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Abstract

Message Sequence Charts (MSCs) is a notation used in practice by protocol
designers and system engineers. It is defined within an international standard (ITU
Z120), and is also included, in a slightly different form, inthe popular UML stan-
dard (called theresequence diagrams). We present some of the main results related
to this notation, in the context of specification and automatic verification of com-
munication protocols. We look at issues related to specification and verification. In
particular, we look at automatic verification (model checking) of MSCs. We study
the expressiveness of MSCs, in particular the ability to express communication
protocols, and appropriate formalisms for specifying properties of MSC systems.

1 Introduction

Specifying the behavior of software systems is of major importance for engineers.
When concurrency is involved, the specification becomes even more challenging. Even
before considering the actual notation to be used for specification, there is a large
choice of models of execution. Different models vary in the detailed information they
carry, the intuition they provide and the difficulty of checking properties of the modeled
systems.

Perhaps the most successful model for describing concurrent systems is the inter-
leaving model. An interleaved execution is simply an alternating sequence of actions
and states, where each action isenabledin the preceding state, and afterexecutingit,
results in a new state. In this model, all the events are linearly ordered, and concurrently
executed events are modeled by ordering them in an arbitraryway. Simple formalisms,
such as linear temporal logic, are available for describingproperties of interleaving
sequences. In the finite case, there are simple decision procedures for checking proper-
ties of such models. Thepartial ordermodel allows events to be unordered, if they can
independently (concurrently) occur. After the selection of the model, we are still left
with a wide choice of notation, affecting our level of abstraction and the complexity of
deciding their properties.

Message sequence charts (MSCs) is a partial-order based standard formalism [15].
It has a visual notation, which clearly demonstrates the interaction between the in-
volved concurrent processes. It is already used in practiceby protocol designers, a
fact which gives it an advantage over other formalisms in technology transfer. On the
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msc MSC;
inst P1: process Root,
P2: process Root,
P3: process Root;
instance P1;
out d1 to P2;
in d5 from P2;
in d6 from P3;
endinstance;
instance P2;
in d1 from P1;
out d2 to P3;
out d3 to P3;
in d4 from P3;
out d5 to P1;
endinstance;
instance P3;
in d2 from P2;
in d3 from P2;
out d4 to P2;
out d6 to P1;
endinstance;
endmsc;

Figure 1: Visual and textual representation of an MSC

other hand, working with an existing standard, which was developed by a committee,
initially without a full view of algorithms and complexity issues, can be challenging.
In this survey we discuss several issues in specification andverification using message
sequence charts.

2 Preliminaries

Each MSC describes a scenario where some processes communicate with one another.
Such a scenario includes a description of the messages sent,messages received, the
local events, and the ordering between them. In the visual description of MSCs, each
process is represented as a vertical line with process name in a box at the top. We
usually end a process line with a horizontal line at the bottom. A message is represented
by a horizontal or slanted arrow from the sending process to the receiving one, as
appears in the left part of Figure 1. The corresponding textual representation of that
MSC appears in the right part of Figure 1.

Definition 2.1 [15] An MSCM is given as a tuple〈V,<, P ,N , L,K,N,m〉, where

• V is a finite and nonempty set of events,

• < ⊆ V × V is an acyclic relation (with further details below),

• P is a set of processes,

• N is a set ofmessage names,
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• L : V → P is a mapping that associates each event with a process,

• K : V → {s, r, l} is a mapping that describes thekind of each event as send,
receive or local, respectively,

• N : V → N maps every event to a name,

• m ⊆ V × V is a nonempty relation calledmatchingthat pairs up send and
receive events. Each send is paired up with exactly one receive. Eventsv1 and
v2 can be paired up with each other, only ifN(v1) = N(v2), K(v1) = s and
K(v2) = r.

A type is a triple (i, j, C), including the indexes of the sending processPi ∈ P and
receiving processPj ∈ P , and a message nameC ∈ N . Each send or receive event
has a type, according to the origin and destination of the message, and the label of the
message. The type of a local event of processPi ∈ P is (i, i). Matching events have
the same type. A message consists of a pair of matched send andreceive events. For
two eventsv1 andv2, we havev1 < v2 if and only if one of the following holds:

• v1 andv2 are matching send and receive events, respectively.

• v1 andv2 belong to the same process, withv1 appearing beforev2 on the process
line.

We assume FIFO (first in first out) message passing, i.e., message arrows on the same
channel do not cross each other:

(m(v1, v
′
1) ∧m(v2, v

′
2) ∧ v1 < v2∧

L(v1) = L(v2) ∧ L(v′1) = L(v′2)) ⇒ v′1 < v′2

Denote byu −→ v the fact thatu < v and eitheru andv are matchingsendand
receiveevents, oru andv belong to the same process and there is no event betweenu

andv on the same process line. We say in this case thatu immediately precedesv.

Definition 2.2 The transitive closure<∗ of the relation< is a partial order called the
visual orderingof events. Clearly, the visual ordering can be defined equivalently as
the transitive closure of the relation−→. A chain of eventse1 <∗ e2 . . . <

∗ en is
called acausal chain.

The MSC notation represents a partial order execution, where the fact that two events
u, v are ordered according to the visual order means thatu happens beforev. A lin-
earizationof an MSCM = 〈V,<,P ,N , L,K,N,m〉 is a total order onV , which
extends the relation(V,<).

Example 2.3 Consider the example MSC given in Figure 1. For each messagedi,
1 ≤ i ≤ 6, denote bysi the sendevent and byri the receive event. Then we have
V = {s1, . . . , s6, r1, . . . , r6}, P = {P1, P2, P3}, N = {d1, . . . , d6} andN(si) =
N(ri) = di for eachi. The events located onP1 areL−1(P1) = {s1, r5, r6}, with
K(s1) = s,K(r5) = K(r6) = r, ands1 < r5 < r6. This ordering is the time ordering
of events onP1. We also havem(si, ri) andsi < ri for eachi (message ordering). In
particular,s1 < r1 < s2 < r2.

