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Abstract

Message Sequence Charts (MSCs) is a notation used in grastiprotocol
designers and system engineers. It is defined within amiatienal standard (ITU
Z120), and is also included, in a slightly different formtie popular UML stan-
dard (called thersequence diagramsWe present some of the main results related
to this notation, in the context of specification and autaenegrification of com-
munication protocols. We look at issues related to spetidficand verification. In
particular, we look at automatic verification (model checRiof MSCs. We study
the expressiveness of MSCs, in particular the ability toresp communication
protocols, and appropriate formalisms for specifying prtips of MSC systems.

1 Introduction

Specifying the behavior of software systems is of major inguce for engineers.
When concurrency is involved, the specification becomes mare challenging. Even
before considering the actual notation to be used for spatiifin, there is a large
choice of models of execution. Different models vary in tle¢ailed information they

carry, the intuition they provide and the difficulty of chéulx properties of the modeled
systems.

Perhaps the most successful model for describing condwsystems is the inter-
leaving model. An interleaved execution is simply an aking sequence of actions
and states, where each actioreigbledin the preceding state, and afetecutingt,
results in a new state. In this model, all the events arelipeadered, and concurrently
executed events are modeled by ordering them in an arbitr@yy Simple formalisms,
such as linear temporal logic, are available for descrilgraperties of interleaving
sequences. In the finite case, there are simple decisiorquoes for checking proper-
ties of such models. Theartial ordermodel allows events to be unordered, if they can
independently (concurrently) occur. After the selectibthe model, we are still left
with a wide choice of notation, affecting our level of abstian and the complexity of
deciding their properties.

Message sequence charts (MSCs) is a partial-order basethstidformalism [15].
It has a visual notation, which clearly demonstrates theradtion between the in-
volved concurrent processes. It is already used in prabtcprotocol designers, a
fact which gives it an advantage over other formalisms ihnetogy transfer. On the
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Figure 1: Visual and textual representation of an MSC

other hand, working with an existing standard, which wasetigyed by a committee,

initially without a full view of algorithms and complexityssues, can be challenging.
In this survey we discuss several issues in specificatiorvarification using message
sequence charts.

2 Preliminaries

Each MSC describes a scenario where some processes coratewitth one another.
Such a scenario includes a description of the messagesnsessages received, the
local events, and the ordering between them. In the visuadri#ion of MSCs, each
process is represented as a vertical line with process naraehbx at the top. We
usually end a process line with a horizontal line at the bottA message is represented
by a horizontal or slanted arrow from the sending proces$é¢oréceiving one, as
appears in the left part of Figure 1. The corresponding txiepresentation of that
MSC appears in the right part of Figure 1.

Definition 2.1 [15] An MSCM is given as a tupléV, <, P, N, L, K, N, m), where
e V is afinite and nonempty set of events,
e < C V x Visanacyclic relation (with further details below),
e P is aset of processes,

e N is a set oimessage namgs



e L :V — Pisamapping that associates each event with a process,

K : V — {s,r, 1} is a mapping that describes thénd of each event as send,
receive or local, respectively,

e N :V — N maps every event to a name,

e m C V x V is a nonempty relation callethatchingthat pairs up send and
receive events. Each send is paired up with exactly onewec&vents; and
vy can be paired up with each other, onlyNf(v;) = N(v2), K(v1) = s and
K(UQ) =r.

Atypeis a triple (¢, j, C), including the indexes of the sending procéssc P and
receiving proces®’; € P, and a message nanié € N. Each send or receive event
has a type, according to the origin and destination of thesags, and the label of the
message. The type of a local event of prodess P is (i,47). Matching events have
the same type. A message consists of a pair of matched sendaaide events. For
two events, andwvs, we havey; < vs if and only if one of the following holds:

e v; andwvs are matching send and receive events, respectively.

e v; anduvs belong to the same process, withappearing before, on the process
line.

We assume FIFO (first in first out) message passing, i.e.,agesarows on the same
channel do not cross each other:

(m(v1,v1) Am(ve,vy) Avy < vaA
L(v1) = L(v2) A L(v]) = L(v})) = v} < v

Denote byu — v the fact thats < v and either: andv are matchingsendand
receiveevents, ot andv belong to the same process and there is no event between
andv on the same process line. We say in this casedliamediately precedeas

Definition 2.2 The transitive closurec* of the relation< is a partial order called the
visual orderingof events. Clearly, the visual ordering can be defined edently as
the transitive closure of the relation—. A chain of eventg; <* es... <* ¢, iS
called acausal chain

The MSC notation represents a partial order execution, evtier fact that two events
u, v are ordered according to the visual order meansu#Happens before. A lin-
earizationof an MSCM = (V,<,P,N,L, K, N,m) is a total order or¥/, which
extends the relatio(V, <).

Example 2.3 Consider the example MSC given in Figure 1. For each message
1 < ¢ < 6, denote bys; the sendevent and by; the receive event. Then we have
V = {81,...,86,7‘1,...,7“6}, P = {Pl,PQ,Pg}, N = {dl,...,dG} andN(si) =
N(r;) = d; for eachi. The events located oR;, are L='(P;) = {s1, 75,76}, With
K(s1) =s,K(rs) = K(rg) =r, ands; < r5 < r¢. This ordering is the time ordering
of events onP;. We also haven(s;, r;) ands; < r; for eachi (message ordering). In
particular,s; <7 < s2 < ra.

