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Abstract

This is a preliminary and informal report on the current state of
affairs in our experimental study of the topological classification of
complex polynomials. In [2] a complete classification of polynomials
up to degree 9 was given. Here we finish the degrees 10 and 11, and
discuss some newly observed phenomena.

It may be difficult to read this text without having [2] at hand.

1 Introduction

In [7] it is shown that the problem of the topological classification of complex
polynomials is equivalent to the computation of the orbits of an action of the
braid group on the set of combinatorial structures called cacti. In [2], using
the explicit computation of the above orbits and the enumerative results
of [4] concerning the total number of cacti, we have achieved the complete
classification of polynomials of degree n < 9.

Here we give a preliminary report of the continuation of this study for
bigger orbits. For the general introduction to the subject the reader may see
the paper [2].

*LaBRI, Université Bordeaux I, 351 Cours de la Libération, F-33405 Talence Cedex
FRANCE; e-mail: bouya,zvonkin@labri.u-bordeaux.fr



2 New algorithms: discussion

2.1 Method

Let us recall the general scheme of the algorithm of an orbit construction:

1. Put a cactus into the orbit.
2. For each cactus in the orbit:

(a) act on it by all the group generators;
(b) for each cactus thus obtained verify if it is already in the orbit;
(c) if not, add it to the orbit.

3. When for all the cacti in the orbit all the group generators produce
nothing new (that is, they produce the elements already existing in the
orbit), STOP: the orbit is complete.

2.2 Improvements

The above general scheme is preserved, but the following improvements are
introduced into the programs:

(1) We introduced a “normal form” of a cactus: among the n isomor-
phic representations of a non-rooted cactus as a sequence of permutations
(91,925 --+9k)s i € Sny 9192 -- -9k = (1,2,...,n), we choose the smallest one
in the lexicographic order. This permits us, while producing a new cactus
and verifying if it was already found before, to make a straighforward com-
parison with the previously found cacti instead of testing the isomorphism
each time.

(2) The whole orbit is ordered according to the lexicographic order on
the cacti. This permits us to make a binary search while looking for a cactus
equal to a new one.

In fact, we use a more sophisticated (but also very classical) data structure
which is called a “well balanced tree”, or an “AVL-tree”. This structure
permits to make not only the search but also an addition of a newly found
element in a time proportional to the logarithm of the orbit size.

(3) Previous programs (used in [2]) were implemented in Magma and
GAP. The new ones are implemented in C+4. The compiled languages
usually give better results than the interpreted ones. They also assure better
portability and permit us to use many minor computational shortcuts.



2.3 Comparison and current limits

A comparison of the new program with the old one gives, for example, the fol-
lowing: in order to compute an orbit with 12 600 elements, the old (Magma)
program needed more than 183 hours, while the new (C++) one, being tested
on the same machine, needs about 6 minutes.

In fact, our Magma system is installed on a specific machine, and a quicker
machine was bought after bying the Magma licence. Nothing prevents us
from running our C++ program on the quickest machine available, and then
the same orbit is computed in less than 2.5 minutes.

The biggest orbit computed up to now is of size 1 639 792; its computation
takes about 50 hours, but at least half of the time is taken by compression
and uncompression of data (an operation that may be omitted for the orbits
smaller than one million). Today the main obstacle to the further progress
is the space available. Of course, it is possible to save parts of the orbits in
files; but then we loose almost all the advantages of the AVL-trees.

For the degree n = 12 the biggest putative orbit that needs to be com-
puted (its defect being > 13) corresponds to the passport

[4 x 2°1%,3 x 2'1']

and is of size N = 125 x (9/2)* = 102 036 672. Even if we forget for the mo-
ment the space limitations and think only in terms of the computation time,
then the old algorithm would have to work for about 4 million years, while
the new one needs “only” about 2 years. Certainly it is a big progress, but
from the practical point of view it does not change much, and the complete
classification for the degree 12 remains unavailable.

It is, however, quite possible to continue our computations for the smaller
orbits (let us say, not bigger than one million) and for bigger values of n.
The examples collected up to now show very clearly that all the interesting
phenomena take place for relatively small orbits.

2.4 Pure braid group

In most cases we construct an orbit under the action not of the full braid
group By but of the pure braid group P;. The reason is, the group Py
preserves the ordered passport, while the group By, mixes up all the partitions
in a passport and thus gives all the cacti corresponding to the unordered



passport. For example, to the following unordered passport (n =12, k = 7)
2 x 3'1%,2 x 2%18,3 x 2"1"7]

there correspond #:3, = 210 ordered passports; therefore the By-orbit is at

least 210 times bigger than the Py-orbit.