The partial order between thesendandreceiveevents of Figure 1 is shown in Fig-
ure 2. In this figure, only the ‘immediately precedes’ order−→ is shown. Notice for
example that thesendeventsv5 andv6, of the two messages,d5 andd6, respectively,
are unordered.
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Figure 2: The partial order between the events of the MSC in Figure 1.

Definition 2.4 TheconcatenationM1M2 of two MSCs,

Mk = 〈Vk, <k,P , Nk, Lk, Kk, Nk, mk〉, for k = 1, 2.

over a common set of processesP and disjoint sets of eventsV1 ∩ V2 = ∅ (we can
always rename events so that the sets become disjoint) is defined as〈V1 ∪ V2, <,

P , N1 ∪ N2, L1 ∪ L2, K1 ∪K2, N1 ∪N2, m1 ∪m2〉, where

< = <1 ∪ <2 ∪{(u, v) ∈ V1 × V2 | L1(u) = L2(v)} .

That is, the events ofM1 precede the events ofM2 for each process, respectively.
If M = M1M2, we say thatM1 is aprefixof M , and denote this byM1 ⊑ M . This
also means containment between the different process events of the MSCsM1 andM .
Notice that no synchronization of the different processes is assumed in the definition
of concatenation. Thus,M1M2 does not necessarily describe a behavior that starts
according toM1 and after completing all the events fromM1 progresses to behave
according to the events inM2. In particular, it is possible inM1M2 that one process
is still involved in some actions of processPi, while another process has advanced to
events from another processPj . Such a situation is demonstrated later in this section.
The infinite concatenation of finite MSCs is defined in a similar way, and it allows
defining infinite MSCs as well.

Definition 2.5 LetM1, M2, . . . be an infinite sequence of finite MSCs. Define a se-
quenceM1

′, M2
′, . . . as follows: LetM1

′ = M1, and for i > 1, Mi
′ = M ′

i−1Mi.
(Thus, fori < j,Mi

′ ⊑Mj
′.)
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LetM ′
i = 〈Vi, <i, P , Ni, Li, Ki, Ni, mi〉. Then,Vi ⊆ Vi+1, <i⊆<i+1, Ni ⊆

Ni+1, Li ⊆ Li+1, Ki ⊆ Ki+1, Ni ⊆ Ni+1 andmi ⊆ mi+1. The infinite concatena-
tionM1M2 . . . is defined as the infinite MSCM = 〈V,<,P , N , L, K, N, m〉 where
V = ∪i≥1Vi, N = ∪i≥1Ni,L = ∪i≥1Li,N = ∪i≥1Ni,K = ∪i≥1Ki,N = ∪i≥1Ni,
m = ∪i≥1mi and<= ∪i≥1 <i. Each component definingM is thus the limit of the
partial unions for the same component in the finite prefixesM ′

i .

Since a communication system usually involves multiple (oreven infinitely many)
MSC scenarios, a high-level description is needed for combining them. The standard
description consists of a graph called HMSC (high-level MSC), where each node con-
tains one finite MSC as in Figure 3. Each maximal path in this graph (i.e., a path that is
either infinite or ends with a node without outgoing edges) that starts from a designated
initial state corresponds to a singleexecutionor scenario.

Definition 2.6 [15] An HMSC is a 4-tuple〈S,M, c, τ,S0〉 whereS is a finite set of
nodes,M is a set of finite MSCs with sets of events disjoint from one another. The
mappingc : S → M associates a nodeg ∈ S with an MSCc(g). By τ ⊆ S × S we
denote theedge relation. Theinitial nodesS0 are a subset ofS. An executionof the
HMSC is a (finite or infinite) MSCc(g0) c(g1) c(g2) · · · associated with a maximal1

pathg0, g1, . . . of the HMSC that starts with some initial nodeg0 ∈ S0.

The set of executions of an HMSC is also referred to as the set of MSC generatedby
that HMSC. Figure 3 shows an example of an HMSC. The node in theupper left corner,
denotedM1, is the starting node, hence it has an incoming edge that is connected to no
other node. Initially, processP1 sends a message toP2, requesting a connection (e.g.,
to an internet service), according to nodeM1. This can result in either an approval
message fromP2, according to the nodeM2, or a failure message, according to node
M3. In the latter case, a report message is also sent fromP2 to some supervisory
processP3. There are two progress choices, corresponding to the two arrows out of
nodeM3. We can decide to try and connect again, by choosing the arrowfrom M3

to M1, or to give up and send a service request (from processP1 to processP3), by
choosing to progress according to the arrow fromM3 to M4. Note how the HMSC
description abstracts away from internal process computation, and presents only the
communications. The executions of this system are either finite or infinite. Consider
the pathM1M3M4. According to the HMSC semantics, processP2 in Figure 3 does
not necessarily have to send itsReport message inM3 before the execution of process
P1 has progressed according toM4 sent itsReq service message. However, process
P3 must receive theReport message before theReq service message.

According to the ITU standard [15], an HMSC can be hierarchical, i.e., an HMSC
node can be mapped into another (lower level) HMSC. We ignorethis feature, which is
orthogonal to the discussion in this survey and refer to [9] for algorithms on hierarchical
HMSCs.