The partial order between tlsendandreceiveevents of Figure 1 is shown in Fig-
ure 2. In this figure, only the ‘immediately precedes’ ordes is shown. Notice for
example that theendeventsv; andwg, of the two messaged; anddg, respectively,
are unordered.
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Figure 2: The partial order between the events of the MSCgnifei 1.

Definition 2.4 Theconcatenatiod/; M5 of two MSCs,
My, = (Vk, <k, P, Nk, Li, Ky, Ng, my), for k =1,2.

over a common set of processBsand disjoint sets of eventg N 13, = @ (we can
always rename events so that the sets become disjoint) isededis(V; U V3, <,
P, Nl UNQ, L1 U LQ, K1 U KQ, Nl U NQ, my U m2>, where

<=<1 U< U{(u,v) € Vi x Vo | L1(u) = La(v)} .

That is, the events af/; precede the events @ff, for each procesgespectively.
If M = M; M, we say that\f; is aprefixof M, and denote this by/; C M. This
also means containment between the different processsoktite MSCsV/; and M.
Notice that no synchronization of the different processeassumed in the definition
of concatenation. Thusly/; M does not necessarily describe a behavior that starts
according toM; and after completing all the events frold; progresses to behave
according to the events il/-. In particular, it is possible id/; M, that one process
is still involved in some actions of proces#s, while another process has advanced to
events from another process. Such a situation is demonstrated later in this section.
The infinite concatenation of finite MSCs is defined in a similay, and it allows
defining infinite MSCs as well.

Definition 2.5 Let My, M, ... be an infinite sequence of finite MSCs. Define a se-
quenceM;’, My, ... as follows: LetM;" = M, and fori > 1, M;" = M/ | M,.
(Thus, fori < j, M;" C M;'.)



Let M/ = (Vi,<i, P, N;, Li, Ki, N;, m;). Then,V; C Vi, <,C<;11, N; C
Niz1, L € L1, K; € K; 1, N; € N;iq1 andm; € m;41. The infinite concatena-
tion M, M, . .. is defined as the infinite MSE = (V, <, P, N, L, K, N, m) where
V=Ui»1Vi, N =U»1N;, L =U;>1Lj, N =U;>1N;, K = Uj>1 K;, N = U;>1 N;,
m = U;>1m; and <= U;>1 <;. Each component defininyf is thus the limit of the
partial unions for the same component in the finite prefi}és

Since a communication system usually involves multiplesfan infinitely many)
MSC scenarios, a high-level description is needed for cambithem. The standard
description consists of a graph called HMSC (high-level NiS@here each node con-
tains one finite MSC as in Figure 3. Each maximal path in thégbr(i.e., a path that is
either infinite or ends with a node without outgoing edgea) #arts from a designated
initial state corresponds to a singigecutioror scenario

Definition 2.6 [15] An HMSC is a 4-tuplgS, M, ¢, 7,Sy) whereS is a finite set of
nodes, M is a set of finite MSCs with sets of events disjoint from onehemo The
mappingc : S — M associates a nodg € S with an MSCc(g). Byt C S x S we
denote theedge relation Theinitial nodesS, are a subset 0. An executionof the
HMSC is a (finite or infinite) MSG(go) c(g1) c(g2) - - - associated with a maximal
pathgg, g1, . . . of the HMSC that starts with some initial nogig € S;.

The set of executions of an HMSC is also referred to as thef 885€ generatedy
that HMSC. Figure 3 shows an example of an HMSC. The node ingtper left corner,
denoted\/1, is the starting node, hence it has an incoming edge thahisemted to no
other node. Initially, procesB; sends a message i, requesting a connection (e.g.,
to an internet service), according to noflg. This can result in either an approval
message fronP,, according to the nodé/,, or a failure message, according to node
Ms. In the latter case, a report message is also sent fPprto some supervisory
processPs;. There are two progress choices, corresponding to the twesvarout of
node Ms. We can decide to try and connect again, by choosing the draw M3
to My, or to give up and send a service request (from proégs® process’s), by
choosing to progress according to the arrow frofg to M. Note how the HMSC
description abstracts away from internal process comipataand presents only the
communications. The executions of this system are eithite fim infinite. Consider
the pathM; M3 M,. According to the HMSC semantics, procd3sin Figure 3 does
not necessarily have to sendReport message /3 before the execution of process
P, has progressed accordingié, sent itsReq_service message. However, process
P3; must receive th&®eport message before tHeeq_service message.

According to the ITU standard [15], an HMSC can be hierarahice., an HMSC
node can be mapped into another (lower level) HMSC. We igtiosdeature, which is
orthogonal to the discussion in this survey and refer tog®@afgorithms on hierarchical
HMSCs.

3 EXxpressiveness

Message sequence charts (MSCs) (including the extensibiigto level MSCs, i.e.,
HMSCs) is a formalism that is used in practice by protocolad@vers and software

1By maximality we mean that a path is either infinite, or terat@s with a node that has no successor
according to the relation.
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Figure 3: An HMSC graph

P Py

N

Figure 4: Simple example with infinite state space

engineers. Unlike some other specification formalisms,ds wot designed by re-
searchers to fit into existing theory or tools. This callstf@ study of its properties, in
an attempt to adapt some formal methods techniques, orafexelv ones.

