
Message Sequene ChartsBlaise Genest1, Ana Musholl1, and Doron Peled21 LIAFA, Universit�e Paris VII & CNRS2, pl. Jussieu, ase 7014, 75251 Paris edex 05, Frane2 Department of Computer Siene, University of WarwikCoventry, CV4 7AL, United KingdomAbstrat. Message sequene harts (MSC) are a graphial notationstandardized by the ITU and used for the desription of ommuniationsenarios between asynhronous proesses. This survey ompares MSCsand ommuniating �nite-state automata, presenting two fundamentalvalidation problems on MSCs, model-heking and implementability.1 IntrodutionModeling and validation, whether formal or ad-ho, are important steps in sys-tem design. Over the last ouple of deades, various methods and tools weredeveloped for dereasing the amount of design and development errors. A om-mon omponent of suh methods and tools is the use of formalisms for speifyingthe behavior and requirements of the system. Experiene has shown that someformalisms, suh as �nite-state mahines, are partiularly appealing, due to theironvenient mathematial properties. In partiular, the expressive power of �nite-state mahines is idential to regular languages, an important and well-studiedlass of languages. Although their expressiveness is restrited, �nite-state ma-hines are used for the inreasingly suessful automati veri�ation of softwareand hardware, also alled model-heking [8, 10℄. One of the biggest hallenges indeveloping new validation tehnology based on �nite-state mahines is to makethis model popular among system engineers.The Message Sequene Charts (MSC) model has beome popular in soft-ware development throughout its visual representation, depiting the involvedproesses as vertial lines, and eah message as an arrow between the soureand the target proesses, aording to their ourrene order. An internationalstandard [1℄, and its inlusion in the UML standard, has inreased the popular-ity. The standard has also extended the notation to Message Sequene Graphs(MSGs), whih onsist of �nite transition systems, where eah state embeds asingle MSC. Enouraged by the suess of the formalism among software devel-opers, tehniques and tools for analyzing MSCs and MSGs have been developed.In this survey we desribe the formal analysis of MSCs and MSGs. Thelass of systems that an be desribed using this formalism does not diretlyorrespond to a well-studied lass suh as regular languages. It turns out thatMSGs are inomparable with the lass of �nite-state ommuniation protools.One thus needs to separately study the expressiveness of MSG languages, and



adapt the validation algorithms. Several new algorithms are suggested in orderto hek MSG properties, mostly related to an automati translation from MSGspei�ation into skeletons of onurrent programs. Our survey onentrates onthe following subjets:Expressiveness: Comparing the expressive power of MSGs to the expressivepower of other formalisms, in partiular ommuniating �nite-state ma-hines.Veri�ation: The ability to apply automati veri�ation algorithms on MSGs,and the various formalisms used to de�ne properties of MSGs.Implementability: The ability to obtain an automati translation from MSGspei�ation into skeletons of ode.Generalizations and Restritions: Various extensions and restritions of thestandard notation are suggested in order to apture further systems, and onthe other hand, to obtain deidability of important deision proedures.Very reently, several MSC-based spei�ation formalisms have been pro-posed, suh as Live Sequene Charts [17℄, Triggered MSCs [30℄, Netharts [25℄and Template MSCs [12℄. The motivation behind these models is to inrease theexpressiveness of the notation, and to make their usage by designers even moreonvenient.2 Message Sequene Graphs and CommuniatingFinite-State MahinesWe present in this setion two spei�ation formalisms for ommuniation pro-tools, Message Sequene Charts and Communiating Finite-State Mahines.Message Sequene Charts (MSC for short) is a senario