3 Expressiveness

Message sequence charts (MSCs) (including the extension toHigh level MSCs, i.e.,
HMSCs) is a formalism that is used in practice by protocol developers and software

1By maximality we mean that a path is either infinite, or terminates with a node that has no successor
according to the relationτ .
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Figure 3: An HMSC graph
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Figure 4: Simple example with infinite state space

engineers. Unlike some other specification formalisms, it was not designed by re-
searchers to fit into existing theory or tools. This calls forthe study of its properties, in
an attempt to adapt some formal methods techniques, or develop new ones.

There are several interesting aspects of the MSC notation that pose a challenge to
the researchers and the developers of tools. For example, the HMSC notation does not
necessarily representsfinite state systems, as there is no bound on the size of message
channels and due to concurrent processes. This fact has implications on the ability
to automatically verify properties of HMSCs. Consider for example the HMSC in
Figure 4. This is the simplest example of an HMSC with infinitely many global states.
In order to formalize this observation, we define the notion of a global stateof an MSC.

Definition 3.1 Let M = 〈V,<, P ,N , L,K,N,m〉 be a finite or infinite MSC (the
latter case is obtained, e.g., by an infinite execution of an HMSC). Aglobal stateG is
a finite subset of the events ofV , such that iff ∈ G ande <∗ f , thene ∈ G. (We say
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Figure 5: An MSC with two messages

thatG is ‘history closed’.)

Now, it is easy to see that the states of the unique and infiniteexecution of the
HMSC in Figure 4 consists ofk sends andl receives for anynatural numbersk ≥ l.
A global state ofM is usually defined, in the context of software verification, as an
assignment function from the program variables to their values. In the MSC context,
the assignment can return the sequence of pending messages on each channel, together
with the last event on each process.

It is interesting to know what is the expressive power of HMSCs. In order to remain
within the domain of formal languages, we will look at thelinearizationsof MSC
executions, i.e., their completions into total orders. We will label each event in an
MSC node with a label from a finite alphabetΣ. We allow (but do not force) labeling
of different events of thesame type and kindby the same letter.

Consider the MSC in Figure 5. It has two messages, i.e., 4 events. We labeled the
sends witha, and thereceives with b. This MSC generates two linearizations (words):
abab andaabb. These languages of linearizations are closed under certain permutation
of adjacent occurrences of events. We have threepermutation rules:

1. If b is areceiveof a message fromPi to Pj , anda is asendfrom Pi to Pj , then
we can permuteσ1baσ2 (σ1, σ2 ∈ Σ∗) to obtainσ2abσ2. Note this rule does not
necessarily permit us to permute in the reverse direction, i.e., fromσ1abσ2 to
σ1baσ2.

2. If a is a sendfrom Pi to Pj , andb is a receivefrom Pi to Pj , we can permute
a with b in σ1abσ2 provided that the following condition hold:#aσ1 > #bσ1,
where#cσ denotes the number ofc’s appearing in the wordσ.

3. If a andb belong to different processes, and their types do not match as in the
previous case, then we can permutea with b. (In fact, we can also permuteb
with a, from the symmetry of this condition.)

The reason that reverse permutation of the first rule is not necessarily allowed is that
it may cause areceiveto appear before the correspondingsend. For example, given
the linearizationabab of the MSC in Figure 5, we cannot permute the firsta with the
first b to obtainbaab. The second rule specifies the condition under which the reverse
permutation is allowed. Under this rule, the adjacenta andb, which can be permuted,
arenot a matching pair. Also note that for MSCs, it is not possible touse a fixed
symmetric independence relation between events, as intrace theory[23].

We can define thelanguage of an HMSCas follows. LetL(M) be the (finite) lan-
guage of an HMSC nodeM . LetK be the language of the graph of the HMSC, where
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Figure 7: A simple two process protocol

each node in the graph is assigned some unique letter (disjoint from the letters inΣ).
According to Kleene’s construction, the languageK is a regular language. Substitute
in K each letter corresponding to a nodeM by the language ofL(M). This is still a
regular language, denoted̃K. Now closeK̃ under the permutation rules to obtain[K̃].
Such permutations are achieved by using context sensitive grammar rules of the form
XabY → XbaY . Hence the language[K̃] of an HMSC is context sensitive. Note that
the language of an HMSCH is the set of all linearizations of executions ofH . Note
also that we can only permute events according to the first andthird permutation rules
given above. This is sufficient due to the fact that we tookall the linearizations of each
separate MSC node. This is because asendeventa from Pi to Pj in a nodeg and a
receiveeventb, also fromPi toPj of a later nodeh can never be commuted; the event
a necessarily precedes thesendevent that matches with thereceiveb.

Thus, HMSC languages are obtainable from regular languages(ω-regular in the
case of infinite executions) by closing under a given set of permutations. To show that
the language of HMSCs is, in general, not regular or context free, consider the example
in Figure 6. The global states of this example havel timesa events,m timesc events,
andn timesd events, wherel ≥ m ≥ n (also the number ofb events is the same or
greater than, by exactly one, than the number ofc events). This can be easily shown
not to be in the class of context-free (and hence also not regular) languages.

On the other hand, we show that the HMSC notation does not allow representing
all the possible communication skeletons of finite state communication protocols [11].
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Figure 8: A prefix of an MSC execution that cannot be decomposed .

This makes HMSCs incomparable with regular languages.
As an example, consider the infinite MSC that is generated from the simple pro-

tocol in Figure 7. A finite prefix of the MSC description of the (unique and infinite)
execution of this protocol appears in Figure 8. We show that this infinite MSC cannot
be decomposed into a concatenation of finite MSCs. We start with thesendevente1
and receiveeventf1. Obviously, because of the compulsory matching between cor-
respondingsendand receiveevents in HMSCs, they must belong to the same MSC
node. We have thesendeventg1 precedingf1, on the same process line, while its cor-
respondingreceiveeventh1 succeeds thesende1. Thus, the eventsg1 andh1 cannot
be in an MSC preceding the one containing the eventse1 andf1, nor it can be in an
MSC succeeding it. Consequently, these four events must be in the same HMSC node.
For the same reason, we have thate2 andf2 must belong to the same node withg1, and
h1, and so forth.