There are several interesting aspects of the MSC notatadrpthse a challenge to
the researchers and the developers of tools. For examplelMSC notation does not
necessarily represerfigite state systems, as there is no bound on the size of message
channels and due to concurrent processes. This fact hakatimhs on the ability
to automatically verify properties of HMSCs. Consider foample the HMSC in
Figure 4. This is the simplest example of an HMSC with infilyirany global states.
In order to formalize this observation, we define the notibaglobal stateof an MSC.

Definition 3.1 Let M = (V,<, P, N, L, K, N,m) be a finite or infinite MSC (the
latter case is obtained, e.g., by an infinite execution of MS&€). Aglobal state7 is
a finite subset of the eventsof such that iff € G ande <* f, thene € G. (We say



Figure 5: An MSC with two messages

thatG is ‘history closed’.)

Now, it is easy to see that the states of the unique and infinigzution of the
HMSC in Figure 4 consists df send and! receives for any natural numberg > |[.

A global state of)M is usually defined, in the context of software verificatios,az
assignment function from the program variables to theiueal In the MSC context,
the assignment can return the sequence of pending messagastochannel, together
with the last event on each process.

Itis interesting to know what is the expressive power of HMSID order to remain
within the domain of formal languages, we will look at theearizationsof MSC
executions, i.e., their completions into total orders. Wt label each event in an
MSC node with a label from a finite alphat@t We allow (but do not force) labeling
of different events of theame type and kinbly the same letter.

Consider the MSC in Figure 5. It has two messages, i.e., 4tgveve labeled the
send with a, and thereceives with b. This MSC generates two linearizations (words):
abab andaabb. These languages of linearizations are closed under og¢aimutation
of adjacent occurrences of events. We have thezenutation rules

1. If b is areceiveof a message fron®; to P;, anda is asendfrom P; to P;, then
we can permute baos (01,02 € ¥*) to obtainosabo,. Note this rule does not
necessarily permit us to permute in the reverse directien, fromo;abos to
o1baos.

2. If a is asendfrom P; to P;, andb is areceivefrom P; to P;, we can permute
a With b in o1aboy provided that the following condition hold4# .01 > #4071,
where+# .0 denotes the number ok appearing in the word.

3. If a andb belong to different processes, and their types do not matdh the
previous case, then we can permuteith b. (In fact, we can also permute
with a, from the symmetry of this condition.)

The reason that reverse permutation of the first rule is nocésearily allowed is that
it may cause aeceiveto appear before the correspondsend For example, given
the linearizatiorubab of the MSC in Figure 5, we cannot permute the firavith the
first b to obtainbaab. The second rule specifies the condition under which therseve
permutation is allowed. Under this rule, the adjaceandd, which can be permuted,
arenot a matching pair. Also note that for MSCs, it is not possiblause a fixed
symmetric independence relation between events, tiade theory[23].

We can define thtanguage of an HMS@s follows. LetZ (M) be the (finite) lan-
guage of an HMSC nod&!. Let K be the language of the graph of the HMSC, where



Figure 6: An MSC with context-free behavior

P;:snd

Py:sn a
Prisng @ < Pyirev
@ P;irev
Py

P
Figure 7: A simple two process protocol

each node in the graph is assigned some unique letter (@igjom the letters irk).
According to Kleene’s construction, the langudgeés a regular language. Substitute
in IC each letter corresponding to a nolie by the language of (M). This is still a
regular language, denotétl Now closek under the permutation rules to obtqilﬁ].
Such permutations are achieved by using context sensitaramar rules of the form
XabY — XbaY. Hence the languad&] of an HMSC is context sensitive. Note that
the language of an HMS@ is the set of all linearizations of executions@f Note
also that we can only permute events according to the firsttardipermutation rules
given above. This is sufficient due to the fact that we talbkhe linearizations of each
separate MSC node. This is becausseadeventa from P; to P; in a nodeg and a
receiveeventb, also fromP; to P; of a later nodé: can never be commuted; the event
a necessarily precedes teendevent that matches with thieceiveb.

Thus, HMSC languages are obtainable from regular langu@gesgular in the
case of infinite executions) by closing under a given set ahpations. To show that
the language of HMSCs is, in general, not regular or context, fconsider the example
in Figure 6. The global states of this example hatimesa eventsyn timesc events,
andn timesd events, wheré > m > n (also the number of events is the same or
greater than, by exactly one, than the number e¥ents). This can be easily shown
not to be in the class of context-free (and hence also notagdanguages.

On the other hand, we show that the HMSC notation does not a#presenting
all the possible communication skeletons of finite stateroamication protocols [11].
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Figure 8: A prefix of an MSC execution that cannot be decomgose

This makes HMSCs incomparable with regular languages.

As an example, consider the infinite MSC that is generatea fitee simple pro-
tocol in Figure 7. A finite prefix of the MSC description of then{que and infinite)
execution of this protocol appears in Figure 8. We show thiatibfinite MSC cannot
be decomposed into a concatenation of finite MSCs. We sténtthve sendevente;
andreceiveevent f;. Obviously, because of the compulsory matching between cor
respondingsendand receiveevents in HMSCs, they must belong to the same MSC
node. We have theendeventg; precedingfi, on the same process line, while its cor-
respondingeceiveeventh; succeeds theende;. Thus, the eventg, andh; cannot
be in an MSC preceding the one containing the eventnd f;, nor it can be in an
MSC succeeding it. Consequently, these four events must the isame HMSC node.
For the same reason, we have thaand f, must belong to the same node with and
hi, and so forth.