language standard-ized by the ITU [1℄. They are simple diagrams depiting the ativity and ommu-niations in a distributed system. The entities partiipating in the interationsare alled instanes (or proesses). They are represented by vertial lines, onwhih the behavior of eah single proess is desribed by a sequene of events.Message exhanges are depited by arrows from the sender to the reeiver. Inaddition to messages, atomi events, timers, loal/global onditions an also berepresented.De�nition 1 A Message Sequene Chart (MSC for short) is a tuple M =hP ; E; C; `;m;<i where:{ P is a �nite set of proesses,{ E is a �nite set of events,{ C is a �nite set of names for messages and loal ations,{ ` : E ! T = fp!q(a); p?q(a); p(a) j p 6= q 2 P ; a 2 Cg labels an event with itstype: in proess p, either a send p!q(a)of message a to proess q, or a reeivep?q(a) of message a from proess q, or a loal event p(a). The labeling `partitions the set of events by type (send, reeive, or loal), E = S �SR �SL,and by proess, E = �Sp2P Ep. 2



{ m : S ! R is a bijetion mathing eah send to the orresponding reeive. Ifm(s) = r, then `(s) = p!q(a) and `(r) = p?q(a) for some proesses p; q 2 Pand some message name a 2 C.{ <� E �E is an ayli relation between events onsisting of:1. a total order on Ep, for every proess p 2 P, and2. s < r, whenever m(s) = r.The event labeling ` impliitly de�nes the proess pr(e) for eah event eas pr(e) = p if e 2 Ep (equivalently, `(e) 2 fp!q(a); p?q(a); p(a)g for some q 2P ; a 2 C). Sine point-to-point ommuniation is usually FIFO (�rst-in-�rst-out)we make in the following the same assumption for MSCs. That is, we assume thatwhenever m(s1) = r1, m(s2) = r2 holds with pr(s1) = pr(s2), pr(r1) = pr(r2)and s1 < s2, then we also have r1 < r2.The example in �gure 1 is an MSC M with messages sent between twoproesses p1; p2. It orresponds to a senario of the alternating bit protool, inwhih the sender p1 is fored to resend the message to the reeiver p2, sine p2'saknowledgments arrive too late.
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Fig. 1. MSC exeution of the alternating bit protool.The relation < is alled the visual order on the MSC, sine it orrespondsto its graphial representation. It is omprised of the proess ordering andthe message ordering, pairwise between send and mathing reeive. Sine <is required to be ayli, its reexive-transitive losure <� is a partial orderon the set E of events, whih we will denote for simpliity also by �. Anyextension of � to a total order on E is alled a linearization of M . We de-note by Lin(M) the set of all labeled linearizations of an MSC M , Lin(M) =f`(e1) � � � `(en) j e1 � � � en is a linearization of Mg.3



Sine the spei�ation of a ommuniation protool onsists of many se-narios, either in positive or in negative form, a high-level desription is neededfor ombining them together and de�ning in�nite sets of (�nite or in�nite) se-narios. The Z.120 standard desription introdues high-level MSCs using non-deterministi branhing, onatenation and iteration of �nite MSCs. The se-mantis is provisional, that is, the high-level MSC usually desribes possiblebehaviors of the system. Formally, a Message Sequene Graph (MSG for short)G = hV;R; v0; Vf ; �i onsists of a �nite transition system (V;R; v0; Vf ) with setof nodes V and set of transitions R � V � V , initial node v0 2 V and terminalnodes Vf � V . In pitures, the initial node is marked by an inoming arrow,and �nal nodes by outgoing arrows. Eah node v is labeled by the �nite MSC�(v). For instane, the MSG in �gure 2 desribes the possible runs of a protoolfor onneting a user U with a server S through a �rewall F . After a onne-tion request (initial node A) either the server aepts the user and the �rewallgrants the aess (�nal node B), or else the server's aept arrives too late (afterthe �rewall denied the aess, node C). This negative behavior an repeat (loopbetween A and C) and leads eventually to an error (�nal node D).