The problem lies within the restriction of the MSC nodes to contain matched mes-
sages. A different view of the expressiveness problem is that any global state that cor-
responds to a finite path in an HMSC (i.e., a global state that contains complete MSC
nodes) has a matched set ofsendandreceiveevents. In the partial order execution in
Figure 8, there is no global state with this property. Hence,we cannot decompose this
execution into finite MSCs (which will occur infinitely many times along some path of
an HMSC).

3.1 Compositional MSC

An extension of the HMSC notation is described in [11]. It allows MSC nodes with
unmatchedsendandreceiveevents. Thus, asendevent in one node may be matched
with a receiveevent in a later node.

In order to represent communication protocols, whose description could only be ap-
proximated using standard MSCs, we suggest an extension of the MSC standard. Intu-
itively, a compositional MSC, or CMSC, may includesendevents that are not matched
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by correspondingreceiveevents and vice versa. An unmatchedsendevent in one node
in a path may be matched in future HCMSC nodes on that path. Similarly, an un-
matchedreceiveevent may be matched in previous HCMSC nodes. The definition of a
CMSC is hence similar to an MSC, except that unmatchedsendandreceivemessages
are allowed.

Definition 3.2 [11] A CMSCM is defined as in Definition 2.1, except for the following
modification:

• m ⊆ V × V is apartialfunction calledmatchingthat pairs up send and receive
events. Each send event is paired up withat mostone receive event and vice
versa. Events that are paired up are calledmatched, otherwise, they areun-
matched. Matching events must have the same type.

Unmatchedsendevents are supposed to be matched byreceiveevents belonging
to subsequent nodes, whereas unmatchedreceiveevents are supposed to be matched
by sendevents belonging to preceding nodes. The above definition allows unmatched
receiveevents that do not correspond to any unmatchedsendevent. (Allowing un-
matchedsendevents that do not correspond to a laterreceiveis a lesser problem, as
this can actually happen in communication protocols.)

We denote an unmatchedsendby a message arrow, where thereceiveend (the
target of the arrow) appears within an empty circle. Similarly, an unmatchedreceiveis
denoted by an arrow where thesendpart (the source of the arrow) appears within a
circle. CMSC arrows where both thesendand thereceiveevents are unmatched events
are forbidden. In Figure 9, we can see an HCMSC that represents the execution that is
approximated in Figure 8.

Definition 3.3 A CMSC is calledleft-closed, if it does not contain unmatched receive
events, or any unmatched send event that precedes another matched send of the same
type (the latter condition excludes send events that could never be matched without
violating the FIFO order).

Definition 3.4 Consider two CMSCsM1 = 〈V1, <1, P , N1, L1, K1, N1, m1〉 and
M2 = 〈V2, <2, P , N2, L2, K2,N2, m2〉 over disjoint events sets. Define the match-
ing functionm′ that pairs up unmatched send events ofM1 with unmatched receive events
ofM2 according to their order on their process lines. That is, theith unmatched send in
M1 is paired up with theith unmatched receive event of the same type inM2.

TheconcatenationM1M2 is then defined as〈V1∪V2, <,P , N1∪N2, L1∪L2, K1∪
K2, N1 ∪N2, m1 ∪m2 ∪m′〉, where

< = <1 ∪ <2 ∪

{(v1, v2) ∈ V1 × V2 | L1(v1) = L2(v2)} ∪m
′

provided thatM1M2 is a CMSC satisfying the FIFO property when restricting the
events to the matched pairs of events.

Clearly, the concatenation of CMSCs is not associative anymore. Hence, when
we writeM1 · · ·Mk we mean the concatenation(· · · (M1M2)M3) · · ·Mk). Again, we
can define the prefix relationM1 ⊑M if there existsM2 such thatM1M2 = M . The
definition of an infinite concatenation for CMSCs follows thelines of Definition 2.5.
Note that in an infinite concatenation, there can be infinitely many unmatched messages
sent from one process to another.
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Figure 9: A decomposition of the execution in Figure 8.

An HCMSC is a graph whose nodes are CMSCs. Except for that, thedefinition of
HCMSCs is the same as Definition 2.6. Similarly, an HCMSCexecutionis the CMSC
c(g0)c(g1) . . . associated with a pathg0, g1, . . . in the HCMSC graph, starting with
some initial nodeg0, as in Definition 2.6.

3.2 Safe HCMSC

The definition of HCMSCs allows obtaining some “unreasonable” paths in HCMSCs,
e.g. in which at some points there are morereceiveevents than the corresponding
sendevents for some ordered pair of processes. It is not clear howto treat such paths.
One way, is to disregard such paths as executions of the HCMSCsystem. Another
approach, which will be taken in this section, is to forbid HCMSCs with such paths.

Remark 3.5 [15] An HCMSC issafe2 if the execution of every finite path starting with
the initial state is a left-closed CMSC.

Note that we explicitly allow executions with unmatchedsendevents. The HCMSC
of Figure 9 is such that every finite execution is a left-closed CMSC with unmatched
sendevents. However, the unique maximal execution correspondsto an infinite MSC,
where all the events are pairwise matched. Definition 3.3 of left-closedness guarantees
that no unmatchedsendcannot may prevent the system to satisfy the FIFO condition
by matching it later.