The problem lies within the restriction of the MSC nodes tatein matched mes-
sages. A different view of the expressiveness problem isaimaglobal state that cor-
responds to a finite path in an HMSC (i.e., a global state thatains complete MSC
nodes) has a matched setseindandreceiveevents. In the partial order execution in
Figure 8, there is no global state with this property. Hemeecannot decompose this
execution into finite MSCs (which will occur infinitely maniyrtes along some path of
an HMSC).

3.1 Compositional MSC

An extension of the HMSC notation is described in [11]. Ibals MSC nodes with
unmatchedendandreceiveevents. Thus, aendevent in one node may be matched
with areceiveevent in a later node.

In order to represent communication protocols, whose g&gan could only be ap-
proximated using standard MSCs, we suggest an extensitve BSC standard. Intu-
itively, acompositional MSCor CMSC, may includeendevents that are not matched



by correspondingeceiveevents and vice versa. An unmatctsethdevent in one node
in a path may be matched in future HCMSC nodes on that path.ilé8iyn an un-
matchedeceiveevent may be matched in previous HCMSC nodes. The definifian o
CMSC is hence similar to an MSC, except that unmat@dedlandreceivemessages
are allowed.

Definition 3.2 [11] ACMSCM is defined as in Definition 2.1, except for the following
modification:

e m C V x V is apartialfunction calledmatchingthat pairs up send and receive
events. Each send event is paired up véthmostone receive event and vice
versa. Events that are paired up are callethtched otherwise, they aren-
matched Matching events must have the same type.

Unmatchedsendevents are supposed to be matcheddngeiveevents belonging
to subsequent nodes, whereas unmatcehkediveevents are supposed to be matched
by sendevents belonging to preceding nodes. The above definitlowsiunmatched
receiveevents that do not correspond to any unmatcbeadevent. (Allowing un-
matchedsendevents that do not correspond to a lategeiveis a lesser problem, as
this can actually happen in communication protocols.)

We denote an unmatchegtndby a message arrow, where thexeiveend (the
target of the arrow) appears within an empty circle. Sirhjlan unmatchedeceiveis
denoted by an arrow where tlsendpart (the source of the arrow) appears within a
circle. CMSC arrows where both tisendand thereceiveevents are unmatched events
are forbidden. In Figure 9, we can see an HCMSC that reprefiemexecution that is
approximated in Figure 8.

Definition 3.3 A CMSC is calledeft-closed if it does not contain unmatched receive
events, or any unmatched send event that precedes anothehredassend of the same
type (the latter condition excludes send events that coeletnbe matched without

violating the FIFO order).

Definition 3.4 Consider two CMSC4&1;, = (Vi, <1, P, M1, Ly, K1, N1, my) and

My = (Va, <9, P, Na, Lo, K3, No, my) over disjoint events sets. Define the match-

ing functionm’ that pairs up unmatched send eventgffwith unmatched receive events

of M5 according to their order on their process lines. That is, ttieunmatched send in

Mj is paired up with theth unmatched receive event of the same typ&in
Theconcatenation/; M, is then defined ad/,UVa, <, P, N1UNa, L1ULs, K1U

KQ, N1 U NQ, m1 Umg U m’), where

< = <HU<U
{(Ul,vg) eV xVy | Ll(vl) = Lg(’l}g)} um’

provided thatM; M, is a CMSC satisfying the FIFO property when restricting the
events to the matched pairs of events.

Clearly, the concatenation of CMSCs is not associative amgm Hence, when
we write M; - - - M, we mean the concatenation - (M M) Ms) - - - My). Again, we
can define the prefix relatial/; C M if there existsM, such that\; My = M. The
definition of an infinite concatenation for CMSCs follows fives of Definition 2.5.
Note that in an infinite concatenation, there can be infipitghny unmatched messages
sent from one process to another.
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Figure 9: A decomposition of the execution in Figure 8.

An HCMSC is a graph whose nodes are CMSCs. Except for thatefieition of
HCMSCs is the same as Definition 2.6. Similarly, an HCM&@&cutioris the CMSC
c(go)c(qr) - - . associated with a pathy, g1, ... in the HCMSC graph, starting with
some initial nodey,, as in Definition 2.6.

3.2 Safe HCMSC

The definition of HCMSCs allows obtaining some “unreasoaapéaths in HCMSCs,
e.g. in which at some points there are moegeeiveevents than the corresponding
sendevents for some ordered pair of processes. It is not cleartbdreat such paths.
One way, is to disregard such paths as executions of the HCB{Steém. Another
approach, which will be taken in this section, is to forbidMECs with such paths.

Remark 3.5 [15] An HCMSC issafé if the execution of every finite path starting with
the initial state is a left-closed CMSC.

Note that we explicitly allow executions with unmatcteshdevents. The HCMSC
of Figure 9 is such that every finite execution is a left-ctb&MSC with unmatched
sendevents. However, the unique maximal execution corresptinds infinite MSC,
where all the events are pairwise matched. Definition 3.8ftfdlosedness guarantees
that no unmatchedendcannot may prevent the system to satisfy the FIFO condition
by matching it later.

2Such HCMSCs are called realizable in [11]. This name usuadifers to the realizabil-
ity/implementability problem, so we prefer to recast inifisafe”.
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We will show how to test whether an HCMSC is safe. From the d&dfim of
safe HCMSCs, we can focus on messages sent from Bath another process
separately. There are three situations that violate tretysaf a HCMSC on a given
prefix of a path:

1. There are more unmatchezteiveevents thamsend.

2. Reaching a matchesendreceivepair, the kth unmatchedsendis before the
matched pair, but theth unmatchedeceivecomes after that matched pair. This
will generate a non-FIFO behavior.