But the pure braid approach has not only the advantages. There are
three problems to struggle against.

(1) The group By has k — 1 generators, while the group P has k(k—1)/2
generators. Thus the step 2.a of the algorithm of Section 2.1 needs k/2 times
more applications of a generator to a cactus.

(2) The generators of P, are more complicated than those of By. Namely,
they are as follows:

_ 2 _—1 -1 -1 . -
CLZ'j—O'iO'i_H...O'j_lO'jO'j_l...O'Z-+1O'i y 1SZS]SI€—1

We know how to apply directly only the generators o;; therefore we need
much more work in order to apply a single generator a;; of the group P;.

One may easily compute the total length of all the generators of the pure
braid group: it is (k* — k)/3. Thus the construction of the pure braid orbit
demands, for the treatment of a single cactus, (k* + k)/3 times more work
than it would need for the Bj-orbit. In the above example, when k£ = 7, we
need 6 applications of the o; if we deal with By, and 112 if we deal with P.

(3) When all the partitions in a passport are different, then the ordered
passport is preserved only by the elements of the pure braid group. However
this is not the case when there are some equal partitions in the passport: this
time the subgroup of By that preserves the ordered passport is bigger. In such
a case the pure braid group may artificially split a class of the topological
equivalence of polynomials into several different orbits. An example of this
kind is given in Section 3.4.

If we “forget” the linking between the braid strings (or, equivalently, if
we add the relations o7 = 1) and consider only the images of the string ends,
then the group By projects onto the symmetric group Sg, while the group
Py projects onto the identity group {1}. But what we need in fact, if we
consider once more the example

[2 x 3'17,2 x 22183 x 2'1'7],

is a subgroup of B; that projects onto the Young subgroup Sy x Ss x S5 < S7.
Let us denote this group Bss3 < B;. We don’t know if such groups were
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ever studied in detail. The group Bs 23 may be generated by the following
elements:

O1; 03; 05,06;
_ 2.
Qoo = 09y,
_ 2.
Q44 = Oy,
_ 2 —1_—1
Qg4 = 02030,03 0Oy .

We see that the total length of these generators is 14. It is worse than 6 (for
By), but much better than 112 (for P;). Also, we may now not worry about
the problem invoked in (3). This approach is in the process of implementa-
tion.

2.5 Perspectives and dreams

We don’t discuss here the topological classification of polynomials in general,
but only its computational aspects.

Clearly we are approaching our limits. One may dream of more power-
ful computers, and probably of parallel computations, but both need some
financial support without promising much of insight.

What would be a major advance both in computation and in understand-
ing of the braid group action may be roughly discribed as follows. Let us
take once more the biggest orbit of degree 12, with the passport

[4 x 221% 3 x 2117

and the Goulden-Jackson number N = 12°x (9/2)* = 102 036 672. We would
like to “get rid of” the factor 12°. That is, we would like to find a way to
represent the whole orbit using only (g)4 = 41011—6 combinatorial “objects”.
(These “objects” remain to be invented, and we cannot explain the meaning
of the fractions.)

Alternatively, maybe it is possible to “get rid of” the factor (9/2)* and
represent an orbit by means of 12° = 248 832 “objects”. The last number is
much bigger than the previous one; but still it is within the realm of accessible
orbit sizes.

Some other perspectives will be discussed in Section 5.5.



3 Degree 10

Below a complete list is given of all the polynomial passports of degree n = 10
for which there exists more than one orbit. Each time the reason of the
splitting is indicated.

We remind to the reader that the symmetry is a particular case of a
composition. But we use here the term “composition” only for the cases of
a composition more complicated than a simple symmetry.

3.1 Symmetry

It is clear that for n = 10 the possible symmetry orders are only 2 and 5.
But in fact a cactus having symmetry of order 5 corresponds to two critical
values (a case which is “trivial” from the point of view of the topological
classification). Hence in the list given below we observe only the symmetry
of order 2.

Note that the center of such a symmetry does not have to have valency 2,
but its valency must be divisible by 2. Below the centers of symmetry are
underlined.

(1) Passport: [4411,22111111,211111111].
Two orbits: 50 asymmetric cacti, and 5 symmetric ones.

(2) Passport: [3322,22111111,211111111].
Two orbits: 50 asymmetric cacti, and 5 symmetric ones.

