
Laurent Polynomial Moment Problem: A Case Study

Fedor Pakovich, Christian Pech, and Alexander K. Zvonkin

Abstract. In recent years, the so-called polynomial moment problem, moti-
vated by the classical Poincaré center-focus problem, was thoroughly studied,
and the answers to the main questions have been found. The study of a similar
problem for rational functions is still at its very beginning. In this paper, we
make certain progress in this direction; namely, we construct an example of a
Laurent polynomial for which the solutions of the corresponding moment prob-
lem behave in a significantly more complicated way than it would be possible
for a polynomial.

1. Introduction

The main result of this paper is a construction of a particular Laurent polyno-
mial with certain unusual properties. This Laurent polynomial is a counterexample
to an idea that, so far as the moment problem is concerned, rational functions would
behave in the same way as polynomials. The main interest of the paper, besides
the result itself, lies in a peculiar combination of methods which involve certainly
the complex functions theory but also group representations, Galois theory, and
the theory of Belyi functions and “dessins d’enfants”, while the motivation for the
study comes from differential equations.

In addition to theoretical considerations our project involves computer calcu-
lations. It would be difficult to present here all the details. However, we tried to
supply an interested reader with sufficient number of indications in order for him or
her to be able to reproduce our results. A less interested reader may omit certain
parts of the text and just take our word for it.

About a decade ago, M. Briskin, J.-P.Françoise, and Y. Yomdin in a series of
papers [2]–[5] posed the following

Polynomial moment problem. For a given complex polynomial P and

distinct complex numbers a, b, describe polynomials Q such that

(1.1)

∫ b

a

P i dQ = 0

for all integer i ≥ 0.

The polynomial moment problem is closely related to the center problem for
the Abel differential equation in the complex domain, which in its turn may be
considered as a simplified version of the classical Poincaré center-focus problem
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for polynomial vector fields. The center problem for the Abel equation and the
polynomial moment problem have been studied in many recent papers (see, e. g.,
[1]–[8], [10], [20]–[23]).

There is a natural sufficient condition for a polynomial Q to satisfy (1.1).

Namely, suppose that there exist polynomials P̃ , Q̃, and W such that

(1.2) P = P̃ ◦ W, Q = Q̃ ◦ W, and W (a) = W (b),

where the symbol ◦ denotes a superposition of functions: f1 ◦ f2 = f1(f2). Then,
after a change of variables z → W (z) the integrals in (1.1) are transformed to the
integrals

(1.3)

∫ W (b)

W (a)

P̃ i dQ̃

and therefore vanish since the polynomials P̃ i and Q̃ are analytic functions in C and
the integration path in (1.3) is closed. A solution of (1.1) for which (1.2) holds is
called reducible. For “generic” collections P , a, b any solution of (1.1) turns out to
be reducible. For instance, this is true if a and b are not critical points of P , see [10],
or if P is indecomposable, that is, if it cannot be represented as a superposition of
two polynomials of degree greater than one, see [14] (in this case (1.2) reduces to

the equalities Q = Q̃ ◦ P and P (a) = P (b), since deg P̃ is necessarily equal to 1).
Nevertheless, as it was shown in [13], if P (z) has several composition factors W
such that W (a) = W (b) then the sum of the corresponding reducible solutions may
be an irreducible one.

It was conjectured in [15] that actually any solution of (1.1) can be represented
as a sum of reducible ones. Recently this conjecture was proved in [20]. The proof
relies on two key components. The first one is a result of [16] which states that Q
satisfies (1.1) if and only if the superpositions of Q with branches P−1

i (z), 1 ≤ i ≤ n,
of the algebraic function P−1(z) satisfy a certain system of linear equations

(1.4)

n∑

i=1

fs,iQ(P−1
i (z)) = 0, fs,i ∈ Z, 1 ≤ s ≤ k,

associated to the triple P , a, b in an effective way.
The second key componenet is related to the vector subspace VP,a,b ⊂ Qn

spanned by the vectors

(fs,σ(1), fs,σ(2), ... , fs,σ(n)), 1 ≤ s ≤ k, σ ∈ GP ,

where GP is the monodromy group of P and fs, 1 ≤ s ≤ k, are vectors from (1.4).
By construction, the subspace VP,a,b is invariant under the action of GP , so the
idea is to obtain a full description of such subspaces. In short, it was proved in [20]
that if a transitive permutation group G ≤ Sn (this notation means that G is a
subgroup of Sn) contains a cycle of length n then the decomposition of Qn in irre-
ducible components of the action of G depends only on the imprimitivity systems
of G. Obviously, the monodromy group of a polynomial of degree n always contains
a cycle of length n which corresponds to the loop around infinity. Furthermore, im-
primitivity systems of GP correspond to functional decompositions of P . Therefore,
the structure of invariant subspaces of the permutation representation of GP over
Q depends only on the structure of functional decompositions of P , and a careful
analysis of system (1.4) and of the associated space VP,a,b eventually permits to
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prove that any solution of (1.1) is a sum of reducible solutions. Note that using
the decomposition theory of polynomials one can also describe these solutions in a
very explicit form (see [19]).