2Such HCMSCs are called realizable in [11]. This name usuallyrefers to the realizabil-
ity/implementability problem, so we prefer to recast it into “safe”.
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We will show how to test whether an HCMSC is safe. From the definition of
safe HCMSCs, we can focus on messages sent from eachPi to another processPj

separately. There are three situations that violate the safety of a HCMSC on a given
prefix of a path:

1. There are more unmatchedreceiveevents thansends.

2. Reaching a matchedsend-receivepair, thekth unmatchedsendis before the
matched pair, but thekth unmatchedreceivecomes after that matched pair. This
will generate a non-FIFO behavior.

3. Thekth unmatchedsendhas a message nameC, while thekth unmatchedreceive
has a message nameD, whereD 6= C.

To check whether an HCMSC is safe [11], we construct a nondeterministic push-
down automatonSi,j for each ordered pair of processesPi, Pj that exchange messages
in the HCMSC. A pushdown automaton is a quadruple,S = 〈Q,Γ,Σ,∆〉, such that

• Q is a finite set of control states,

• Γ is a finite stack alphabet which in our case will beΓ = {⊥, 1}, where⊥ is the
‘stack bottom’ symbol,

• Σ is the input alphabet, which includesunmatched-sendC, unmatched-receiveC,
or matched-C, such thatC is a message name fromN , and∆ ⊆ (Q×Σ×Γ)×
(Q× {pop, push, skip}) is the set of transition rules. Depending on the current
state and symbol at the top position at the stack and the current input symbol, a
pushdown automaton has a choice of

– the next state and

– whether topopthe current top element from the stack,pushanother symbol
on top of it, orskip, i.e., keep its current contents. The stack contents in our
case always belongs to⊥1∗.

The stack is used as a counter, where the counter value is the number of ‘1’ symbols
on the stack, and a zero is represented by a stack containing only ‘⊥’. We can partition
the transitions according to their effect on the number of ‘1’ symbols in the stack:
incrementing, decrementing, or testing whether the contents of the stack is zero.

For every pair of processesPi, Pj we define the pushdown automatonSi,j by re-
placing each node in the HCMSC by a linearization (total ordering) of the matched and
unmatchedsendandreceiveevents. We allow only linearizations in which unmatched
receiveevents of some type precede all the unmatchedsendevents of the same type.
It follows easily from the definitions that such a linearization always exists. The au-
tomatonSi,j will follow such events in a node, and then will continue according to the
events of a successor of the current node and so forth (nondeterministically, as there
can be more than one HCMSC successor). The pushdown automaton will reach anac-
ceptstate exactly when it discovers that the HCMSC is not safe dueto communications
fromPi toPj .

We describe now the automatonSi,j informally. It contains two phases. In the first
phase, it increments each time an unmatchedsendevent occurs, and decrements each
time an unmatchedreceiveoccurs. It moves to anacceptstate when either the stack
is empty (containing only⊥), and an unmatchedreceiveoccurs, or when a matched
send-receiveevent occurs and the stack is not empty. This takes care of thecases 1
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and 2 above. To take care of case 3, upon the occurrence of an unmatchedsend, the
automaton can nondeterministically ‘guess’ that the correspondingreceivehas a differ-
ent name. It saves the message nameC in its finite control and ignores all subsequent
events, except for unmatchedreceiveevents, where it decrements one ‘1’ from the
stack. Upon reaching an empty stack, it compares the lastreceivenameD with the
name storedC. If C 6= D, it transfers to anacceptstate, and otherwise, it just ignores
the rest of the events. Reaching anacceptstate means that the HCMSC isnotsafe.

The motivation behind the definition of compositional MSCs was to capture finite
state communication protocols, like the one of Figure 8:

Theorem 3.6 [11] Every finite state communication protocol can be transformed into
an equivalent safe HCMSC (in polynomial size).

Clearly, the converse of the theorem above does not hold. This happens for the
same reasons as for HMSCs, as demonstrated in Figure 6.

4 Undecidable Versions of Model Checking for HMSCs

Once we characterize HMSC languages as context sensitive languages, it is not too
surprising that certain decision problems become undecidable. The state based model
checking (see e.g. [14, 19, 30, 7]) prescribes using a finite state model for representing
the execution sequences of a system and another finite state automaton (over finite or
infinite words) for representing the specification. The specification describes thebad
executions, i.e., the ones we do not want the system to have. We take the intersection of
the languages of the system automaton and the specification automaton to find whether
there are bad sequences allowed by the system.We can try, along these lines, to specify
the bad or unwanted executions of a system using the HMSC formalism. If the inter-
section of the linearizations of two HMSCs is nonempty, we can easily take one and
generate back an MSC.

Alternatively, we can use a specification of thegoodsequences, i.e., the executions
we allow. However, in this case we need to perform a test for language inclusion,
which is often of higher complexity when using HMSCs. The reason is that contrary
to logical specifications, that can be negated without any blow-up, HMSCs cannot
be always complemented. As an example, consider the trivialHMSC with one node
labeled by the empty MSC over the process setP . This HMSC generates the empty set
and its complement (i.e., the set of all MSCs overP) cannot be generated by an HMSC
(neither by a safe CHMSC).

The corresponding HMSC model checking problem is to intersect two HMSCs,
one corresponding to the system description, and another representing the ‘bad’ MSC
executions. It is known that the emptiness of the intersection of two context sensitive
languages is undecidable. We still have to prove that for HMSC languages, as they
form a subset of the context sensitive languages:

Theorem 4.1 [27] The problems of intersection of two HMSCs is undecidable.

Proof. By reduction from Post Correspondence Problem (PCP). The input for PCP is
a finite sequence of pairs of words

(w1, v1), (w2, v2), . . . , (wn, vn)
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Figure 10: An HMSC graph for the PCP reduction

The problem is to decide whether there is a finite sequence of indexesi1, i2, . . . , im
such thatwi1wi2 . . . wim

= vi1vi2 . . . vim
.