(3) Passport: [2 x 331111,211111111].
Two orbits: 60 asymmetric cacti, and 5 symmetric ones.

(4) Passport: [331111,222211,211111111).
Two orbits: 60 asymmetric cacti, and 5 symmetric ones.

(5) Passport: [2 x 222211,211111111].
Two orbits: 60 asymmetric cacti, and 5 symmetric ones.

(6) Passport: [4111111,331111,22111111].
Two orbits: 85 asymmetric cacti, and 5 symmetric ones.

(7) Passport: [4111111,222211,22111111].
Two orbits: 85 asymmetric cacti, and 5 symmetric ones.
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(8) Passport: [61111,2 x 22111111].
Two orbits: 120 asymmetric cacti, and 5 symmetric ones.

(9) Passport: [331111,2221111,22111111].
Two orbits: 430 asymmetric cacti, and 15 symmetric ones.

(10) Passport: [222211,2221111,22111111].
Two orbits: 430 asymmetric cacti, and 15 symmetric ones.

(11) Passport: [42211,2 x 22111111].
Two orbits: 730 asymmetric cacti, and 10 symmetric ones.

(12) Passport: [33211,2 x 22111111].
Two orbits: 730 asymmetric cacti, and 10 symmetric ones.

(13) Passport: [331111,2 x 22111111,211111111].
Two orbits: 3 050 asymmetric cacti, and 25 symmetric ones.

(14) Passport: [222211,2 x 22111111,211111111].
Two orbits: 3 050 asymmetric cacti, and 25 symmetric ones.

(15) Passport: [4111111,3 x 22111111].
Two orbits: 4 275 asymmetric cacti, and 25 symmetric ones.

(16) Passport: [2221111,3 x 22111111].
Two orbits: 21 400 asymmetric cacti, and 75 symmetric ones.

(17) Passport: [4 x 22111111,211111111].
Two orbits: 150 000 asymmetric cacti, and 125 symmetric ones.

3.2 Composition

In [2] we explain why the composition may lead to multiple orbits: a polyn-
imial is a composition of non-linear polynomials of smaller degrees if and
only if its monodromy group is imprimitive (Ritt, 1922). Hence, if for the
same passport there co-exist decomposable polynomials and indecomposable
ones, then they have different monodromy groups and therefore belong to
different classes of topological equivalence.

It turns out that in all the examples given below the pattern of splitting
into multiple orbits is slightly different. For all the four passports of this
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section, and also for the passport of Section 3.4, all the corresponding poly-
nomials are decomposable; but they are decomposable “in different ways”,
and this is why they belong to different orbits.

We badly need a convenient notation for a composition. Here we propose
one, but we are not sure that it is the best possible.

Notation 3.1 Let n = pq, and consider a polynomial R(z) = P o Q(z) =
P(Q(z)), where deg R = n, deg P = p and deg @ = gq. We will explain our
notation by an example. Let us take p = 7, and let the polynomial P have
3 critical values. Thus, its passport consists of 3 partitions; in front of each
partition we put its “color” (1, 2 and 3):

m=[1:3211; 2:22111; 3:211111].

First of all, we permit ouselves to add, at the end of a passport, one or several
partitions of the type 1P. These valencies correspond to non critical points;
we may need them because some of them may turn out to be critical values
of the polynomial (). (Note that adding such a partition to a passport does
not change its Goulden-Jackson number and defect, does not intrefere with
the planarity condition, etc.) For our example, let us take the new version
of 7 as follows:

m=[1:3211; 2:22111; 3:211111; 4:1111111].

The parts of the partitions belonging to 7 are the valencies of the vertices
of a cactus. We call it a P-cactus. Now suppose that some of the vertices
of the P-cactus are critical values of the polynomial (). Let us denote these
values a, b, ¢, . . ., and let us mark the corresponding parts of the passport:

m=[1:3,211; 2:221,1.1; 3:2,11111; 4:1.111111].

In the above example there are 5 critical values of ), namely, a, b, ¢, d, e, and,
for example, the value c is a vertex of the P-cactus, of color 2 and of degree 1.

Suppose now that the polynomial () is of degree ¢ = 10; denote its pass-
port by 7. There are 5 partitions in 7, their “colors” being labelled by
a,b,c,d,e. Let us take as an example the following passport:

7=[a:4"1°% b:317; c:221% d:2'18% e:2'19).