3. Thekth unmatchedenchas a message namiewhile thekth unmatchedeceive
has a message namk whereD # C.

To check whether an HCMSC is safe [11], we construct a nonahétéstic push-
down automato; ; for each ordered pair of procesggs P; that exchange messages
in the HCMSC. A pushdown automaton is a quadrufles (Q,T", X, A), such that

e () is afinite set of control states,

e I'is afinite stack alphabet which in our case willlbe= { L, 1}, where L is the
‘stack bottom’ symbol,

¢ Y istheinputalphabet, which includeematcheegsend”, unmatcheeteceiveC,
or matchedC, such that' is a message name frafi, andA C (Q x ¥ x I') x
(Q x {pop, push, skip}) is the set of transition rules. Depending on the current
state and symbol at the top position at the stack and therguimaut symbol, a
pushdown automaton has a choice of

— the next state and

— whether topopthe current top element from the stapkishanother symbol
on top of it, orskip, i.e., keep its current contents. The stack contents in our
case always belongs tb1*.

The stack is used as a counter, where the counter value isithber of 1’ symbols

on the stack, and a zero is represented by a stack containing 0. We can partition
the transitions according to their effect on the numberléfsymbols in the stack:
incrementing, decrementing, or testing whether the casigiithe stack is zero.

For every pair of processes, P; we define the pushdown automaisy); by re-
placing each node in the HCMSC by a linearization (total drag of the matched and
unmatchedendandreceiveevents. We allow only linearizations in which unmatched
receiveevents of some type precede all the unmatcterttievents of the same type.
It follows easily from the definitions that such a linearimatalways exists. The au-
tomatons; ; will follow such events in a node, and then will continue aciiog to the
events of a successor of the current node and so forth (nenmdigistically, as there
can be more than one HCMSC successor). The pushdown automiditceach anac-
ceptstate exactly when it discovers that the HCMSC is not safe@oemmunications
from P; to P;.

We describe now the automatsh; informally. It contains two phases. In the first
phase, it increments each time an unmatchetblevent occurs, and decrements each
time an unmatchetkceiveoccurs. It moves to aacceptstate when either the stack
is empty (containing onlyl), and an unmatcheceiveoccurs, or when a matched
sendreceiveevent occurs and the stack is not empty. This takes care afabes 1

12



and 2 above. To take care of case 3, upon the occurrence ofraatcimedsend the
automaton can nondeterministically ‘guess’ that the gpoadingeceivehas a differ-
ent name. It saves the message ndmin its finite control and ignores all subsequent
events, except for unmatcheeceiveevents, where it decrements one from the
stack. Upon reaching an empty stack, it compares therdasivenameD with the
name stored’. If C' # D, it transfers to amcceptstate, and otherwise, it just ignores
the rest of the events. Reachingauteptstate means that the HCMSCrist safe.

The motivation behind the definition of compositional MSCaswio capture finite
state communication protocols, like the one of Figure 8:

Theorem 3.6 [11] Every finite state communication protocol can be tramsfed into
an equivalent safe HCMSC (in polynomial size).

Clearly, the converse of the theorem above does not holds fAdgppens for the
same reasons as for HMSCs, as demonstrated in Figure 6.

4 Undecidable Versions of Model Checking for HMSCs

Once we characterize HMSC languages as context sensitigeidages, it is not too
surprising that certain decision problems become undbtEdd he state based model
checking (see e.g. [14, 19, 30, 7]) prescribes using a fitate snodel for representing
the execution sequences of a system and another finite stat@aton (over finite or
infinite words) for representing the specification. The #jEtion describes thbad
executions, i.e., the ones we do not want the system to haw¢ak# the intersection of
the languages of the system automaton and the specificatiomaton to find whether
there are bad sequences allowed by the system.We can trg, thlese lines, to specify
the bad or unwanted executions of a system using the HMSCaleam. If the inter-
section of the linearizations of two HMSCs is nonempty, wa easily take one and
generate back an MSC.

Alternatively, we can use a specification of th@odsequences, i.e., the executions
we allow. However, in this case we need to perform a test foguage inclusion,
which is often of higher complexity when using HMSCs. Thesa@ais that contrary
to logical specifications, that can be negated without almwhip, HMSCs cannot
be always complemented. As an example, consider the tHN&SC with one node
labeled by the empty MSC over the processBeThis HMSC generates the empty set
and its complement (i.e., the set of all MSCs o®grcannot be generated by an HMSC
(neither by a safe CHMSC).

The corresponding HMSC model checking problem is to intdrego HMSCs,
one corresponding to the system description, and anotheggenting the ‘bad’ MSC
executions. Itis known that the emptiness of the intersaaii two context sensitive
languages is undecidable. We still have to prove that for EM&guages, as they
form a subset of the context sensitive languages:

Theorem 4.1 [27] The problems of intersection of two HMSCs is undecidabl

Proof. By reduction from Post Correspondence Problem (PCP). Tiht fior PCP is
a finite sequence of pairs of words

(wlavl)a (w25U2)7 ceey (wnavn)

13



Figure 10: An HMSC graph for the PCP reduction

The problem is to decide whether there is a finite sequencedexesi, i, . . ., in
such thatw;, w;, ... w;, = vi, Vi, ... V;,, .