For example, in the simplest case of the problem corresponding to an inde-

composable polynomial P the above strategy works as follows. The only invariant
subspaces of the permutation representation of GP on Qn in this case are the
subspace V1 spanned by the vector (1, 1, . . . , 1), and its complement V ⊥

1 . Since
system (1.4) contains an equation whose coefficients are not all equal this implies
that VP,a,b = V ⊥

1 and therefore (1.4) yields that

Q(P−1
1 (z)) = Q(P−1

2 (z)) = · · · = Q(P−1
n (z))

identically over z. On the other hand, such an equality is possible only if Q = Q̃◦P

for some Q̃ ∈ C[z]. Finally, P (a) = P (b) since otherwise after the change of

variables z → P (z) we would obtain that Q̃ is orthogonal to all powers of z on
[P (a), P (b)] in contradiction to the Weierstrass theorem.

In the paper [18] the following generalization of the polynomial moment prob-
lem was investigated: for a given rational function F and a curve γ ⊂ CP1, describe
rational functions H such that

(1.5)

∫

γ

F i dH = 0

for all i ≥ 0. In particular, in [18] another version of system (1.4) was constructed:
its solutions, instead of the equality (1.5), guarantee only the rationality of the
generating function f(t) =

∑∞

i=0 mit
i for the moments

(1.6) mi =

∫

γ

F i dH .

On the other hand, it was shown that if the additional conditions H−1{∞} ⊆
F−1{∞} and F (∞) = ∞ are satisfied, then the rationality of f(t) actually implies
that f(t) ≡ 0.

The following modification of (1.2) is a natural sufficient condition imply-

ing (1.5): there exist rational functions F̃ , H̃ , and W such that

(1.7) F = F̃ ◦ W, H = H̃ ◦ W ,

the curve W (γ) is closed, and all the poles of the functions F̃ , H̃ lie “outside” W (γ)
(the term “outside” is written in quotation marks since it is defined also for self-
intersecting curves). We will call such a solution of (1.5) geometrically reducible.
Note that if γ is closed then geometrically reducible solutions always exist. Indeed,
one may take

W = F, H = H̃ ◦ F

where H̃ is any rational function with all its poles outside the curve F (γ). It is
also shown in [18] that, similarly to the case of a polynomial P , for a generic
rational function F (for example, for a function F whose monodromy group is the
full symmetric group) all solutions of (1.5) turn out to be geometrically reducible.
However, for a non-generic F the situation becomes much more complicated in
comparison with the polynomial moment problem, and some reasonable description
of solutions of (1.5) seems (at least for the moment) to be unachievable.
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In this paper we will consider a particular case of problem (1.5) which is espe-
cially interesting in view of its connection with the classical version of the Poincaré
center-focus problem. Namely, we will consider the following

Laurent polynomial moment problem. For a given Laurent polynomial L
which is not a polynomial in z or in 1/z, describe Laurent polynomials Q such that

(1.8)

∫

S1

Li dQ = 0

for all integer i ≥ 0.

In contrast to the polynomial moment problem, not any solution of the Lau-
rent polynomial moment problem is a sum of geometrically reducible solutions. For

example, as it was observed in [18], if L(z) = L̃(zd) for some d > 1, then the
residue calculation shows that condition (1.8) is satisfied for any Laurent polyno-
mial Q containing no terms of degrees which are multiples of d. We will call such a
solution of the Laurent polynomial moment problem algebraically reducible. Note
that, in distinction to geometrically reducible solutions which always exist, alge-
braically reducible solutions exist only if L is decomposable and has zd as its right
composition factor. One might think that any solution of the Laurent polynomial
moment problem is a sum of geometrically and/or algebraically reducible solutions
but, as we will see below, this is not the case either, although it seems that for a
“majority” of Laurent polynomials L this is the case.

It is natural to start the investigation of the Laurent polynomial moment prob-
lem by the study of the particular case where L is indecomposable. At least, in
this case there exist no algebraically reducible solutions. On the other hand, any

geometrically reducible solution of (1.8) must have the form Q = Q̃ ◦L, where Q̃ is
a rational function whose poles lie outside the curve L(S1). However, since Q is a

Laurent polynomial, it is easy to see that in this case Q̃ is necessarily a polynomial.
Furthermore, a sum of geometrically reducible solutions has the form

∑

i

Q̃i ◦ L =

(
∑

i

Q̃i

)
◦ L

and hence is itself a geometrically reducible solution. Thus, “expectable” (and
therefore not very interesting) solutions of the Laurent polynomial moment problem

for indecomposable L are of the form Q = Q̃(L), where Q̃ is a polynomial. Any
other solutions, when they exist, are of great interest since they show that the
situation is more complicated than one might hope.

Let L be an indecomposable Laurent polynomial of degree n, and let GL be its
monodromy group. We will always assume that L is proper, that is, it has poles
both at zero and at infinity. In this case the group GL contains a permutation with
two cycles: this permutation corresponds to the loop around infinity. Furthermore,
it follows from Theorem 4.5 of [18] that if the only invariant subspaces of the
permutation representation of GL on Qn are V1 and V ⊥

1 , then any solution of the
Laurent polynomial moment problem for L is geometrically reducible. Therefore,
if we want to find an example of a Laurent polynomial L for which there exist
solutions which are not geometrically reducible, we may use the following strategy:
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• First, find a permutation group G of degree n such that G would contain
a permutation with two cycles, and the permutation representation of G
on Qn would have more than two invariant subspaces.