Our goal is to reconstruct the passport p of the polynomial R = P o ()
from the above data. In fact it is very easy:



e All the vertices of the P-cactus that are not labelled by a, b, c, ..., are
just repeated 10 times (with the same color and degree). We may also
say that they are “multiplied by the partition” 1'° corresponding to a
non critical value.

e The vertex 3, (of color 1) is “multiplied” by the partition 4'1% which
corresponds to a; this gives 12'3° (all these vertices are of color 1). The
vertex 1, is “multiplied by 3'17, and so on.

The reader will easily verify the result:
[1:(12'3%),2"91%%; 2:2%°(3'17),(221%).1%; 3: (412%),1%%; 4:(2'1%),1%).

Here we have given not only the colors and degrees of the vertices of the
R-cactus, but also indicated which of them are preimages of a, of b, etc. If
we forget this additional information, the same passport will be rewritten as

p=[1:1213%2101%0; 222231123, 3.41281%0; 4.2!1%),

The passport p being presented in this form, it is not easy at all to see that
it admits a composition.

The above introduced notation is used below in order to describe how the
passports are decomposed. The compositions for the degree 10 are enumer-
ated in the next two sections.

3.3 List of compositions for degree 10

There are five passports for which the reason for the existence of multiple
orbits is a composition. Four of them are presented in this section, and the
remaining case is explaind in detail in the next section.

(1) Passport: [22222, 31111111, 22111111].
Two orbits, of size 5 and 2 (both decomposable).
The decomposition for the orbit of size 5 looks as follows: the P-cactus
labelled as
[1:2; 2:1,1; 3:1,1]

is composed with the ()-cactus

[a:311; b:2111; c¢:2111],
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which gives as a result
[1:22222; 2:(311),11111; 3:(2111),(2111),].
As for the orbit of size 2, here the P-cactus
1:2; 2:1,1; 3:1,1]
is composed with the ()-cactus
[a:311; b:221],
which gives for the resulting passport

[1:22222; 2:(311),11111; 3:(221),11111].

A representative of the orbit of size 5 is

g = (1,2)(3,4)(5,6)(7,10)(8,9)
g = (3a5’7)
95 = (1,3)(8,10)

and a representative of the orbit of size 2 is

9 = (1,2)(3,4)(5,6)(7,8)(9,10)
g = (37579)
95 = (1,3)(7,9)

The order of the monodromy group is 14 400 for the first orbit, and 7 200
for the second one. Cf. Section 3.5.

(2) Passport: [22222,3211111,211111111].
Two orbits, of size 10 and 2 (both decomposable).
For the orbit of size 10 we have: the P-passport is

[1:2; 2:1,15; 3:1.1],
and the (Q-passport is

[@:311; b:2111; c:2111].
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The result of the composition is
[1:22222; 2:(311),(2111),; 3:(2111).11111].
For the other orbit, of size 2, we have the P-passport equal to
[1:2; 2:1,1; 3:1,1]
and the @-passport equal to
[a:32; b:2111],
which gives the composition

[1:22222; 2:(32),11111; 3:(2111),11111].

A representative of the orbit of size 10 is

g = (1,2)(3,4)(5,6)(7,10)(8,9)
g2 = (3,5,7)(8,10)
gs = (173)

and a representative of the orbit of size 2 is

g = (172)(3:4)(576)(778)(9710)
g2 = (173) (5,7,9)
gs = (175)

The monodromy group is the same for both orbits; its order is 28 800.
Cf. Section 3.5.

(3) Passport: [4222,22111111,211111111].
Two orbits, of size 25 and 10 (both decomposable).

A representative of the orbit of size 25 is

g = (1,2)(3,4)(5,6,7,10)(8,9)
g2 = (3a5) (8’10)
g3 = (1’3)

and a representative of the orbit of size 10 is
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g = (1,2)(3,4)(5,6)(7,8,9,10)
g2
g3

|
—~~
—_
ot
A

The monodromy group is the same for both orbits; its order is 28 800.

(4) Passport: [22222,22111111,2 x 211111111].
Two orbits, of size 50 and 20 (both decomposable).

A representative of the orbit of size 50 is

a = (172)(3’4)(5’6)(7’10)(8’9)
g2 = (577) (8:10)

gs = (375)

gs = (173)

g = (1,2)(3,4)(5,6)(7,8)(9,10)
g2 = (3’5) (7,9)

g3 = (377)

94 = (173)

The monodromy group is the same for both orbits; its order is 28 800.