We construct two HMSCs. One for concatenating words that appear in the left
components of the above pairs, and one for concatenating words that appear in the
right components. Consider the HMSC for the left components. We have4 processes
P1, . . . P4. For each wordwj , we construct an MSC nodeMj with messages fromP1

to P2 labeled by the letters ofwj . We also have a nodeRj , with one message, from
P3 to P4, labeled by the indexj. We also have an initial nodeE, with a message
from P1 to P4, and a nodeF , with a message fromP4 to P1. The structure of the
automaton can be represented by the regular expressionE(

∑
j=1..n MjRj)

+F , which
is also demonstrated in Figure 10. That is, we need to start with the initial nodeE, then
repeatedly make a nondeterministic choice ofMjRj for 1 ≤ j ≤ n, and finally end
with nodeF .

The automaton for concatenating the right components is constructed similarly.
Now notice that the events in theMj components can commute with the events in
theRj components, since they involve disjoint processes. Therefore, any word in the
intersection has the same characters according to the sequence ofMjs, and the same
indexes according to the sequence ofRjs.

Another attempt for providing model checking is to write thespecification (or the
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negation of the specification, describing the bad executions) using an automaton over
finite or infinite words, or using linear temporal logic (LTL). Unfortunately, the inter-
section of HMSC languages with regular languages, or the language of words satisfying
linear temporal logic formulas, is undecidable as well.

To see this, replace in the previous proof the HMSC for the right components (the
‘specification automaton’) by an LTL formula (or regular expression, or a finite state
automaton over infinite words) that represents some of the linearizations of the HMSC
as follows: for an MSC nodeM , let lin(M) be the single linearization ofM that
includes matchingsendandreceiveevents appearing adjacent. (Note that his kind of
linearization is not always possible for an MSC, but is possible in our case because of
the particular construction of the nodes in the reduction.)Thus the linearization ofMj,
representing the wordwj = αββα will be sαrαsβrβsβrβsαrα, wheresρ represents a
sendof a message labeled byρ, andrρ represents areceiveof that message. The LTL
formula will represent the language lin(E)(

⋃
j=1..n lin(Mj)lin(Rj))

+lin(F ) (this is a
counter-free language, and thus can be represented using LTL).

The intersection of the (language of the) HMSC, representing the left words in
the PCP problem, and the language of the LTL formula above, representing the right
words, would include exactly the words that are solutions tothe PCP problem. That is,
we have the same concatenation of words, with the same sequence of indexes. Hence,
LTL model checking of HMSCs is undecidable.

5 Decidable Versions of Model Checking for HMSCs

There are several positive solutions for providing model checking algorithms for HM-
SCs. One possibility is to consider restricted classes of HMSCs. The most restrictive
approach considers regular HMSCs, that correspond to finitestate systems for which
the usual model checking approaches can be used. Other solutions are listed below.

5.1 Regular and Cooperative HMSCs

A constraint for HMSCs ensuring regularity is the following[5, 26].

Definition 5.1 The communication graphCGM = 〈P,→〉 of an MSCM contains the
processesP ∈ P of M that occur inM , and with edgesPi → Pj ∈ E if there is a
message fromPi toPj in M .

Definition 5.2 [5, 26] An HMSCH is regular, if for each loopσ in the graph ofH ,
the communication graphCGM of the MSCM labelingσ is strongly connected.

The definition of regular HMSCs is syntactic, and be checked in co-NP [26, 5].
Model checking becomes decidable for regular HMSCs [26, 5],since their languages
are regular. More precisely:

Theorem 5.3 [17, 18] A set of MSCs is generated by a regular HMSC if and onlyif it
has a regular set of linearizations and is generated by a finite set of MSCs.

An HMSC stateis a global state associated with an executionM of the HMSCH .
We will show that the number of pending messages (i.e., messages that are sent but
not yet received) in any HMSC state of a regular HMSC is finite.Note however that
a bound on pending messages does not suffice for representingHMSC linearizations
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using a finite state automaton. As an example, consider a (non-regular) HMSC over
processesP1, P2, P3, P4 consisting of two nodesg0, g1. The initial nodeg0 has a self-
loop and a transition to the sink nodeg1. Nodeg0 is labeled by the following MSC
with 4 messages: there is a message fromP1 to P2, and back, and a message fromP3

to P4, and back. Nodeg1 is labeled by the empty MSC. Now, the number of pending
messages is at most 2, but the set of linearizations is not regular.

Theorem 5.4 For any regular HMSC there is a bound on the number of pending mes-
sages in any HMSC state.

Proof. It is sufficient to show that for each pair of processesP andQ, there is a bound
on the number of occurrences of a regular HMSC nodeg that can contribute to the
pending messages.

Letn = |P|, i.e., the number of processes. An upper limit on the number of graphs
with n nodes, and also on the number of simple paths in such a graph isk = 2n2

.
Consider a global stateG generated for a maximal path (i.e., a finite MSC)σ. Consider
the occurrences of unreceivedsendevents from processP to processQ onσ in G. Let
g be a node of the HMSC that includes such an event. Assume for the contradiction
that there arel = nk + 3 such occurrencesg0, g1, . . ., gnk+2, of g that contribute to
the global stateG.

There arenk cycles,gi to gi+1 for 1 ≤ i ≤ nk + 1, after the first occurrenceg0 of
g andbeforethe last occurrencegnk+2. Each such cycleσi is a subpath ofσ. By the
choice ofl, considering the communication graphs corresponding to the cyclesσi, at
least one such graph repeatsn times. Letµ be a simple path in such a communication
graph from the node corresponding to processQ to the node corresponding to process
P . Henceµ consists of at mostn− 1 edges.