• Then, realize G as the monodromy group of a Laurent polynomial L.
• And, finally, prove somehow the existence of non-reducible solutions.

This program was started in [18]. Namely, basing on Riemann’s existence
theorem it was shown that there exists a Laurent polynomial L of degree 10 such
that its monodromy group is, as a permutation group, isomorphic to S5 acting on
two-element subsets of the set of 5 points. The corresponding permutation action
of S5 on Q10 has more than two invariant subspaces. Furthermore, it was shown
in Sec. 8.3 of [18] that a general algebraic result of Girstmair [11] about linear
relations between roots of algebraic equations implies the existence of a rational
function Q which is not a rational function in L and such that the generating
function for the sequence of the moments

mi =

∫

S1

Li dQ, i ≥ 0

is rational. However, the methods of [18] do not permit to find L or Q explicitly
and tell us nothing about the structure of solutions of (1.8).

In this paper we provide a detailed analysis of the above example with the
emphasis on the two following questions of a general nature:

• First, how to construct a Laurent polynomial L starting from its mon-
odromy group GL?

• Second, how to describe solutions of (1.8) which are not geometrically
reducible ?

We answer both questions for the particular Laurent polynomial L given below.
Actually, we believe that our methods can be used in a more general situation
too and can serve as a “case study” for further research concerning the Laurent
polynomial moment problem.

The main result of this paper is an actual calculation of an indecomposable Lau-
rent polynomial L such that the corresponding moment problem has non-reducible
solutions, and a complete description of these solutions. Namely, we show that for

(1.9) L =
K (z − 1)

6
(z − a)

3
(z − b)

z5
,

where

K =
11

216
+

5

216

√
5, a = −3

2
+

1

2

√
5, b =

7

2
− 3

2

√
5 ,

there exist Laurent polynomials Q0 = 1, Q1, Q2, Q3, Q4 (we compute them explic-
itly in Sec. 4) such that the following statement holds:

Theorem 1.1. A Laurent polynomial Q is orthogonal to all powers of L on S1

if and only if Q can be represented in the form

Q =

4∑

j=0

(Rj ◦ L) · Qj

for some polynomials R0, R1, R2, R3, R4.



6 F. PAKOVICH, C. PECH, AND A. ZVONKIN

In other words, solutions of the moment problem for L form a 5-dimensional
module over the ring of polynomials in L (while in a generic case such a module
is one-dimensional and is therefore composed of polynomials in L and of nothing
else). The choice of the basis Qj is not unique, but once a basis is chosen the above
representation of Q becomes unique.

The paper is organized as follows. In Sec. 2 we give a detailed description of
the permutation action of S5 on Q10. In Sec. 3 we compute explicitly a Laurent
polynomial L whose monodromy group is permutation equivalent to this action.
Finally, in Sec. 4 we determine the above mentioned Laurent polynomials Qj and
prove Theorem 1.1.

Acknowledgments. The first author is grateful to C. Christopher, J. L. Bra-
vo, and M. Muzychuk for valuable discussions, and to the Max-Planck-Institut für
Mathematik for hospitality. The second author is indebted to the Center for Ad-
vanced Studies in Mathematics of the Ben-Gurion University for the financial sup-
port during his Post Docorate at Ben-Gurion University. The first and the third
authors wish to thank the International Centre for Mathematical Sciences (Edin-
burgh) for the possibility to discuss a preliminary version of this paper.

2. Permutation representation of S5 on Q10 with more than two

invariant subspaces

Consider the complete graph K5 = (V, E) having the vertex set V = {1, 2, 3, 4, 5}
and the edge set E consisting of all the subsets of V of size 2. The symmetric
group S5 acts on V and therefore also on E, and we thus obtain a transitive action
of S5 of degree 10. Moreover, the induced homomorphism S5 → S10 is obviously
injective. Let us identify the canonical basis

~e1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

~e2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0) ,

...
...

~e10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

of the space Q10 with the set E. This identification may in principle be arbitrary
but we have chosen the one which is more “readable”, see Fig. 1: the first five
vectors are associated, in a cyclic way, to the sides of the pentagon, while the last
five vectors are associated in the similar way to the sides of the inside pentagram.

Associating to each element of S5 a 10× 10 permutation matrix corresponding
to the action of this element on E we obtain a permutation representation of S5

on Q10. Any permutation representation of any finite group always has at least
two invariant subspaces: the subspace U1 of dimension 1 spanned by the vector
~1 = (1, 1, . . . , 1), and its orthogonal complement Un−1 = U⊥

1 of dimension n − 1
containing the vectors (x1, x2, . . . , xn) having

∑n
i=1 xi = 0. While the space U1 is

obviously irreducible, the space Un−1 may be, or may not be irreducible. We will
show that in our case it is reducible.

One of the ways to construct invariant subspaces in our example is to consider
subsets of edges which are sent to one another by the action of S5 on the vertices.
Let us take the fans Fi ⊂ E, i = 1, . . . , 5, where Fi is the set of edges of K5 incident
to the vertex i, see Fig. 2.
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Figure 1: The correspondence between the edges of the complete graph K5 and the

basis in Q10.