Remark 3.2 There are several other passports giving rise to a composition
of the corresponding cacti. But in these cases all the cacti having such a
passport are decomposable, and, moreover, they are decomposable “in the
same way” . Therefore the composition in question does not create a separate
orbit. Below we give the list of these passports together with the orbit sizes:

25,4116, 2118 2
[25,2 x 3117] 2
[4123 3117 2118] 10
[25,2314, 2118] 10

[25,3117,2 x 2'18] 20
[4123 3 x 2'18] 100
25,4 x 2'18) 200
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3.4 A more complicated case

We consider the remaining example separately, because it is very interesting.
It corresponds to the passport

[22222,2 x 22111111].

There are 27 cacti with this passport, while the Goulden-Jackson number is
equal to N =10 x & x (50;)? =241 =22+ 1 x 5.

There are four classes of the topological equivalence of polynomials having
this passport, and two of them illustrate some new phenomena that we did
not observe before.

All the four orbits correspond to a composition P(Q(z)) where the poly-
nomial P is always the same; deg P = 2, and deg ) = 5. The passport of P
is

2,2 x 11].

Of course, it is a “fake” passport: the two partitions 11 are redundant. But
we need them in order to be able to label the critical values of Q.

2 3 2 3 b

@) (b)

Figure 1: Labelling of the vertices of the P-cactus

First orbit The vertices of the P-cactus are labelled as follows (see also
Figure 1):
[1:2; 2:1,1; 3:141).

The @-cactus has only two critical values, a and b, and its passport is
[a:221; b:221].
Then the passport of the composition is

[1:22222; 2:(221),11111;3: (221),11111].
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The orbit of this composition consists of 2 cacti. The monodromy group is
of order 200 (cf. Section 3.5). A representative of this orbit is

g2 = (37 9) (57 7)
g3 = (17 3) (57 9)

Second “orbit” The vertices of the P-cactus are labelled as follows:
[1:2; 2:1,15; 3:1.1).

The @-cactus has three critical values a, b and c; the corresponding passport
is
[@:2111; b:2111; c¢:221].

Then the passport of the composition is

[1:22222; 2:(2111)4(2111),; 3 : (221),11111].

We see that the internal structure of the colors 2 an 3 is different. This is
why the pure braid group gives in this case two orbits (of size 5), while the
full braid group, instead of also giving two orbits (of size 15), gives a single
orbit (of size 30).

Note that it is the full braid group action that actually corresponds to
the topological classification of polynomials. Therefore the 10 cacti of 30,
that correspond to the ordered passport above, must be put together into
a common “orbit”. We would say that its size is not 10 but 5+5. The
monodromy group for this orbit is of order 14 400 (cf. Section 3.5), and its
representative is

g1 = (172)(3’4)(576)(7’ 10)(8’9)
g2 = (173)(577)
g3 = (175)(8710)

Third and fourth orbits The vertices of the P-cactus are labelled as
follows (see also Figure 2):

[1:2; 2:1,1,5 3:1,14).

The Q-cactus has four critical values a, b, ¢ and d; the corresponding passport
is
[@:2111; b:2111; c¢:2111; d:2111].
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Then the passport of the composition is

[1:22222; 2:(2111),(2111); 3 : (2111),(2111)).

Figure 2: Labelling of the vertices of the P-cactus

Here we observe once more a new phenomenon: while the polynomial P
remains the same, and polynomials (); and @), are topologically equivalent,
their compositions P o (); and P o (), may be topologically non equivalent.
Indeed, the @Q-cacti obviously make a single orbit: all theorems say so, even
the most classical one (due to Luroth and Clebsch). But geometrically some
of them look somewhat different: they are sort of “symmetric”, with a “fake”
symmetry around a center of one of the squares: see Figure 3.

This fake symmetry, however, becomes a real one (that is, a symmetry
around a vertex) after the composition: see Figure 4.

The two corresponding orbits are of size 10 (for asymmetric cacti) and 5
(for the symmetric ones). The monodromy groups are of order 14 400 and
240 respectively (cf. Section 3.5). The representatives of the two orbits are
given below:

g = (172)(374)(57 10)(6,7)(8,9)
g = (3a 5) (65 8)

95 = (1,3)(6,10)

a = (132)(3’4)(5’ 10)(6’7)(8’9)
g2 = (3, 5) (8, 10)

g = (1,3)(6,8)
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a d
—0 d
a C . O
c o c
b b ¢ b b c
a d a d
d O
a a
b o c b c b c
@ (b)

Figure 3: These cacti (n = 5,k = 4) belong to the same orbit

@ (b)

Figure 4: These cacti (n = 10,k = 3) belong to different orbits
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3.5 Remarks on monodromy groups

Recall that the monodromy groups for compositions are imprimitive, i.e.,
there exists a system of blocks. For n = 10 the only possible block systems
are of type 52 and 25. Now, the presence of the permutation

v=1(1,2,3,4,5,6,7,8,9,10)
fixes the block system of type 52 to
(1,3,5,7,9} and {2,4,6,8,10),
and the block system of type 2° to

{1,6}, {2,7}, {3,8}, {4,9}, {5,10}.

