
Mobile Agent Computing
Example:

Label-Guided Graph Exploration with constant memory

David Ilcinkas

Joint work with
R. Cohen, P. Fraigniaud, A. Korman, and D. Peleg

David Ilcinkas Mobile Agent Computing



Graph exploration

Goal

A mobile entity has to traverse every edge of an unknown
anonymous graph.

Constraint

The mobile entity should have little memory.

David Ilcinkas Mobile Agent Computing



Graph exploration

Goal

A mobile entity has to traverse every edge of an unknown
anonymous graph.

Constraint

The mobile entity should have little memory.

David Ilcinkas Mobile Agent Computing



Particular case: Labyrinths

Definition

Grid with missing edges

Knowledge of North, South, East, West

David Ilcinkas Mobile Agent Computing



Particular case: Labyrinths

Definition

Grid with missing edges

Knowledge of North, South, East, West

David Ilcinkas Mobile Agent Computing



Motivations

Exploration by mobile agents

Physical robot: exploration of environments unreachable
by humans

Software agent: network maintenance, ressource discovery

Equivalence between logic and automata

Exploring finite automata with nested pebbles

First-order logic with transitive closure

Space complexity theory

Graph exploration is related to L ⊆ SL ⊆ NL

Exploration of undirected graphs: complete for SL

Exploration of directed graphs: complete for NL

David Ilcinkas Mobile Agent Computing



Motivations

Exploration by mobile agents

Physical robot: exploration of environments unreachable
by humans

Software agent: network maintenance, ressource discovery

Equivalence between logic and automata

Exploring finite automata with nested pebbles

First-order logic with transitive closure

Space complexity theory

Graph exploration is related to L ⊆ SL ⊆ NL

Exploration of undirected graphs: complete for SL

Exploration of directed graphs: complete for NL

David Ilcinkas Mobile Agent Computing



Motivations

Exploration by mobile agents

Physical robot: exploration of environments unreachable
by humans

Software agent: network maintenance, ressource discovery

Equivalence between logic and automata

Exploring finite automata with nested pebbles

First-order logic with transitive closure

Space complexity theory

Graph exploration is related to L ⊆ SL ⊆ NL

Exploration of undirected graphs: complete for SL

Exploration of directed graphs: complete for NL

David Ilcinkas Mobile Agent Computing



Unknown, anonymous

Unknown

Unknown topology

Unknown size (no upper bound)

Anonymous

No node labeling

Local edge labeling

David Ilcinkas Mobile Agent Computing



Unknown, anonymous

Unknown

Unknown topology

Unknown size (no upper bound)

Anonymous

No node labeling

Local edge labeling

David Ilcinkas Mobile Agent Computing



Unknown, anonymous

Unknown

Unknown topology

Unknown size (no upper bound)

Anonymous

No node labeling

Local edge labeling

David Ilcinkas Mobile Agent Computing



Example of an anonymous graph

1
4

3

2

2
3

4

1

2
1

3

David Ilcinkas Mobile Agent Computing



Mealy automaton (1)

1

6
4

2

7

3
8

5
input port

degree

S

David Ilcinkas Mobile Agent Computing



Mealy automaton (1)

1

6
4

2

7

3
8

5

S’

output port

David Ilcinkas Mobile Agent Computing



Mealy automaton (2)

Input

S : current state

i : input port number

d : node’s degree

Transition function

(S ′, j) = µ (S , i , d)

Output

S ′ : new state

j : output port number

David Ilcinkas Mobile Agent Computing



Impossibility results

Budach, Math. Nachrichten, 1978
Automata and Labyrinths

No finite automaton can explore all graphs.

A JAG (Jumping Automaton for Graphs) is a team of finite
automata that cooperate constantly. Moreover an automaton
can jump to a vertex occupied by another automaton.

Cook, Rackoff, SIAMJC, 1980
Space lower bounds for maze threadability on restricted
machines

No JAG can explore all graphs.