1

2

34

5

~e
1

~e
6

~e
9

~e5

~e2

~e7

~e10

~e3

~e
8

~e4

F1

1

2

34

5

~e
1

~e
6

~e
9

~e5

~e2

~e7

~e10

~e3

~e
8

~e4

F2

1

2

34

5

~e
1

~e
6

~e
9

~e5

~e2

~e7

~e10

~e3

~e
8

~e4

F3
1

2

34

5

~e
1

~e
6~e

9

~e5

~e2

~e7

~e10

~e3

~e
8

~e4

F4

1

2

34

5

~e
1

~e
6

~e
9

~e5

~e2

~e7

~e10

~e3

~e
8

~e4

F5

Figure 2: The fans Fi, that is, the sets of edges incident to the vertex i = 1, . . . , 5.

Obviously, any permutation of the vertices sends fans to fans. Therefore, the
vectors ~vi =

∑
u∈Fi

eu, or, more concretely,

~v1 = (1, 0, 0, 0, 1, 1, 0, 0, 1, 0) ,

~v2 = (1, 1, 0, 0, 0, 0, 1, 0, 0, 1) ,

~v3 = (0, 1, 1, 0, 0, 1, 0, 1, 0, 0) ,

~v4 = (0, 0, 1, 1, 0, 0, 1, 0, 1, 0) ,

~v5 = (0, 0, 0, 1, 1, 0, 0, 1, 0, 1)

(the first five and the last five components of these vectors move cyclically) span
an invariant subspace F ⊂ Q10. It is easy to verify that F is 5-dimensional. Since
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every edge is contained in exactly two fans we have
∑5

i=1 ~vi = (2, 2, . . . , 2) and
therefore F contains U1 as its subspace. The orthogonal complement of U1 in F is
a 4-dimensional invariant subspace U4 ⊂ Q10. The vectors

~v2 − ~v1 = (0, 1, 0, 0,−1,−1, 1, 0,−1, 1) ,

~v3 − ~v1 = (−1, 1, 1, 0,−1, 0, 0, 1,−1, 0) ,

~v4 − ~v1 = (−1, 0, 1, 1,−1,−1, 1, 0, 0, 0) ,

~v5 − ~v1 = (−1, 0, 0, 1, 0,−1, 0, 1,−1, 1) ,

each having equal number of ones and minus ones, are orthogonal to the vector ~1.
They are linearly independent, and therefore they span U4.

Another collection of subsets of E which is stable under the action of S5 is
the set of Hamiltonian cycles H ⊂ E, that is, cycles that visit each vertex exactly
once. A Hamiltonian cycle in K5 can be described by a 5-cycle c ∈ S5 which
indicates in which order the vertices are visited; note that c−1 describes the same
Hamiltonian cycle since our graph is undirected. The complement H = E \ H is
also a Hamiltonian cycle which corresponds to the permutation c2 (or to its inverse
c−2). There are 24 cyclic permutations in S5; they give rise to 12 Hamiltonian
cycles in K5 which form 6 pairs of mutually complementary cycles: see Fig. 3.

The vectors ~wk =
∑

u∈Hk
eu −∑u∈Hk

eu or, more concretely,

~w1 = (1,−1, 1,−1, 1,−1, 1, 1,−1,−1) ,

~w2 = (1, 1,−1, 1,−1,−1,−1, 1, 1,−1) ,

~w3 = (−1, 1, 1,−1, 1,−1,−1,−1, 1, 1) ,

~w4 = (1,−1, 1, 1,−1, 1,−1,−1,−1, 1) ,

~w5 = (−1, 1,−1, 1, 1, 1, 1,−1,−1,−1) ,

~w6 = (−1,−1,−1,−1,−1, 1, 1, 1, 1, 1) ,

(once again the first five and the last five components move cyclically) span an
invariant subspace. Every edge of K5 belongs to 3 “positive” Hamiltonian cycles
and to 3 “negative” ones; therefore,

∑6
i=1 ~wi = 0. It is easy to verify that the

space U5 spanned by these 6 vectors is in fact 5-dimensional. For every fan Fi

and for every pair (Hj , Hj), exactly two edges of Fi belong to Hj , while the other

two belong to Hj . Therefore, ~vi ⊥ ~wj for all i, j, so U5 ⊥ F where, as before,
F = U1 ⊕ U4.

Thus, we get a decomposition of Q10 into three invariant subspaces: Q10 =
U1 ⊕U4 ⊕U5. We did not prove that the subspaces U4 and U5 are irreducible. The
proof goes by some routine verification using the character table of S5. We omit the
details since for our goal this fact is irrelevant: the only thing we wanted to show
was the reducibility of the orthogonal complement U⊥

1 = U9, and this statement is
proved since we have shown that U9 = U4 ⊕ U5.

We finish this section by specifying how certain elements of S5 act on the labels
of the 10 edges. By construction, the permutation f = (1, 2, 3, 4, 5) ∈ S5 acts as

ϕ = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) .

Taking a simple transposition, for example, a = (2, 5) ∈ S5, we get

α = (1, 5)(2, 8)(4, 7) .
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Figure 3: Pairs of Hamiltonian cycles in K5: the “positive” cycles Hi are drawn

in bold lines, while their complements, the “negative” cycles Hi, are shown in thin
lines.

Indeed, all the edges having both ends different from 2 and 5, remain fixed, as well
as the edge {2, 5} itself, while the 6 edges having exactly one end equal to 2 or to
5 split into 3 pairs. Finally, taking s = (1, 2)(3, 5, 4) ∈ S5 we obtain

σ = (2, 5, 7, 6, 10, 9)(3, 8, 4) .

