of recursive bipartitioning

• Decision making depends on available mapping information



70

Parallel static mapping (3)

• Recursive bi-mapping cannot be transposed in parallel
• All subgraphs at some level are supposed to be processed 

simultaneously for parallel efficiency

• Yet, ignoring decisions in neighboring subgraphs can lead to 
“twists”

• Only sequential processing works!

1

2

4

3



71

Parallel static mapping (4)

• Parallel multilevel framework for static mapping
• Parallel coarsening and k-way mapping refinement

• Initial mapping by sequential recursive bi-mapping



72

Dynamic remeshing and repartitioning

• Move upwards from the production of general-purpose 
tools to more specific application domains

• Motivation for joining the Bacchus team
• Parallel adaptive remeshing

• Take into account the numerical stability of the problem 
being studied

• Take advantage of the work done in PT-Scotch on 
distributed graphs

• Dynamically repartition the remeshed graphs



73

Thanks !

• To all the Scotch-men :
• Cédric Chevalier
• Jun-Ho Her
• Sébastien Fourestier
• Cédric Lachat