We have obtained as monodromy groups the groups of order 28 800,
14 400, 7 200, 240 and 200. To characterize the groups themselves, the
catalog [1] may be of great help.

1. There exists a unique (transitive) group of degree 10 and of order
28 800: it is denoted 743 in [1]. We have 28800 = 120? x 2, and therefore
this group could be nothing else but the wreath product S51.5,. It is unique
as a subgroup of Sjy (and not only up to a conjugation) because of the above
remark concerning the unicity of the blocks.

2. There are two groups of order 14 400 (both are subgroups of index 2 in
the previous group). One of them is an even group 742 = (S50.53) N Aj; it
does not fit, because in all the cases we have had a monodromy group of order
14 400, at least one of the permutations in the cactus was odd. Therefore
the monodromy group that fits is 741, which is an extension by Sy of the
ground group SZ. Note that this group does not have permutations of the
cyclic structures 218, 4123 and 3'2'1° (present in the examples 2, 3 and 4 of
Section 3.3).

3. There exists a unique group of order 7 200; it is denoted 740 in [1].
It is a subgroup of index 2 in the previous group. Having in mind that
7200 = 60% x 2, this group could be nothing else but As ¢ S,.

4. There exists a unique group of order 240; it is denoted 722 in [1]. This
is the biggest group having both block systems of type 5% and 2°. Therefore
it is (S5052) N (S21S5). We don’t know any better characterization of this

group.
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5. There are five different groups of order 200 in [1]; but only one of them
contains permutations of type 221°, namely, T21 (see the passport above).
This is the group Ds? Sy, where Ds is the dyhedral group of order 10 (thus
the order of the wreath product is 102 x 2 = 200).

4 Degree 11

4.1 A single orbit for any passport

In [2] we have discovered three mechanisms that give rise to a splitting of
a family of cacti into more than one orbit: (1) composition, and symmetry
as its particular case; (2) exceptional monodromy groups (see Theorem 5.13
of [2]); and (3) cyclic structures that split into different conjugacy classes in
the alternating group A, (see Section 5.4 of [2]).

We don’t dare to conjecture that these are the only possible reasons to
have multiple orbits (see also Remark 5.3), even though the case n = 10 gave
us nothing new in this respect.

If, however, this pattern corresponds to reality (at least for the smaller
degrees), we may note that among the above mentioned mechanisms noone
works for n = 11. Indeed, (1) to have a composition we need at least a
composite number n; (2) there are only three examples of exceptional mon-
odromy groups, one for n = 7, one for n = 13 and one for n = 15 (see once
more Theorem 5.13 of [2]); (3) finally, the last mentioned mechanism can
only work for n > 25.

Our computations for n = 11 confirm this observation: for the degree 11
a passport always completely characterizes the topological equivalence class
of polynomials. The following conjecture is a “one-dollar” one; that is, it is
very tentative: the data available today make it plausible, but they are not
at all sufficient.

Conjecture 4.1 For the degree 13 the only passport for which there is more
than one orbit is that of Section 5.2. For the degrees 17, 19 and 23 a passport
completely characterizes the topological equivalence class of polynomials.
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4.2 The biggest orbit of degree 11
We have computed all the orbits of degree 11 except the biggest one:

[4 x 22172 x 2119 N =11* x 4* = 3 748 096

For this remaining case (which is too big for the memory available) we have
proved that there is a single orbit. Here we explain how the proof works.

Step 1 Let us multiply the last two permutations: h = gsg¢. The cyclic
structure of h may be 3'18 or 2217. Note that the sequence of permutations
(91, 92, 93, 94, h] is also a cactus (with £ = 5), as it verifies the planarity
condition, and the product

91929391h = 19293949596 = v = (1,2, ..., 11).

The cactus [g1, g2, g3, g4, h] may have two possible passports: [4 x 2217, 3118]
and [4 x 2217,2217) = [5 x 2217).

Step 2 The orbits with the passports [4 x 2217 3'1%] and [5 x 2217] are
already computed. Each time there is a single orbit, of size 11® x 4* for the
first passport, and 112 x 4° for the second one. (The total does not give the
desirable number 11* x 4, but it must not: see below.)