Note that s3 = (1, 2); conjugating this element by f we get all the transpositions
(i, i + 1) of adjacent elements. Therefore, the elements s3 and f , and hence also s
and f , generate the whole group S5. Since

σαϕ = 1

and the homomorphism S5 → S10 is injective, this implies that the group 〈σ, α, ϕ〉
is generated by α and σ and is isomorphic to S5. The action of 〈σ, α, ϕ〉 ∼= S5 on
the 10 edges is primitive; indeed, we could only have 2 blocks of 5 elements each, or
5 blocks of 2 elements each, but the presence of a cycle of order 6 is incompatible
with the first possibility while the presence of a single fixed point is incompatible
with the second one. The action is obviously transitive.

3. Realization of the degree-10 action of S5 as the monodromy group of

a Laurent polynomial

During all this section, we systematically use various methods and results of the
theory of “dessins d’enfants”. We will try to be concise but clear. For all missing
details the reader may address the book [12] (Chapters 1 and 2).
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Figure 4: Realization of S5 acting on 10 edges of a bicolored plane map.

3.1. Belyi functions and “dessins d’enfants”. Rational functions from
CP1 to CP1 (and, more generally, meromorphic functions from a Riemann surface
X to CP1), unramified outside 0, 1, and ∞, are called Belyi functions. They
have many remarkable properties. In particular, any such function F (x) may be
“encoded” in the form of a bicolored map MF drawn on the sphere (resp., on the
surface X). Namely, let us color the points 0 and 1 in black and white respectively,
draw the segment [0, 1], and define MF as the preimage MF = F−1([0, 1]) of the
segment [0, 1] with respect to the function F (x) : CP1 → CP1. By definition, black
(resp., white) vertices of MF are preimages of the point 0 (resp., of the point 1)
and edges of MF are preimages of the segment [0, 1].

Clearly, MF has n = deg F edges, and the degree of a vertex x of MF coincides
with the multiplicity of x with respect to F . Furthermore, each face of MF contains
a pole of F , and twice the multiplicity of this pole coincides with the degree of the
corresponding face. The map MF permits to reconstruct the monodromy group
GF of F . Indeed, let g0, g1 be generators of GF corresponding to the loops around
0 and 1. Taking a base point of the covering somewhere inside the segment [0, 1] we
may assume that the permutations g0 and g1 act not on the preimages of the base
point but on the preimages of [0, 1], that is, on the edges of MF . The permutation
g0 (resp., g1) sends an edge e to the next one in the counterclockwise direction
around the black (resp., white) vertex adjacent to e. Note that if g∞ is the element
of GF corresponding to the loop around ∞, then g0g1g∞ = 1.

For example, assuming that a Belyi function F corresponds to the map shown
in Fig. 4 we may conclude that F is of degree 10 (since there are 10 edges), has two
poles, both of order 5 (since there are two faces, both of degree 10), and that the
corresponding permutations g0, g1, g∞ coincide with the permutations σ, α, and ϕ
defined at the end of the previous section.

Riemann’s existence theorem implies that for any bicolored plane map there

exists a Belyi function F (x) which is unique up to a composition with x 7→ µ(x)
where µ(x) is a linear fractional transformation. In particular, since for the map
shown in Fig. 4 the permutations g0, g1, g∞ coincide with σ, α, ϕ, this pictures
“proves” that there exists a rational function F (x) whose monodromy group is
permutation equivalent to the action of S5 on 10 points discussed above. Our next
goal is to find this function explicitly.

3.2. A system of equations for the coefficients of Belyi function, and

its solutions. In the rest of this section we will compute a Belyi function which
produces a map isomorphic to that of Fig. 4 as a preimage of the segment [0, 1].
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A reader not interested in the details of the computation may just take our word
for it that the resulting function is the one given in (1.9), and pass directly to
Sec. 4. We will provide not all the details but only a minimum allowing the reader
to reproduce our results.

The black vertices of the map are the preimages of 0, or, in other words,
they are roots of the rational function F we are looking for. Furthermore, the
vertex of degree 6 is a root of multiplicity 6, the vertex of degree 3 is a triple
root, and the vertex of degree 1 is a simple root. The freedom of choosing a linear
fractional transformation µ(x) allows us to put these three points to any three
chosen positions. Let us put, for example, the vertex of degree 6 to x = 0, the
vertex of degree 3, to x = 1, and the vertex of degree 1, to x = −1. Then, the
numerator of F will take the form x6(x − 1)3(x + 1).

The permutation ϕ corresponds to the monodromy above ∞, and it has two
cycles of length 5. Therefore, the function in question must have two poles of
degree 5, one pole inside each face of the map. Suppose these poles to be the roots
of a quadratic polynomial x2 + ax + b. Then, the Belyi function in question takes
the form

F (x) = K · x6(x − 1)3(x + 1)

(x2 + ax + b)5

where K, a, b are constants that remain to be determined.
Here the reader may be surprised. We are looking not for an arbitrary Belyi

function but for a Laurent polynomial, aren’t we? Then, would it not be a better
idea to use the same liberty of choice of three parameters and to put one of the
poles to x = 0, and the other one, to x = ∞? The answer is no: such a choice
would not be a good idea – at least at this stage of the computation. The reason
is related to Galois theory and will be explained later, in Sec. 3.4.