We construct two HMSCs. One for concatenating words thaeapm the left
components of the above pairs, and one for concatenatindswbat appear in the
right components. Consider the HMSC for the left compones haved processes
Py, ... Py. For each wordy;, we construct an MSC nod¥; with messages fronf;
to P, labeled by the letters ab;. We also have a nodg;, with one message, from
Ps to Py, labeled by the indey. We also have an initial nodg, with a message
from P; to P4, and a nodéd”, with a message fron®, to P;. The structure of the
automaton can be represented by the regular expre&giph,_, , M;R;)* F, which
is also demonstrated in Figure 10. That is, we need to st#rtthe initial noder, then
repeatedly make a nondeterministic choice\®fR; for 1 < j < n, and finally end
with nodeF'.

The automaton for concatenating the right components istooeted similarly.
Now notice that the events in th&l; components can commute with the events in
the R; components, since they involve disjoint processes. Thegeainy word in the
intersection has the same characters according to thersegjoé)/;s, and the same
indexes according to the sequencd®s. [ ]

Another attempt for providing model checking is to write gpecification (or the
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negation of the specification, describing the bad execs}iosing an automaton over
finite or infinite words, or using linear temporal logic (LTWnfortunately, the inter-
section of HMSC languages with regular languages, or tigpiage of words satisfying
linear temporal logic formulas, is undecidable as well.

To see this, replace in the previous proof the HMSC for thetrigmponents (the
‘specification automaton’) by an LTL formula (or regular eggsion, or a finite state
automaton over infinite words) that represents some of tigatizations of the HMSC
as follows: for an MSC nodé/, let lin(M) be the single linearization af/ that
includes matchingendandreceiveevents appearing adjacent. (Note that his kind of
linearization is not always possible for an MSC, but is plaigsin our case because of
the particular construction of the nodes in the reductidhys the linearization a#/;,
representing the word; = a85a will be s,ras3rgssrgsara, Wheres, represents a
sendof a message labeled y andr, represents geceiveof that message. The LTL
formula will represent the language (i) (U, ,, lin(M;)lin(R;))lin(F) (this is a
counter-free language, and thus can be represented using LT

The intersection of the (language of the) HMSC, represgrtie left words in
the PCP problem, and the language of the LTL formula aboyeesenting the right
words, would include exactly the words that are solutiorth&PCP problem. That is,
we have the same concatenation of words, with the same segjoémdexes. Hence,
LTL model checking of HMSCs is undecidable.

5 Decidable Versions of Model Checking for HMSCs

There are several positive solutions for providing modeloiting algorithms for HM-
SCs. One possibility is to consider restricted classes oS8l The most restrictive
approach considers regular HMSCs, that correspond to Btdte systems for which
the usual model checking approaches can be used. Othepsslate listed below.

5.1 Regular and Cooperative HMSCs
A constraint for HMSCs ensuring regularity is the followiftg 26].

Definition 5.1 The communication grapfGM = (P, —) of an MSCM contains the
processes” € P of M that occur inM, and with edges’; — P; € E if there is a
message fron®; to P; in M.

Definition 5.2 [5, 26] An HMSCH is regulay if for each loopo in the graph ofH,
the communication grapiG™ of the MSCM labelingo is strongly connected.

The definition of regular HMSCs is syntactic, and be checkedo-NP [26, 5].
Model checking becomes decidable for regular HMSCs [26siBL;e their languages
are regular. More precisely:

Theorem 5.3 [17, 18] A set of MSCs is generated by a regular HMSC if and dfrity
has a regular set of linearizations and is generated by adigét of MSCs.

An HMSC statds a global state associated with an execufiérof the HMSCH.
We will show that the number of pending messages (i.e., ngessthat are sent but
not yet received) in any HMSC state of a regular HMSC is finliete however that
a bound on pending messages does not suffice for represétiBg linearizations
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using a finite state automaton. As an example, consider ar@gmuiar) HMSC over
processe$’ , P, Ps, P4 consisting of two nodegy, g;. The initial nodey, has a self-
loop and a transition to the sink noge. Nodegy is labeled by the following MSC
with 4 messages: there is a message fiénto P, and back, and a message frém

to P, and back. Node; is labeled by the empty MSC. Now, the number of pending
messages is at most 2, but the set of linearizations is notareg

Theorem 5.4 For any regular HMSC there is a bound on the number of pendiegrm
sages in any HMSC state.

Proof. It is sufficient to show that for each pair of procesgeand(@, there is a bound
on the number of occurrences of a regular HMSC ngdkat can contribute to the
pending messages.

Letn = |P|, i.e., the number of processes. An upper limit on the numbgraphs
with n nodes, and also on the number of simple paths in such a grdph:isznz.
Consider a global staté generated for a maximal path (i.e., a finite MSC)Consider
the occurrences of unreceiveendevents from procesB to process) ongo in G. Let
g be a node of the HMSC that includes such an event. Assumedardhtradiction
that there aré = nk + 3 such occurrences, g1, - - -, gnk+2, Of g that contribute to
the global staté:.

There arenk cycles,g; to g;41 for 1 < i < nk + 1, afterthe first occurrence, of
g andbeforethe last occurrence,.+2. Each such cycle; is a subpath of. By the
choice ofl, considering the communication graphs correspondingdcatfless;, at
least one such graph repeattimes. Letu be a simple path in such a communication
graph from the node corresponding to proo@s® the node corresponding to process
P. Hencey consists of at most — 1 edges.

