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Abstract

In weighted trees, all edges are endowed with positive integral weights.

We enumerate weighted bicolored plane trees according to their weight

and number of edges.

1 Preliminaries

Weighted trees are natural combinatorial objects, interesting to study in their
own sake. Also, they play an important role in certain questions of number
theory: see, for example, [6], [7], [1].

Definition 1 (Weighted tree) A weighted bicolored plane tree, or a weighted

tree, or just a tree for short, is a bicolored plane tree whose edges are endowed
with positive integral weights. The sum of the weights of the edges of a tree is
called the total weight of the tree.

The degree of a vertex is the sum of the weights of the edges incident to this
vertex. Obviously, the sum of the degrees of black vertices, as well as the sum of
the degrees of white vertices, is equal to the total weight n of the tree. Let the
tree have p black vertices, of degrees α1, . . . , αp, and q white vertices, of degrees
β1, . . . , βq, respectively. Then the pair of partitions (α, β) is called passport of
the tree.

A tree, all of whose edges are of weight 1, are called ordinary trees. Leaving
aside the weights of a weighted tree and considering only the underlying plane
tree, we speak of a topological tree.

The adjective plane in the above definition means that our trees are consid-
ered not as mere graphs but as plane maps. More exactly, this means that the
cyclic order of branches around each vertex of the tree is fixed, and changing this
order will in general give a different tree. All the trees considered in this paper
will be endowed with the “plane” structure; therefore, the adjective “plane” will
often be omitted.
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Example 2 (Weighted tree) An example of a weighted tree is given in Fig. 1.
The total weight of this tree is equal to n = 18, and its passport is (α, β) =
(522312, 71614111).
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Figure 1: Weighted tree. The weights not explicitly indicated are equal to 1.

Definition 3 (Rooted tree) A tree with a distinguished edge is called rooted

tree, and the distinguished edge itself is called its root. We consider the root
edge as being oriented from black to white.

The goal of this paper is the enumeration of rooted weighted (bicolored
plane) trees.

2 Statement of the main theorem

Theorem 4 (Enumeration of weighted trees) Let an denote the number

of rooted weighted bicolored plane trees of weight n. Then the generating function

f(t) =
∑

n≥0
antn is equal to

f(t) =
1 − t −

√
1 − 6 t + 5 t2

2 t
(1)

= 1 + t + 3 t2 + 10 t3 + 36 t4 + 137 t5 + 543 t6 + 2219 t7 + 9285 t8 + . . .

Numbers an satisfy the following recurrence relation:

a0 = 1, a1 = 1, an+1 = an +

n
∑

k=0

akan−k for n ≥ 1. (2)

The asymptotic formula for the numbers an is

an ∼ 1

2

√

5

π
· 5n n−3/2. (3)
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Let bm,n denote the number of rooted weighted bicolored plane trees of

weight n with m edges. Then the generating function h(s, t) =
∑

m,n≥0
bm,nsmtn

is equal to

h(s, t) =
1 − t −

√

1 − (2 + 4s) t + (1 + 4s) t2

2st
(4)

= 1 + st + (s + 2s2) t2 + (s + 4s2 + 5s3) t3 +

= (s + 6s2 + 15s3 + 14s4) t4 + . . .

The following is an explicit formula for the numbers bm,n:

bm,n =

(

n − 1

m − 1

)

· Catm =

(

n − 1

m − 1

)

· 1

m + 1

(

2m

m

)

, (5)

where Catm is the m-th Catalan number.

Denote |Aut(T )| the order of the automorphism group of a tree T . Let cn

denote the number of non-isomorphic non-rooted trees T of weight n, the con-

tribution of a tree T to the total sum being equal to 1/|Aut(T )|. Then

cn =
∑

T

1

|Aut(T )| =

n
∑

m=1

bm,n

m
, (6)

where the first sum is taken over all the non-isomorphic non-rooted weighted

trees T of weight n.