The white vertices of our map are the preimages of 1, or, in other words, the
roots of the function F (x) − 1. There are three white vertices of degree 2; they
correspond to double roots of F (x) − 1. Computing the derivative of F we get

F ′(x) = K · x5(x − 1)2 p(x)

(x2 + ax + b)6

where

p(x) = (5a + 2)x3 + (2a + 10b + 4)x2 − (a − 2b)x − 6b .

It becomes clear that p(x) is the cubic polynomial whose roots are the three white
vertices of degree 2, so the numerator of F (x)−1 must have p(x)2 as a factor. Note
also that the leading coefficient of this numerator is K −1. Thus, we can now write
down the hypothetical form of F (x) − 1 which we temporarily denote by H(x):

H(x) =
K − 1

(5a + 2)2
· p(x)2 q(x)

(x2 + ax + b)5

where q(x) is yet unknown polynomial of degree 4, with the leading coefficient 1,
whose roots are the four white vertices of degree 1. Denote

q(x) = x4 + cx3 + dx2 + ex + f

and compute the derivative of H(x).
The results of the subsequent computations become more and more cumber-

some. Their main steps go as follows. First of all, H(x) is nothing else but another
representation of F (x) − 1, so we must get in the end F ′(x) = H ′(x). Therefore,
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Figure 5: All the seven bicolored maps with the degree partition of the black vertices

being 613111, that of the white vertices being 2314, and that of the faces being 52.
Monodromy groups are also indicated.

after having computed H ′(x) we ask Maple to factor the difference F ′(x) − H ′(x),
and we get an expression

F ′(x) − H ′(x) = Const · p(x) r(x)

(x2 + ax + b)6

where r(x) is a (very huge) polynomial of degree 7. The final action to do is
to equate r(x) to zero: this means that we extract its coefficients and equate all
of them to zero. This gives us a system of algebraic equations on the unknown
parameters K, a, b, c, d, e, f .

The solution of the system thus obtained using the Maple-7 package takes
14 seconds. It takes significantly more time to enter all the involved formulas and
operations. And it takes even more time to find our way among the solutions since
they are many and varied.

3.3. Finding our way among the solutions.

3.3.1. Maps with the same set of vertex and face degrees. If we analyse carefully
the above procedure of constructing a system of equations, we will see that the
only information we have used about the map of Fig. 4 is the set of degrees of
the black vertices, the white vertices, and the faces of this map. However, there
exist not one but 7 maps having the degree partition of the black vertices equal to
(6, 3, 1) = 613111 ⊢ 10, that of white vertices equal to (2, 2, 2, 1, 1, 1, 1) = 2314 ⊢ 10,
and that of the faces equal to (5, 5) = 52 ⊢ 10. These maps are shown in Fig. 5.
Therefore, the above computation must produce Belyi functions for all of them.

The picture convinces us that these 7 maps do exist. In order to prove that there
are no others we may compute the number of triples of permutations (g0, g1, g∞)
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of degree 10 having the same cycle structure as (σ, α, ϕ) and satisfying the equality
g0g1g∞ = 1. For this end, we may use, for example, the following formula due to
Frobenius:

Proposition 3.1. Let C1, C2, . . . , Ck be conjugacy classes in a finite group G.

Then the number N (G; C1, C2, . . . , Ck) of k-tuples (x1, x2, . . . , xk) of elements of G
such that each xi ∈ Ci and x1x2 . . . xk = 1, is equal to

N (G; C1, C2, . . . , Ck) =
|C1| · |C2| · . . . · |Ck|

|G| ·
∑

χ

χ(C1)χ(C2) . . . χ(Ck)

(dimχ)k−2
,

where the sum is taken over the set of all irreducible characters of the group G.

Applying this formula to the group G = S10, k = 3, and the conjugacy classes
C1, C2, C3 determined by the cycle structures 613111, 2214, and 52, respectively,
and computing the irreducible characters of S10 using the Maple package combinat,
we get

N (G; C1, C2, C3) = 25 401 600 = 7 · 10! .

None of the maps shown in Fig. 5 has a non-trivial orientation preserving
automorphism; therefore, each of them admits 10! different labelings.

It is useful to determine monodromy groups of the functions corresponding to
the above maps. For the map in the upper left corner we know already that, by
construction, it is isomorphic to S5. For the 5 maps shown in the lower part of
the figure, the order of the group (which can be calculated by the Maple package
group, function grouporder) is equal to 10!, and therefore the group is S10 itself.
Finally, for the map in the upper right corner, using the same Maple package, or
GAP, or the catalogue [9], we may establish that it is isomorphic to S6.

3.3.2. Galois action on maps and finding F (x). We find the coefficients of the
Belyi functions by solving a system of algebraic equations. Therefore, there is no
wonder that these coefficients are algebraic numbers. The group of automorphisms
of the field Q of algebraic numbers is called the absolute Galois group and is denoted
by Γ = Gal(Q|Q). An element of the group Γ, acting simultaneously on all the
coefficients of a given Belyi function, transforms it into another Belyi function
which may correspond to another map.