Distinguishs andr as asendreceivepair of go, from processP to process),
wheres is in G butr is not. Similarly, lets’ andr’ be a similar pair ofy,;12. We
can now construct a causal (accordingt®t) chain of events in the subpath efas
follows: from theo; cycle we select aendreceivepair according to théth edge ofi:.
(We may not assume that a chain of events appears according tmder inu in one
cycleo;, hence we need to form the chain by collecting events frofermdift cycles.)
This forms a causal chain of events, as eamteiveselected precedes the following
sendon the same process line. The figgihdon this chain appears later than the event
r. It appears iry; and both belong to procegs The lastreceiveprecedes the event
s’. Both events belong to procegs According to our assumptions,is not included
in G while s’ is included. Thus by our construction<* s’. This is a contradiction,
since a global state must be history closed. [ ]

This result is also related to the star problem in trace laggs [28]. The restriction
to regular HMSCs is quite strong, for instance the simpléqual in Figure 4 is not
regular. However, this HMSC iglobally-cooperativeand belongs to a large subclass
of HMSCs with a decidable model-checking problem.

Definition 5.5 [13] An HMSC H is globally-cooperativgeif for each loopo in the
graph of H, the communication grapG™ of the MSCM labeling p is weakly con-
nected.

Itis interesting to note that regular HMSCs are precisetypglly-cooperative HM-
SCs that use only bounded channels.

16



Model-checking globally-cooperative HMSCs is decidablg] has the same com-
plexity as for regular HMSC [13]. Instead of having a regudat of linearizations,
globally-cooperative HMSCs have a regular setapfresentativdinearizations, which
suffice for doing model-checking operations.

Theorem 5.6 [13] Checking intersection of two globally-cooperativedular, resp.)
HMSCs is PSPACE-complete. Checking inclusion of two giplzaloperative (regular,
resp.) HMSCs is EXPSPACE-complete.

Allowing ‘gaps’ in the semantics of the specification HMS@eg another decid-
able case for model checking. gpecificatiortHMSC representing the bad executions
is interpreted in a different way than the HMSC representiiregsystem. The former
represents only part of the events. In particular, two atjaevents: andb on the
same process line of the specification HMSC may match somadjecent events of
the same type in the system HMSC. The (scattered) pattechingtproblem between
these two HMSCs is decidable, and is in NP-hard, in the sizkeoHMSCs [27].

5.2 The LogicTLC™

Using a partial order based specification formalism can edg@in decidability of
model checking. Consider a specification that has a langdathat is regular and
is already closed under the permutation rules. The empstioehe intersection of
such a specification with an HMSC language can be decided.r@ds®n is that an
HMSC languagégP] is generated from a regular languaBieby closing it under per-
mutations. If£ = [£], thenL NP # 0 iff LN [P] # 0. Thus, it is sufficient to
check the emptiness of the intersectionCofith the regular generatdr of the HMSC

language. Similarly, for the inclusion problem we haveC L iff [P] C £ and this

can be decided, provided that the specificatfois complementabfe

A solution that involves partial order based formalismshis tse of a subset of
the logic TLC [4], as applied on HMSCs in [29]. According tadisolution, we use
temporal modalities to reason over the events of the MS@BysWWe use the same
modalities symbols as in LTL, but give them a different iptetation; over paths of
events, generated by tkerelation, rather than over linearizations of the partiaesr

The logic TLC  is a subset of the logic TLC [4]. A model of the logic is a finite o
infinite partial orde = (V, <, —), where<C V x V is a partial order relation, and
—C< is the ‘immediately precedes’ relation. The set of formulasf TLC™ over a
set of atomic formulasl P is as follows:true, falsee L, if p € AP, thenp € L, and
if p, ¢ areinLthenp Ay, oV, —p, 30 ¢, VO @, oUWV, R € L.

An interpretation function/ : V +— 24 assigns to each event &f a set of
propositions fromA P. Each proposition iM P represents some property (e.g., of an
event, or the local state before or after the event, whenubete are taken from some
system execution). Theti{v) returns the set of atomic propositions that hold dor
The semantics of the logic is defined as follows.

(¢,v) [ true.

Gv) EpifpeI(v)

Cv) E @ AYif (G, v) [ pand(,v) E v
¢,v) | g ifitis not the case that(, v) = ¢.

¢,v) E 3O yif for somew such thaty — w, it holds that(¢, w) = ¢.
3As in the case of logics, as described next. Note howevetHhESCs cannot be complemented.

(
(
(
(

NN NN
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(¢,v) | Uy if there is a pathy = vg — v — ... — vy, such tha((,v,) &
,andfor0 < i < n, (¢,v;) = ¢.

We definefalse= —true, ¢ V ¢ = —(—p A ), RY = —(=pU—),V O ¢ =
-3 . Two additional modalities) and], can be defined in terms of the previous
ones: Q¢ = truel ¢, andOp = falseRyp. For TLC™ we have selected agxistential
until ‘U’ operator, hence its dua¢lease R’ operator is universal. The full logic TLC
contains also a universaitil, an existentialelease and aconcurrent wittoperator ||'.

The modalitied/ and R satisfy the following equationseUvy = ¢V (o AT O @U),
Ry = YA (eVVOeRyY). ATLC™ formulay can then be interpreted over an HMSC
execution)M, treated as a partially ordered set of events. We can deWote: ¢
when M satisfiesy Like in the case of LTL, where satisfaction is extended from a
single execution to the collection of executions of a sy§t&sf, we can extend TLC
satisfiability and definé/ |= ¢ for an HMSCH whenM £ ¢ for each executiod/

of H.