The sequence an is listed in the On-Line Encyclopedia of Integer Sequences
[5] as the entry A002212. It has many different interpretations, some of them
coming from chemistry. Among the various interpretations there are “multi-
trees” (Roland Bacher, 2005) which correspond to our weighted trees. Roland
Bacher informed the author that these trees appeared as a byproduct of his
earlier topological studies. Some of the above-stated formulas may also be found
in [5].

Example 5 (Trees of weight 4) Fig. 2 shows the trees of weight 4. There
are ten trees in the picture but in fact there are 16 non-isomorphic (non-rooted)
trees of weight 4. Indeed, when we exchange black and white, four trees remain
isomorphic to themselves while six others don’t, so we must add to the set the
six missing trees.

Near each tree, the number of its possible rootings is indicated, with color
exchange taken into account. We see that the total number of trees is 36,
which is the coefficient a4 in front of t4 in f(t), see (1). Among these 36 trees,
there is one tree with one edge, six trees with two edges, 15 trees with three
edges, and 14 trees with four edges. These are the coefficients of the polynomial
s + 6s2 + 15s3 + 14s4 which stands in front of t4 in h(s, t), see (4).

The number c4, according to (6), is equal to

1 +
6

2
+

15

3
+

14

4
= 12

1

2
.
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And, indeed, among the 16 non-isomorphic non-rooted trees there are ten asym-
metric trees, four trees with the symmetry of order 2, and two trees with the
symmetry order 4, which gives

10 + 4 · 1

2
+ 2 · 1

4
= 12

1

2
.

We leave the details to the reader.
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Figure 2: Near each tree, the number of its possible rootings is indicated, with an

eventual color exchange taken into account. The total number of rooted trees is 36.

A proof of Theorem 4 is given in Sect. 4. Certain preliminary constructions,
necessary for the proof, are carried out in Sect. 3.

3 Dyck words and weighted Dyck words

There is a standard way of encoding rooted topological (non-weighted) plane
trees by Dyck words and Dyck paths. We start on the left bank of the root edge
and go around the tree in the clockwise direction, writing the letter x when we
follow an edge for the first time, and the letter y when we follow it the second
time on its opposite side. A Dyck path corresponding to a Dyck word is a path
on the plane which starts at the origin and takes a step (1, 1) for every letter x
and a step (1,−1) for every letter y.

These objects can be easily characterized. For a word w which is a concate-
nation of the three words, w = u1u2u3 (either is allowed to be empty), we call
u1 a prefix, u2 a factor, and u3 a suffix of w.

Definition 6 (Dyck words and Dyck paths) A Dyck word is a word w in
the alphabet {x, y} such that |w|x = |w|y (here |w|x and |w|y stand for the
number of occurences of x and y in w), while for any prefix u of w we have
|u|x ≥ |u|y. A Dyck path is a path on the plane which starts at the origin, takes
steps (1, 1) and (1,−1), and finishes on the horizontal axis, while always staying
on the upper half-plane.
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Fig. 3 illustrates these notions. The root edge in the tree is shown by the
thick line, while the initial letter x is shown in a bigger font.
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Figure 3: A rooted bicolored plane tree and its encoding by the corresponding Dyck

word and Dyck path.

Remark 7 (Empty Dyck word) A Dyck word may be empty. Then it cor-
responds to the tree consisting of a single vertex. Making an exception to the
general rule, we do not color this vertex in black or white. Thus, there exists a
single empty word, and a single tree without edges.

The following proposition is a trivial consequence of the above construction.

Proposition 8 (Trees and Dyck words) There is a bijection between rooted

bicolored plane trees and Dyck words.