Distinguishs andr as asend–receivepair of g0, from processP to processQ,
wheres is in G but r is not. Similarly, lets′ andr′ be a similar pair ofgnk+2. We
can now construct a causal (according to<∗) chain of events in the subpath ofσ as
follows: from theσi cycle we select asend–receivepair according to theith edge ofµ.
(We may not assume that a chain of events appears according tothe order inµ in one
cycleσi, hence we need to form the chain by collecting events from different cycles.)
This forms a causal chain of events, as eachreceiveselected precedes the following
sendon the same process line. The firstsendon this chain appears later than the event
r. It appears ing1 and both belong to processQ. The lastreceiveprecedes the event
s′. Both events belong to processP . According to our assumptions,r is not included
in G while s′ is included. Thus by our construction,r <∗ s′. This is a contradiction,
since a global state must be history closed.

This result is also related to the star problem in trace languages [28]. The restriction
to regular HMSCs is quite strong, for instance the simple protocol in Figure 4 is not
regular. However, this HMSC isglobally-cooperative, and belongs to a large subclass
of HMSCs with a decidable model-checking problem.

Definition 5.5 [13] An HMSCH is globally-cooperative, if for each loopσ in the
graph ofH , the communication graphCGM of the MSCM labelingρ is weakly con-
nected.

It is interesting to note that regular HMSCs are precisely globally-cooperative HM-
SCs that use only bounded channels.
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Model-checking globally-cooperative HMSCs is decidable,and has the same com-
plexity as for regular HMSC [13]. Instead of having a regularset of linearizations,
globally-cooperative HMSCs have a regular set ofrepresentativelinearizations, which
suffice for doing model-checking operations.

Theorem 5.6 [13] Checking intersection of two globally-cooperative (regular, resp.)
HMSCs is PSPACE-complete. Checking inclusion of two globally-cooperative (regular,
resp.) HMSCs is EXPSPACE-complete.

Allowing ‘gaps’ in the semantics of the specification HMSC gives another decid-
able case for model checking. AspecificationHMSC representing the bad executions
is interpreted in a different way than the HMSC representingthe system. The former
represents only part of the events. In particular, two adjacent eventsa andb on the
same process line of the specification HMSC may match some nonadjacent events of
the same type in the system HMSC. The (scattered) pattern matching problem between
these two HMSCs is decidable, and is in NP-hard, in the size ofthe HMSCs [27].

5.2 The LogicTLC−

Using a partial order based specification formalism can alsoregain decidability of
model checking. Consider a specification that has a languageL that is regular and
is already closed under the permutation rules. The emptiness of the intersection of
such a specification with an HMSC language can be decided. Thereason is that an
HMSC language[P ] is generated from a regular languageP by closing it under per-
mutations. IfL = [L], thenL ∩ P 6= ∅ iff L ∩ [P ] 6= ∅. Thus, it is sufficient to
check the emptiness of the intersection ofL with the regular generatorP of the HMSC
language. Similarly, for the inclusion problem we haveP ⊆ L iff [P ] ⊆ L and this
can be decided, provided that the specificationL is complementable3.

A solution that involves partial order based formalisms is the use of a subset of
the logic TLC [4], as applied on HMSCs in [29]. According to this solution, we use
temporal modalities to reason over the events of the MSC system. We use the same
modalities symbols as in LTL, but give them a different interpretation; over paths of
events, generated by the< relation, rather than over linearizations of the partial order.

The logic TLC− is a subset of the logic TLC [4]. A model of the logic is a finite or
infinite partial orderζ = (V,<,−→), where<⊂ V × V is a partial order relation, and
−→⊂< is the ‘immediately precedes’ relation. The set of formulasL of TLC− over a
set of atomic formulasAP is as follows:true, false∈ L, if p ∈ AP , thenp ∈ L, and
if ϕ, ψ are inL thenϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ∃© ϕ, ∀© ϕ, ϕUψ, ϕRψ ∈ L.

An interpretation functionI : V 7→ 2AP assigns to each event ofV a set of
propositions fromAP . Each proposition inAP represents some property (e.g., of an
event, or the local state before or after the event, when the events are taken from some
system execution). Then,I(v) returns the set of atomic propositions that hold forv.
The semantics of the logic is defined as follows.

(ζ, v) |= true.

(ζ, v) |= p if p ∈ I(v)

(ζ, v) |= ϕ ∧ ψ if (ζ, v) |= ϕ and(ζ, v) |= ψ.

(ζ, v) |= ¬ϕ if it is not the case that(ζ, v) |= ϕ.

(ζ, v) |= ∃© ϕ if for somew such thatv−→w, it holds that(ζ, w) |= ϕ.
3As in the case of logics, as described next. Note however thatHMSCs cannot be complemented.
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(ζ, v) |= ϕUψ if there is a pathv = v0 −→ v1 −→ . . . −→ vn, such that(ζ, vn) |=
ψ, and for0 ≤ i < n, (ζ, vi) |= ϕ.

We definefalse≡ ¬true, ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), ϕRψ ≡ ¬(¬ϕU¬ψ), ∀ © ϕ ≡
¬∃©¬ϕ. Two additional modalities,♦ and�, can be defined in terms of the previous
ones:♦ϕ ≡ trueUϕ, and�ϕ ≡ falseRϕ. For TLC− we have selected anexistential
until ‘U ’ operator, hence its dualrelease‘R’ operator is universal. The full logic TLC
contains also a universaluntil, an existentialrelease, and aconcurrent withoperator ‘||’.
The modalitiesU andR satisfy the following equations:ϕUψ ≡ ψ∨ (ϕ∧∃©ϕUψ),
ϕRψ ≡ ψ∧(ϕ∨∀©ϕRψ). A TLC− formulaϕ can then be interpreted over an HMSC
executionM , treated as a partially ordered set of events. We can denoteM |= ϕ

whenM satisfiesϕ Like in the case of LTL, where satisfaction is extended from a
single execution to the collection of executions of a system[25], we can extend TLC−

satisfiability and defineH |= ϕ for an HMSCH whenM |= ϕ for each executionM
of H .