Thus, bicolored maps split into the orbits of the above Galois action. The
set of degrees of black and white vertices and faces is an invariant of this action;
therefore, all the orbits are finite. Another invariant is the monodromy group.
Looking once again at Fig. 5 we see that the set of 7 maps represented there splits
into at least three Galois orbits: two orbits contain each a single element, while the
set of the remaining 5 elements may constitute one orbit or further split into two
or more orbits. The general theory (see Sec. 2.4 of [12]) suggests that for the orbits
containing only one map the coefficients of the corresponding Belyi functions must
be rational numbers. And indeed, among our solutions we find two such functions:

F1(x) =
50000

27
· x6(x − 1)3(x + 1)

(x2 + 4x − 1)5

and

F2(x) = 337500 · x6(x − 1)3(x + 1)

(11x2 + 4x − 16)5
.

At this stage we simply ask Maple to draw the F -preimages of the segment [0, 1]
and find out that the function we are looking for is F1: just compare Fig. 6 with
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Figure 6: A Maple plot of the “dessin d’enfant” corresponding to the Belyi func-
tion F1. Black vertices are marked by little squares.

Fig. 4. It is pictures like that in Fig. 6, obtained as Belyi preimages of the segment
[0, 1], which are usually called dessins d’enfants.

The five remaining maps constitute an orbit of degree 5 defined over the split-
ting field of the polynomial

Q(t) = 85237 t5 − 95206 t4 + 48850 t3 − 7456 t2 + 1606 t− 226 .

This means that the coefficients of a Belyi function F (x) are expressed in terms of
(more exactly, as polynomials of degree ≤ 4 in) a root of this polynomial. Taking
one by one five roots we obtain five different Belyi functions which correspond to
the five maps with the monodromy group S10 shown in the lower part of Fig. 5.

Note that besides the solutions mentioned above, our system of algebraic equa-
tions produces a bunch of the so-called “parasitic solutions” representing various
kinds of degeneracies. Some of them are easy to eliminate, others are not. For exam-
ple, in one of the solutions we get a = 0, b = 0, which means that the denominator
of F is x10, while its numerator contains x6. This solution does correspond to a
Belyi function, but of degree 4 instead of 10. Another easy case is K = 1, a = −2/5,
which leads to a division of zero by zero in the constant factor (K − 1)/(5a + 2)2

of the function H in Sec. 3.2. More difficult cases of degeneracies also exist but we
will not go here into further details, as well as into many other subtleties proper to
any experimental work. The questions already discussed show quite well why the
computation of Belyi functions remains a handicraft instead of being an industry.

3.4. From a rational function to a Laurent polynomial. Now we may
return to the question asked in Sec. 3.2 and explain why we decided to compute a
“generic” Belyi function instead of looking from the very beginning for a Laurent
polynomial.

We see that, while F1 is defined over Q, its two poles are not: they are roots of
the quadratic polynomial x2 + 4x − 1; concretely, they are equal to −2 ±

√
5. Any

linear fractional transformation of the variable x sending one of theses poles to 0
and the other one to ∞ would inevitably add

√
5 to the field to which belong the

coefficients of Belyi functions. Thus, the functions defined over Q would become
defined over Q(

√
5), the orbit of degree 5 would become one of degree 10 (with each

of the five maps being represented twice), parasitic solutions would also become
more cumbersome (and their parasitic nature would be more difficult to detect),
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and so on. And without doubt Maple would have a much harder work to solve the
corresponding more complicated system of algebraic equations.

But from now on, after making all the above computations with the simplest
possible fields, we can easily transform F1 into a Laurent polynomial. The trans-
formation

z =
(2 −

√
5)x − 1

(2 +
√

5)x − 1

sends the pole −2 −
√

5 to 0 and −2 +
√

5 to ∞, and also sends 0 to 1.
Substituting into F1(x) its inverse

x =
z − 1

(2 +
√

5)z − (2 −
√

5)

we obtain the Laurent polynomial of Theorem 1.1:

L(z) = K · (z − 1)6(z − a)3(z − b)

z5

where

K =
11 + 5

√
5

216
, a =

−3 +
√

5

2
, b =

7 − 3
√

5

2
.

4. Proof of the main theorem

We are looking for Laurent polynomials Qj, 0 ≤ j ≤ 4, of the form

(4.1) Qj(z) =

j∑

k=−j

skzk

(we set Q0 = 1) satisfying the equation (1.8). However, it is clear that we may
multiply Qj by a constant, and also add to Qj an arbitrary linear combination of
Qi for i < j, and this gives us another solution having the same form. Therefore,
in order to achieve uniqueness, we impose on Qj the following three conditions:

(1) The coefficient s−j is equal to one.
(2) For i = −j + 1, . . . , 0 the coefficients si are equal to zero.

(3)

∫

S1

LidQj = 0 for all 1 ≤ i ≤ j .

The Laurent polynomial Qj has 2j + 1 coefficients; the first two conditions fix
j+1 of them, while the third condition provides us with j additional linear equations
on coefficients. In order to ensure that the integrals in the third condition vanish,
according to the Cauchy theorem, we must calculate the coefficients in front of z−1

in Li ·Q′
j , 1 ≤ j ≤ 4, 1 ≤ i ≤ j, and set them to zero. The existence and uniqueness

of solutions will be explained at the end of the proof. The results of the calculation
are collected below.