There remains very little to do in order to describe weighted trees. There
is a natural notion of coupling the letters of a Dyck word: a couple is the pair
of letters (x, y) standing on the opposite sides of the same edge. It is easy to
recognize a couple in a word or in the path. Let x, y be a pair of letters in a
Dyck word w, where x comes before y. Consider the factor xuy of w which
starts with x and terminates with y. Then the pair (x, y) forms a couple if and
only if the factor u between x and y is a Dyck word. In a Dyck path, we take an
ascending step corresponding to a letter x and go horizontally until we meet a
descending step opposite to it: this step corresponds to the letter y which forms
a couple with x. In Fig. 3, an example of a couple, both on the tree and in the
word, is indicated in a boldface font, and the dashed arrow shows how to find
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the “opposite” step. The couple (x, y) in which x is the very first letter of the
Dyck word, corresponds to the root edge.

Now, returning to the weighted trees, we do the following: for every edge
of the tree, we take the corresponding couple (x, y) and replace it with (xi, yi)
where i is the weight of the edge.

Definition 9 (Weighted Dyck words) A weighted Dyck word is a word in
the infinite alphabet {xi, yi}i≥1 which is a Dyck word in which every couple
of letters (x, y) is replaced by a certain couple (xi, yi). We say that a couple
(xi, yi) has the weight i, and the weight of a word is the sum of the weights of
all its couples.

Proposition 10 (Weighted words and trees) There is a bijection between

rooted weighted bicolored plane trees and weighted Dyck words.

4 Proof of the main theorem

Every non-empty Dyck word w has a unique decomposition of the form w =
xuyv where u and v are themselves Dyck words (maybe empty). Here, obviously,
x is the first letter of w, and y is the letter coupled with it. The corresponding
step in the Dyck path is the descending step of the first return of the path to
the horizontal axis.

In the same way, every non-empty weighted Dyck word w has a unique
decomposition of the form xiuyiv for some i ≥ 1, where u and v are weighted
Dyck words.

Let D be the formal sum of all the weighted Dyck words, that is, the formal
power series

D = ε + x1y1 + x2y2 + x1x1y1y1 + x1y1x1y1 + x3y3 + x1x2y2y1 +

x1y1x2y2 + x2x1y1y2 + x2y2x1y1 + x1x1x1y1y1y1 + . . . (7)

in non-commuting variables xi, yi, i = 1, 2, . . ., where ε stands for the empty
word. (In order to write down this series we must choose a total order on the
set of words. A particular choice of the order is irrelevant. In (7), the words are
ordered, first, by their weight, then, for a given weight, by the number of edges,
and then, for a given weight and number of edges, in the alphabetic order.)
Then, the above decomposition of the words of D in the form xiuyiv implies
the following equation for D:

D = ε + x1Dy1D + x2Dy2D + . . . = ε +
∞
∑

i=1

xiDyiD . (8)

Now, let us do the following:

• replace ε and each occurrence of a letter yi in D by a factor 1;
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• replace each occurrence of a letter xi in D by s ti;

• make the variables s and t commute.

Then, every word w in D is transformed into a word smtn where m is the
number of occurences of the letters xi, i ≥ 1, in w (or, equivalently, the number
of edges of the weighted tree Tw corresponding to w), and n is the weight of w
(or, equivalently, the total weight of Tw). Therefore, combining similar terms
we get the generating function h(s, t) =

∑

m,n≥0
bm,nsmtt. At the same time,

equation (8) is transformed into the following quadratic equation for h(s, t):

h = 1 + s

(

∞
∑

i=1

ti

)

h2 = 1 +
st

1 − t
· h2. (9)

Solving this equation, and choosing the sign in front of the square root in such a
way as to avoid a pole at zero, we obtain formula (4). Then, substituting s = 1
in (4) we get (1).

In order to obtain the asymptotic expression (3) for the numbers an it suf-
fices to apply to f(t) the ready-made formulas of asymptotic analysis of the
coefficients of generating functions, see, for example, Ch. VI of the book [2].
The only thing to note is that

1 − 6t + 5t2 = (1 − t)(1 − 5t).