Thus, the assertion©ϕ holds for events that have an immediate successor under
the relation< for which ϕ holds. ♦ϕ holds for eventse from which there is a path
according to<, leading to some eventf for whichϕ holds (thus,e <∗ f). Similarly,
for ψUϕ to hold for e, we require, thatψ holds for each event along such a path
from e to some eventf whereϕ holds. Finally, in order to satisfy the usual duality
�ϕ = ¬♦¬ϕ, we interpret�ϕ as follows: it holds for eventse that satisfy that for
every eventf such thate <∗ f , ϕ holds forf .

Some examples for TLC− specification are as follows:

�(req → ♦ack) Every request is causally followed by an acknowledgement.

�(recA→ ∃© sendB) A messageB is sent immediately after receiving a message
A.

¬♦(tranA ∧ ♦(tranB ∧ ♦tranA)) TransactionB cannot interfere with the events
of transactionA.

�(beginA→ ∃© (tranAUfinishA)) The execution of transactionA is not inter-
rupted by any other event.

One intuition behind the decidability (and model checking algorithm) of TLC− over
HMSC is that although HMSC linearizations are not regular languages, they are ‘al-
most regular’, up to some commutations, as shown in Section 3. The TLC− logic does
not distinguish between linearizations that are equivalent up to such commutations. A
TLC− formula can thus be equally be interpreted over a regular subset ofrepresenta-
tiveslinearizations. More precisely, for the permutation rulesthe situation is actually a
little bit subtler than in Section 3. The reason is that from aTLC− formula we cannot
get the set ofall linearizations of its MSC models, since this would involve counting
of pending messages. We can compute instead the set of all linearizations where is the
number of pending messages is bounded. The bound can be provided by the HMSC
that is model-checked. Another decidable model checking solution with the same fla-
vor is based on using second order monadic logic over partialorders [22].

6 Other Decision Problems

A natural problem that arises with MSCs is whether the MSCs containrace conditions.
A race condition can result from the fact that we have only a limited control on the
order between pairs of events that include at least one receive event (except for two
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Figure 11: A non-local choice

receives corresponding to messages sent from the same process, according to the FIFO
semantics). For example, the MSC in Figure 1 contains two receive events of process
P1 (of messagesd5 andd6). Since each process line is one dimensional, the MSC
notation forces choosing one of the receive events to appearabove the other. However,
these two messages were sent from different processes,P2 andP3, and it might happen
thatd6 arrives quicker thand5. Thus, there is no reason to trust that these messages
will arrive in the particular order depicted using the MSC.

Formally, we can define a race condition for pairs of MSCreceiveeventsp, q ∈ V

for messages sent from different processes such thatL(p) = L(q), i.e.,p andq appear
on the same process line. A race occurs ifp < q, i.e.,p appears aboveq on the process
line, and it isnot the case thatp <∗ q, i.e., there is no path fromp to q according to the
relation<. Detecting races in an MSC is thus simple. All we need is to calculate the
transitive closure<∗ and compare it against relation<.

It is shown in [3] that the calculation of the transitive closure<∗ of < is quadratic
in the number of events, and not cubic as is the general case for transitive closure. This
stem from the fact that the number ofimmediatesuccessors of each eventp under<
(i.e., eventsq such thatp < q, and there is nor such thatp < r < q) if limited to 2.

We can define the race conditions for HMSCs. This turns out to be an undecid-
able problem [27]. We regain decidability by limiting the structure of the HMSCs, as
described in Section 5.

Another problem related to HMSC specification is that ofnon-local branching
choice[6, 26]. A problem potentially arises when different processes behave according
to different choices in the HMSC graph, resulting in a behavior that is not following
any of the branching choices.

Consider the example in Figure 11. After ProcessP1 sends a message to Process
P2 in M1 it may proceed according toM2 and send another message toP2. However,
the HMSC allows also the possibility that after receiving the message inM1, P2 would
send some acknowledge message, according to the nodeM3. If P1 proceeds according
to M2 andP2 proceeds according toM3, we obtain a behavior that is not consistent
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with any path of the HMSC.
The definition of non-local branching choice is difficult because it is not clear what

would constitute a problematic behavior. In the above example, it is possible thatP1

initially decides on the choice, and letsP2 know about it through the message that is
sends inM1. On the other hand, it could be argued that in that case, we should have split
M1 into two nodes, according to the branch intoM2 andM3. One solution is to try and
detect whether some non-local choice occurs, while anotheris to restrict the HMSCs
so that they would not allow such a choice [6, 26].In the first case considerlocal-
choiceHMSCs, i.e., HMSCs that do not have any non-local branching choice. Such
specifications are very interesting, since they can be implemented without deadlock by
CFMs [13] with additional control data. Although local-choice is a syntactic property,
it can be decided whether an HMSC is equivalent to a local-choice HMSC [10].

The problem of implementing HMSCs by CFM has deserved a lot ofattention in
past years, since it represents an important validation step when using HMSC speci-
fications. The implementation notion used in [1] assumes that the CFM does not use
additional data or messages compared to the HMSC. Unfortunately, this notion is not
decidable in general, even for regular HMSCs [2], or very expensive if we ask for
deadlock-free implementations [21]. The paper [16] shows that local-choice HMSCs
cannot be implemented without deadlock if no control (message) data is allowed. For
regular HMSCs [24] and globally-cooperative HMSCs [13] implementations with ad-
ditional (bounded) control data have been proposed.
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