Q0 = 1 ,

Q1 =
z2 + 1

z
,

Q2 =
−(9 + 4

√
5) z4 + (20 + 8

√
5) z3 + 1

z2
,



16 F. PAKOVICH, C. PECH, AND A. ZVONKIN

Q3 =

(
47
2 + 21

2

√
5
)
z6 −

(
195
2 + 87

2

√
5
)
z5 +

(
255
2 + 111

2

√
5
)
z4 + 1

z3
,

Q4 =
−(9 + 4

√

5) z8 + (130 + 58
√

5) z7
− (630 + 282

√

5) z6 + (910 + 406
√

5) z5 + 1

z4
.

Now, everything is ready in order to prove the main theorem. The proof is
divided into three steps.

Step 1. First of all, we must check that the Laurent polynomials Qj , 1 ≤ j ≤ 4,
satisfy the equalities

(4.2)

∫

S1

LidQ = 0

for all i ≥ 0 (for Q0 it is obvious). For this purpose we may use Theorem 7.1 of
[18] which implies that we must verify this equality only for a finite number of i,
namely, for

(4.3) 1 ≤ i ≤ (N − 1) · deg Q + 1,

where N is the size of the orbit of the vector

(1, 1, 1, 1, 1,−1,−1,−1,−1,−1)

under the action of the monodromy group of L. In our case, deg Qj = 2j, 1 ≤ j ≤ 4,
and N = 12; therefore, the maximal value of the right hand side of (4.3) is equal
to 89. The verification for all the four polynomials Qj takes less than one minute
of work of Maple-11.

Step 2. Observe that if a Laurent polynomial Q is a solution of (4.2) then for

any polynomial R the Laurent polynomial Q̂ = R(L) ·Q is also a solution of (4.2).
Indeed, it is enough to prove it for R = zk, k ≥ 1. We have:

∫

S1

Lid (LkQ) =

∫

S1

Li+kdQ +

∫

S1

LiQ dLk .

The first integral in the right-hand side of this equality vanishes by (4.2). On the
other hand, for the second integral we have:
∫

S1

LiQdLk = k

∫

S1

Li+k−1QdL =
k

i + k

∫

S1

QdLk+i = − k

i + k

∫

S1

Lk+idQ ,

and therefore this integral also vanishes.

Step 3. The final ingredient we need is Theorem 6.7 of [18] which states that
if the leading degree of a Laurent polynomial L is a prime number p (in our case
p = 5), and if Q is a polynomial (that is, a common one, not a Laurent polynomial)
such that (4.2) holds, then either L(z) = L1(z

p) for some Laurent polynomial L1

while Q is a linear combination of the monomials zi with i not being multiples of
p, or Q is a constant. Since the Laurent polynomial L we are working with is not
of the form L(z) = L1(z

p) this result implies that a polynomial Q cannot satisfy
(4.2) unless Q is a constant.
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Now, let us suppose that Q is a Laurent polynomial satisfying (4.2) and m(Q) ≤
0 is the minimal degree of a monomial in Q. Let m(Q) = −5k0−j0, where 0 ≤ j0 ≤ 4
and k0 ≥ 0. Then for any c0 ∈ C the Laurent polynomial

Q(1) = Q − c0 Lk0 · Qj0 ,

is a solution (4.2). Furthermore, choosing an appropriate c0 we can assume that
m(Q(1)) > m(Q) (here we use the fact that the coefficient s−j in Qj is not zero).

Now, if m(Q(1)) = −5k1 − j1, where 0 ≤ j1 ≤ 4 and k1 ≥ 0, then, setting

Q(2) = Q(1) − c1 Lk1 · Qj1

for an appropriate c1 we obtain a solution (4.2) with m(Q(2)) > m(Q(1)). Con-
tinuing in this way we will eventually arrive to a solution Q(r) of (4.2) for which
m(Q(r)) ≥ 0. In view of the result cited in Step 3 such a solution should be a
constant c ∈ C. Therefore,

Q = c +

r−1∑

i=0

ci Lki · Qji
=

4∑

j=0

(Rj ◦ L) · Qj

for some polynomials R0, R1, R2, R3, R4.

The fact mentioned at the beginning of Step 3 explains the uniqueness of Qj.

Indeed, if Q
(1)
j and Q

(2)
j are two solutions of the equations imposed on Qj at the

beginning of this section, then their difference Q
(1)
j − Q

(2)
j is also a solution of the

Laurent polynomial moment problem. But this difference is a polynomial (since

the terms z−j in Q
(1)
j and Q

(2)
j cancel) and therefore must reduce to its constant

term; but the constant term of this polynomial is equal to zero. The uniqueness
of the solution implies the non-degeneracy of the matrix of the system, and the
non-degeneracy, in its turn, implies existence. The theorem is proved.

Final remarks. In general, it is not known if the reducibility of the action
of the monodromy group GL of a Laurent polynomial L of degree n on the space
Qn always implies a non-trivial structure of solutions of the corresponding moment
problem. The only facts which follow from the general theory are as follows:

• The reducibility of the above action implies the existence of a rational

function Q, which is not a rational function in L, such that the generating
function for the sequence of the moments mi =

∫
S1 Li dQ, i ≥ 0, is rational

(see Sec. 8.3 of [18]).
• If the above function Q turns out to be a Laurent polynomial, then the ra-

tionality of the generating function implies its vanishing (see Theorem 3.4
of [18]).

It would be interesting to understand in a more profound way what is the underlying
mechanism which relates the structure of solutions of the moment problem for L
with the structure of the representation of GL.
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