In order to prove (5), we proceed as follows. There are Catm topological
rooted trees with m edges. Starting at the root edge, we go around a tree in the
clockwise direction and attribute a non-zero weight to every newly encountered
edge. There are

(

n−1

m−1

)

ways to do that. Indeed, put n dots in a row, and
distribute m−1 separators among n−1 places between the dots. This procedure
splits the number n into m non-zero parts.

In order to prove the recurrence (2), consider separately the trees of weight
n + 1 having the root edge of weight 1, and the trees of weight n + 1 having
the root edge of weight i ≥ 2. The weighted Dyck words corresponding to the
trees of the first kind are of the form x1uy1v, where u and v are themselves
weighted Dyck words. The sum of the weights of u and v is n; denoting the
weight of u by k, so that the weight of v becomes n − k, and summing over
the k = 0, 1, . . . , n, we get the term

∑n
k=0

akan−k of (2). Now, all the trees of
weight n+1 having the root edge of weight i ≥ 2 are obtained from the trees of
weight n having the root edge of weight i− 1, by adding one unit to the weight
of the root. This gives the term an in the right-hand part of (2).

Finally, (6) follows from the fact that there are m choices of a root edge in
a tree T with m edges, but if this tree has non-trivial symmetries then some of
these choices produce isomorphic rooted trees. The number of non-isomorphic
rootings is m/|Aut(T )|. Thus, dividing by m, we get the factor 1/|Aut(T )|.

Theorem 4 is proved. �
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5 Enumeration according to a passport: is an

explicit formula possible?

Let λ ⊢ n, λ = (λ1, λ2, . . . λk) be a partition of and integer n. Let us write λ in
the power notation:

λ = 1d12d2 . . . ndn , where
n
∑

i=1

di = k,
n
∑

i=1

i · di = n,

so that di is the number of the parts of λ equal to i. Denote

N(λ) =
(k − 1)!

d1! d2! . . . dn!
. (10)

The following theorem was proved by Tutte in [8] (1964) and was later general-
ized by Goulden and Jackson in [3] (1992):

Theorem 11 (Trees with a given passport) The number of ordinary root-

ed bicolored plane trees with the passport (α, β) is equal to

nN(α)N(β). (11)

Respectively, the number of the non-isomorphic ordinary bicolored plane trees

with the passport (α, β), each one of them counted with the factor 1/|Aut(T )|,
is equal to

∑

T

1

|Aut (T )| = N(α)N(β) (12)

where the sum is taken over the the non-isomorphic ordinary bicolored plane

trees with the passport (α, β).

The above theorem is much more powerful than our Theorem 4. First of all,
it gives an explicit formula. And, second, it enumerates the trees not according
to one or two parameters (as the weight and the number of edges in our case)
but according to a passport, which contains much more detailed information
about a tree.

Is a similar formula possible for weighted trees?
A major obstacle to obtaining such a formula in the weighted case stems

from the fact that the same passport can be realized by a tree and by a forest,
as one can see in a very simple example shown in Fig. 4.

5 3 3 2 3

Figure 4: The same passport (5131
, 5131) is realized by a forest and by a tree.
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Therefore, a direct, though in no way trivial approach to the problem in-
evitably leads to an inclusion-exclusion procedure, hence providing us not with
an explicit formula but rather with an algorithm of computing the needed num-
ber. Such an algorithm is found in [4].

This leads us to a kind of a philosophical question: what is an explicit
formula? The answer, of course, can only be informal. An explicit formula,
for example, could suggest “at a glance” that the number of trees with a given
passport is non-zero. A purely combinatorial proof of this fact in [6] had taken
more than two pages. A more subtle question is formulated as follows: when
there exists exactly one tree with a given passport? A classification of such trees,
obtained in [6], resulted from a truly cumbersome and more than 25 pages long
proof. An explicit formula might significantly simplify the proof of this result.
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