Step 3 A permutation A with the cyclic structure 3'18 can be factored into
two permutations gs, g¢ with cyclic structure 2'1° in 3 different ways. For
example,

(1,2,3) = (1,2) x(1,3)
= (1,3) x(2,3)
= (2,3) x(1,2),

and these factorizations are obtained from one another under the action of
the braid group generator os.

For an h with the cyclic structure 2217 there are two factorizations pos-
sible, as in the example below,

(1,2)(3,4) = (1,2
= (3,4) x

and they are also “connected” by os.
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Step 4 We have found two connected blocks, of size 3 x 11® x 4* and
2 x 11% x 4° respectively. Note that this time the total gives the desirable
number 11* x 4*. The only thing that remains to be proved is that the cacti
[g1,- .., 96] having gsge of the type 3'1%, and those having gsgs of the type
2217, coexist in the same orbit. The following example shows that this is
true: take the cactus

[(8,11)(9,10); (2,3)(4,5); (2,4)(9,11); (1,2)(6,8); (1,6); (7,8)],
for which gsg6 = (1,6)(7,8), and apply o3: you will get

[(8,11)(9,10); (2,3)(4,5); (2,4)(9,11); (1,8)(2,6); (2,8); (7,8)],
for which gsg6 = (2,7,8). The statement is proved.

Some aspects of the above method may be generalized; but the gener-
alization is not direct, and there remain yet many obstacles to overcome in
order to get a more or less “algorithmic” procedure to follow. It would be
premature to discuss this subject here.

4.3 What about degree 127

Our colleague physicist gives his own “physical definition” of a computation-
ally hard problem. A problem is hard if it is more difficult to compute the
next term than all the previous terms together. This is exactly what happens
in our problem.

(1) In order to complete the classification of polynomials of all the degrees
up to 11, we have computed the orbits for 644 passports. For the degree 12
there are 833 passports to process.

(2) The cases of symmetry and composition for the degree 12 must be
abundant.

(3) As we have already mentioned before, the biggest putative orbit of
degree 12 is of the size slightly bigger than 100 million. Our current program
should take about two years to compute such an orbit, and also the memory
limitations prevent us from deeling with the orbits bigger than 2 million.

It is obvious, therefore, that we need radically new ideas and approaches
in order to treat the case n = 12.
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5 Exceptional orbits

We remind to the reader that there exist exactly three polynomial passports
(with more than two critical values), one for each of the degrees 7, 13 and
15 respectively, which give rise to a primitive monodromy group different
from S,, and A,. In [2] (see Theorem 5.13) we gave an example of a cactus
generating each group. Below we complete this information by giving each
time the number of orbits and their structure.

5.1 Degree 7

Passport: [3 x 2%13]. The total number of the cacti is N = 7 x (5% = 56.
There are four orbits:

e two As-orbits of size 21;
e and two PSL3(2)-orbits of size 7.

The following two cacti are representatives of the Az-orbits:

g = (4a 5) (6: 7) g = (37 4) (6a 7)
g2 = (2,6)(3,4) and g = (2,6)(3,5)
g3 = (1a2)(3a 6) g3 = (172)(376)
and the following two are representatives of the PSL3(2)-orbits
g = (3,4)(5,7) g = (3,5)(6,7)
g2 = (2,9)(6,7) and g» = (2,6)(4,5)
gs = (1a2)(3a 5) g3 = (152)(356)

5.2 Degree 13

Passport: [3 x 21°]. The total number of cacti is N = 13 x (£)® = 35 672.
There are five orbits:

e one Aqz-orbit of size 35 620;
e four PSL;3(3)-orbits of size 13.

The following four cacti are representatives of the four P.SLs(3)-orbits:
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g = (3,4)(5,7)(9,13)(10,11)
92 = (2a 9) (3’ 8) (6’ 7)(10> 12)
95 = (1,2)(3,9)(5,8)(10,13)
g1 = (3,5)(6,13)(7,12)(8,9)
g = (2,6)(4,5)(8,10)(11,12)
93 = (1,2)(3,6)(7,13)(8,11)
a = (4a 5) (6’ 7) (8’ 13) (97 11)
g = (2,8)(3,6)(9,13)(10,11)
93 (1,2)(3,8)(4,6)(12,13)
g = (4,9)(6,8)(10,11)(12,13)
g2 = (27 12) (3: 10 )(57 9) (77 8)
95 = (1,2)(3,12)(4,10)(6,9)
and the following cactus is a representative of the A;s-orbit:

g = (6,7)(8,9)(10,11)(12,13)
92 = (2,12)(3,10)(4,8)(5,6)
g = (1,2)(3,12)(4,10)(5,8)

Remark 5.1 It is very easy to find a representative of the Ai3-orbit: prac-
tically any randomly chosen cactus will do. It is more difficult to compute
the whole orbit of size 35 620: our previous program was unable to do that.
The most difficult part is to find the representatives of the remaining four
small orbits.