Thus, the assertiof)¢ holds for events that have an immediate successor under
the relation< for which ¢ holds. $¢ holds for events from which there is a path
according to<, leading to some everftfor which ¢ holds (thuse <* f). Similarly,
for yYUp to hold for e, we require, that) holds for each event along such a path
from e to some evenf wherey holds. Finally, in order to satisfy the usual duality
Op = =0, we interpretJy as follows: it holds for events that satisfy that for
every evenyf such thae <* f, ¢ holds forf.

Some examples for TLTspecification are as follows:

O(req — Oack) Every request is causally followed by an acknowledgement.

O(recA — 3O sendB) A message3 is sent immediately after receiving a message
A.

=O(tranA A O(tranB A OtranA)) TransactionB cannot interfere with the events
of transactionA.

O(beginA — 3 QO (tranAU finishA)) The execution of transactiof is not inter-
rupted by any other event.

One intuition behind the decidability (and model checkilygpathm) of TLC™ over
HMSC is that although HMSC linearizations are not regulaglzages, they are ‘al-
most regular’, up to some commutations, as shown in Sectidm& TLC™ logic does
not distinguish between linearizations that are equitalerto such commutations. A
TLC™ formula can thus be equally be interpreted over a regulasedudfrepresenta-
tiveslinearizations. More precisely, for the permutation rulessituation is actually a
little bit subtler than in Section 3. The reason is that frofiL& ™~ formula we cannot
get the set o#ll linearizations of its MSC models, since this would involinting
of pending messages. We can compute instead the set ofedtilrations where is the
number of pending messages is bounded. The bound can begddyy the HMSC
that is model-checked. Another decidable model checkihgiso with the same fla-
vor is based on using second order monadic logic over paititgrs [22].

6 Other Decision Problems
A natural problem that arises with MSCs is whether the MSQ@dainrace conditions

A race condition can result from the fact that we have onlyratéd control on the
order between pairs of events that include at least oneveesient (except for two
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Figure 11: A non-local choice

receives corresponding to messages sent from the samesgraceording to the FIFO
semantics). For example, the MSC in Figure 1 contains tweiveevents of process

P, (of messageds anddg). Since each process line is one dimensional, the MSC
notation forces choosing one of the receive events to agiese the other. However,
these two messages were sent from different proceBses\d P5, and it might happen
thatdg arrives quicker thams. Thus, there is no reason to trust that these messages
will arrive in the particular order depicted using the MSC.

Formally, we can define a race condition for pairs of Mi®&€Ceiveeventsp,q € V
for messages sent from different processes suchihgt= L(q), i.e.,p andq appear
on the same process line. A race occugsif ¢, i.e.,p appears abovgon the process
line, and it isnotthe case that <* ¢, i.e., there is no path fromto ¢ according to the
relation<. Detecting races in an MSC is thus simple. All we need is towdate the
transitive closure<* and compare it against relatien

It is shown in [3] that the calculation of the transitive alos<* of < is quadratic
in the number of events, and not cubic as is the general catafisitive closure. This
stem from the fact that the numberioimediatesuccessors of each evantinder<
(i.e., eventg such thap < ¢, and there is ne such thap < r < ¢) if limited to 2.

We can define the race conditions for HMSCs. This turns outetarb undecid-
able problem [27]. We regain decidability by limiting thestture of the HMSCs, as
described in Section 5.

Another problem related to HMSC specification is thatnoi-local branching
choice[6, 26]. A problem potentially arises when different pragesbehave according
to different choices in the HMSC graph, resulting in a bebathat is not following
any of the branching choices.

Consider the example in Figure 11. After Procésssends a message to Process
P, in M it may proceed according tb/>; and send another messaggto However,
the HMSC allows also the possibility that after receiving thessage in/,, P, would
send some acknowledge message, according to theMedl P, proceeds according
to M, and P, proceeds according td/s, we obtain a behavior that is not consistent

19



with any path of the HMSC.

The definition of non-local branching choice is difficult laese it is not clear what
would constitute a problematic behavior. In the above examnipis possible thaf;
initially decides on the choice, and lefs know about it through the message that is
sends in\/;. Onthe other hand, it could be argued that in that case, wddhave split
M into two nodes, according to the branch idte and 3. One solutionis to try and
detect whether some non-local choice occurs, while andghterrestrict the HMSCs
so that they would not allow such a choice [6, 26].In the fils$ec considelocal-
choiceHMSCs, i.e., HMSCs that do not have any non-local branchimgjoe. Such
specifications are very interesting, since they can be imefded without deadlock by
CFMs [13] with additional control data. Although local-dbe is a syntactic property,
it can be decided whether an HMSC is equivalent to a localeeldMSC [10].

The problem of implementing HMSCs by CFM has deserved a laittehtion in
past years, since it represents an important validatignwteen using HMSC speci-
fications. The implementation notion used in [1] assumestti@CFM does not use
additional data or messages compared to the HMSC. Unfdglynéhis notion is not
decidable in general, even for regular HMSCs [2], or veryemgive if we ask for
deadlock-free implementations [21]. The paper [16] shdves bbcal-choice HMSCs
cannot be implemented without deadlock if no control (mgs}data is allowed. For
regular HMSCs [24] and globally-cooperative HMSCs [13] Ierpentations with ad-
ditional (bounded) control data have been proposed.
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