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Fig. 2. Communiation protool represented by an MSG.An exeution of an MSG G is the labeling �(v0)�(v1) � � ��(vk) of some a-epting path v0 = v0; v1; : : : ; vk 2 Vf of G, i.e., (vi; vi+1) 2 R for every 0 � i < k.For example, ACAB in �gure 2 is the exeution of G in whih the onnetionfails one, but the seond request sueeds. The set of exeutions of G is denotedby L(G), the set of linearizations of exeutions of G is denoted by Lin(G). Thesize of a MSG G (denoted jGj) is the sum of the sizes of its nodes.Of ourse, the semantis of MSGs depends on the de�nition of the MSC prod-ut. We onsider the usual weak produt of MSCs, that onatenates MSCs along4



the proess lines. Let M1 = hP ; E1; C1; `1 ;m1; <1i and M2 = hP ; E2; C2; `2;m2; <2i be MSCs over the same set of proesses P . The produt M1M2 is theMSC hP ; E1 �SE2; C1[C2; `1[`2; m1[m2; <i over the disjoint union of events,with the visual order given by:< = <1 [ <2 [f(e; f) 2 E1 �E2 j pr(e) = pr(f)g :Note that there is no synhronization between di�erent proesses when movingfrom one node to the next one (weak produt). Hene, it is possible that one pro-ess is still involved in some ations of M1, while another proess has advanedto an event of M2.A related standardized spei�ation notation for teleommuniation appli-ations is SDL (Spei�ation and Desription Language, ITU Z.100). SDL isdediated to the design of real-time, distributed systems and involves omplexfeatures as hierarhy, proedure alls and abstrat data types. The basi theoreti-al model behind SDL are nested ommuniating �nite-state mahines. We reallthe de�nition of (at) ommuniating �nite-state mahines (CFM for short).A CFM A = (Ap)p2P onsists of �nite-state mahines Ap assoiated withproesses p 2 P , whih ommuniate over unbounded, error-free, FIFO hannels.The ontent of a hannel is a word over a �nite alphabet C. With eah pair(p; q) 2 P2 of distint proesses we assoiate a hannel Cp;q. Eah �nite-statemahine Ap is desribed by a tuple Ap = (Sp; Ap;!p; Fp) onsisting of a set ofloal states Sp, a set of ations Ap, a set of �nal states Fp and a transition relation!p� Sp � Ap � Sp. The omputation begins in an initial state s0 2 Qp2P Sp.The ations of Ap are either loal ations or sending/reeiving a message. Weuse the same notations as for MSCs. Sending message a 2 C from proess p toproess q is denoted by p!q(a) and it means that a is appended to the hannelCp;q . Reeiving message a by p from q is denoted by p?q(a) and it means thata must be the �rst message in Cq;p, whih will be then removed from Cq;p. Aloal ation a on proess p is denoted by lp(a). We denote a run of the CFMas suessful, if eah proess p �nishes the exeution in some �nal state and allhannels are empty. The set of suessful runs of A is denoted L(A). The sizeof A is Pp jApj and is denoted jAj.Note that eah suessful run of a CFM de�nes an MSC. Conversely, witheah MSC M = hP ; E; C; `;m;<i we an assoiate an equivalent CFM, by de�n-ing the behavior of proess p as the (ordered) sequene of events Ep. However,the two formalisms MSG and CFM are inomparable in general, as disussed inthe next setion.3 Comparing MSG and CFMComparing the expressivity of MSG and CFM is interesting for at least tworeasons. First, both formalisms are heavily used in protool design, sometimesfor speifying di�erent parts of a system at di�erent stages of the design proess.Seond, MSCs are usually intended as early requirements, for a rough desriptionof the desired/undesired behavior. Thus, the question whether the desribed5



behavior an be turned into a protool (implementability/realizability problem)is an important validation step in the design proess.A qualitative omparison between MSG and CFM onerns two importantparameters, ontrol and hannels. Control in a CFM is inherently loal, sineit orresponds to loal transition funtions. The ontrol struture of an MSG isglobal, sine the branhing from a node onerns all proesses ourring in thefuture exeution. The global ontrol mehanism of an MSG is atually imposedby the visual harater of the diagram graph, in whih MSCs are omposedsequentially. One problem arising from the global ontrol is that an MSG Gmight be non-implementable, i.e., no CFM A exists with L(A) = L(G). For asimple example, onsider the MSG G onsisting of a single node v with a self-loop, labeled by a message from p1 to p2 and another message from p3 to p4.Sine the MSCs in L(G) must ontain equally many messages from p1 to p2 andfrom p3 to p4, there an be no equivalent CFM.We turn now to the seond parameter, namely