5.3 Degree 15

Passport: [261%,2x2*17]. The total number of cactiis N = 15X & x (1%)? =
126 000. There are four orbits:

e one Ajs-orbit of size 125 945;
e two PSL,(2)-orbits of size 5;

e one “imprimitive” (or composition) orbit of size 45, with the mon-
odromy group (S30S5) N Ass.

The following two cacti are representatives of the two PSL,(2)-orbits:
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g = (2,3)(4,5)(6,15)(7,9)(10,13)(11, 12)
g = (2,6)(7,14)(8,9)(11,13)

g = (1,2)(4,6)(7,15)(10,14)

g = (2,3)(4,15)(5,9)(7,8)(10, 14)(12, 13)
¢ = (2,4)(5,15)(6,7)(11,14)

g5 = (1,2)(6,9)(10,15)(12,14)

A representative of the orbit of decomposable cacti is

g = (2,3)(4,5)(7,8)(9,10)(12,13)(14,15)
g2 = (2,14)(4,12)(6,11)(7,9)
g5 = (1,2)(4,14)(6,12)(7,11)

The “passport form” of the decomposition is as follows. The P-cactus is of
degree 5, and its passport is

[1:221; 2:21,11; 3:21,11].

The Q-cactus is of degree 3, with two critical values a and b, and with the
passport
[a:21; b:21].

The passport of the composition is therefore
[1:222222111; 2:222(21),111111; 3 :222(21),111111].

Finally, a representative of the “big” Ais-orbit is

g1 = (4,5)(6,7)(8,9)(10,11)(12,13)(14,15)
g2 = (2,14)(3,12)(4,10)(6,8)
g5 = (1,2)(3,14)(4,12)(6, 10)

5.4 A new invariant

One may ask why there exist several orbits having the same monodromy
group? The answer was found by Gareth Jones (Southampton). In fact,
the monodromy group is an invariant not only as an abstract group, but
also as a particular permutation group, that is, as a particular subgroup of
Sp. The same group G' may have several conjugate copies inside S,. But
we must not forget as well that we had fixed once and for all the product

g1 gk="m=(1,...,n) € S,.
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Proposition 5.2 There are two conjugate copies of the group PSL3(2) in-
stde S7 that contain the permutation ~y; in their intersection; four copies of
PSL3(3) inside Si3 that contain v13; and two copies of PSL4(2) inside Sis
that contain 1.

The details of this construction will be explained elsewhere.

Remark 5.3 The reasons why for the passport [3 x 2%213] there are two
Ar-orbits remain mysterious. This is, up to now, the only case when we
cannot propose a clear combinatorial invariant that would explain such a
splitting. Just mention that the orbits themselves are not isomorphic: there
are no bijection between them that would commute with the braid group
action.

5.5 Once more about the perspectives

After the polynomial case, what should be the next case to study? Previously
our project (outlined in [2]) was to attack the topological classification of
the rational functions. Today we think that a “more convenient” class of
functions (at least for our approach) is the class of meromorphic functions of
genus g > 0 having a single pole. The reasons for this change of the point of
view are the following:

(1) Many particular features of our programs are based on the fact that
the product ¢1...9x = v = (1,...,n) € S, is a cyclic permutation. The
case of an arbitrary permutation v would necessitate a re-programming of
almost everything, while the case of a positive genus needs only a very little
adjustment.

(2) There are some enumerative results for the factorizations of a “big
cycle” v in a product of permutations of given cyclic structures [5], while the
similar results for an arbitrary  are very scarce.

(3) An approach based on the formula of Frobenius, that uses the charac-
ters of the symmetric group, permits in principle to compute the number of
above factorizations for an arbitrary . But this method has another flaw: it
counts also “non-transitive cacti”, and therefore necessitates a cumbersome
inclusion-exclusion procedure, while the presence of a big cycle automatically
garantees the transitivity.

(4) Last but not least, the permutation groups containing a big cycle are
classified [3] while the “planar monodromy groups” are not [6].
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