David Ilcinkas Mobile Agent Computing



Impossibility results

Budach, Math. Nachrichten, 1978
Automata and Labyrinths

No finite automaton can explore all graphs.

A JAG (Jumping Automaton for Graphs) is a team of finite
automata that cooperate constantly. Moreover an automaton
can jump to a vertex occupied by another automaton.

Cook, Rackoff, SIAMJC, 1980
Space lower bounds for maze threadability on restricted
machines

No JAG can explore all graphs.

David Ilcinkas Mobile Agent Computing



Impossibility results

Budach, Math. Nachrichten, 1978
Automata and Labyrinths

No finite automaton can explore all graphs.

A JAG (Jumping Automaton for Graphs) is a team of finite
automata that cooperate constantly. Moreover an automaton
can jump to a vertex occupied by another automaton.

Cook, Rackoff, SIAMJC, 1980
Space lower bounds for maze threadability on restricted
machines

No JAG can explore all graphs.

David Ilcinkas Mobile Agent Computing



Our model

Model

An oracle colors (labels) the graph to help the automaton.

The finite automaton can read the color of the node as
an input of its transition function.

Goal

Use the smallest possible number of colors.

David Ilcinkas Mobile Agent Computing



Our results

Theorem 1: Three colors

There exist a finite automaton and an algorithm coloring in
three colors such that the automaton can explore all graphs.

Theorem 2: Two colors

There exist an automaton of O(log∆) memory bits and an
algorithm coloring in only two colors such that the automaton
can explore all graphs of maximum degree ∆.

David Ilcinkas Mobile Agent Computing



Our results

Theorem 1: Three colors

There exist a finite automaton and an algorithm coloring in
three colors such that the automaton can explore all graphs.

Theorem 2: Two colors

There exist an automaton of O(log∆) memory bits and an
algorithm coloring in only two colors such that the automaton
can explore all graphs of maximum degree ∆.

David Ilcinkas Mobile Agent Computing



Three colors are enough

choose arbitrarily a node as the root
color all nodes according to their distance d to the root

distance d ∼= 0[n] red
distance d ∼= 1[n] blue
distance d ∼= 2[n] black

r

The smallest port number leading to the above layer defines
the parent in the spanning tree.

David Ilcinkas Mobile Agent Computing



Three colors are enough

choose arbitrarily a node as the root
color all nodes according to their distance d to the root

distance d ∼= 0[n] red
distance d ∼= 1[n] blue
distance d ∼= 2[n] black

r

12
3

45

The smallest port number leading to the above layer defines
the parent in the spanning tree.

David Ilcinkas Mobile Agent Computing



Three colors are enough

choose arbitrarily a node as the root
color all nodes according to their distance d to the root

distance d ∼= 0[n] red
distance d ∼= 1[n] blue
distance d ∼= 2[n] black

r

12
3

45

The smallest port number leading to the above layer defines
the parent in the spanning tree.

David Ilcinkas Mobile Agent Computing



Three colors are enough

choose arbitrarily a node as the root
color all nodes according to their distance d to the root

distance d ∼= 0[n] red
distance d ∼= 1[n] blue
distance d ∼= 2[n] black

r

The smallest port number leading to the above layer defines
the parent in the spanning tree.

David Ilcinkas Mobile Agent Computing



Only two colors?

Layer 1: red

Layer 2: blue

Layer 3: red

Layer 4: red

Layer 5: red

Layer 6: blue

Layer 7: blue

Layer 8: blue

David Ilcinkas Mobile Agent Computing



Open problem

Conclusion

Three colors are sufficient for arbitrary graphs.

Two colors are necessary and sufficient for graphs of
constant degree.

Open problem

Are two colors sufficient for arbitrary graphs?

David Ilcinkas Mobile Agent Computing



Open problem

Conclusion

Three colors are sufficient for arbitrary graphs.

Two colors are necessary and sufficient for graphs of
constant degree.

Open problem

Are two colors sufficient for arbitrary graphs?

David Ilcinkas Mobile Agent Computing