hannels. Although none of themodels impose any (universal) bound on the hannel apaity, validation taskssuh as model-heking tend to be \more" deidable for MSGs than for CFMsthat are Turing omplete, see [9℄. The reason is that MSGs have existentially-bounded hannels, i.e., for eah MSG G there exists an integer b suh that everyMSC in L(G) an be exeuted with hannels of size at most b. Formally, aset X of MSCs is alled existentially-bounded if there exists some b suh thatevery MSC M 2 X has some linearization w 2 Lin(M) satisfying the followingproperty: for every pair of distint proesses p; q and every pre�x v of w, it holdsthat 0 � Pa2C jvjp!q(a) �Pa2C jvjq?p(a) � b. For an MSG G the bound b islinear in the maximal size of the MSCs labeling the nodes of G. For an exampleof property that is undeidable for CFM (but not for MSG) one an onsider thequestion whether a CFM generates at least one MSC [9℄. A less trivial exampleis pattern-mathing : given an MSC M and an MSG G, we ask whether there issome exeution N 2 L(G) and a fatorization N = N1MN2, where N1; N2 areboth MSCs. The pattern-mathing algorithm desribed in [12, 13℄ uses heavilythe fat that MSGs are existentially-bounded (with an priori known bound).More generally, some CFMs annot be transformed into MSGs sine MSGsare �nitely generated. That is, for any MSG G there exists a �nite set X of �niteMSCs suh that any exeution M 2 L(G) an be written as a (�nite or in�nite)produt M = M1M2 � � �Mk of fators from X , Mi 2 X for all i. A typialexample of CFM that is not �nitely generated orresponds to the alternatingbit protool. The exeutions of this protool inlude the family of MSCs thatgeneralize the pattern of the MSC shown in �gure 1 with n rossing messages forevery n. None of these MSCsM an be deomposed asM =M1M2 withM1;M2non-empty MSCs, sine inluding a send in M1 fores to add another send onthe other proess (the one preeding the orresponding reeive). More generally,an MSC M is alled atomi (or atom), if for any deomposition M = M1M2where both M1;M2 are MSCs, at most one is non-empty. For another exampleof atomi MSC, onsider the MSC M3 in �gure 4. The set of atoms generatingthe MSC exeutions of an MSG G is denoted At(G). It is a �nite set and it6



represents a anoni set of generators of L(G). Moreover, it an omputed by asimple linear-time algorithm, see [19℄.On the potentially in�nite alphabet At of atomi MSCs, we an de�ne anindependene (ommutation) relation I � At � At by letting AI A0 i� pr(A) \pr(A0) = ;. Notie that AI A0 implies that A;A0 ommute, AA0 = A0A, and thatthe deomposition of any MSC into atoms is unique up to ommuting adjaentatoms A;A0 with AI A0.Returning to the alternating bit example, it is easily seen that the set oflinearizations Lin(M) of the represented MSC M is regular. Note that in thispartiular example every linearization of M has hannel bound at most 3. Weall a set X of MSCs universally-bounded if for every MSC M 2 X , everylinearization w 2 Lin(M), every pre�x v of w and every pair of distint proessesp; q we have 0 � Pa2C jvjp!q(a) �Pa2C jvjq?p(a) � b. Notie also that suh auniversal hannel bound for an MSG G does not suÆe for Lin(G) being aregular set. Hene, even if the spei�ation is given as �nite-state automaton A,we annot automatially transform A into an equivalent MSG G. This led to anextension of the MSG formalism, namely to Compositional Message SequeneGraphs (CMSG, for short) [16℄. A ompositional MSC (CMSC, for short) isde�ned as an MSC, exept that the message funtion m is partially de�ned. Asend that does not belong to the domain of the message funtion m, or a reeivenot belonging to the range of m, are alled unmathed events. The produt oftwo CMSC M1M2 is de�ned as for MSC, but in addition the k-th unmathedsend of M1 is mathed with the k-th unmathed reeive of M2 (if they exist)in suh a way that the FIFO property is satis�ed by mathed events. Hene,the produt of CMSCs is only partially de�ned. Moreover, it is not assoiative,hene we de�ne a produt M1M2 � � �Mk as parenthesized from left to right.It is not very diÆult to see that any CFM an be transformed into anequivalent CMSG of exponential size. The rough idea is that nodes orrespond topairs (state,event), where state is a global state of the CFM and event is an eventenabled in state. There is a transition from (state1,event1) to (state2,event2)if state2 is obtained from state1 by an event1-transition (that modi�es state1aording to the loal transition relation). It is easy to hek that any CMSCexeution of the CFM with no unmathed reeive is an exeution of the CMSG,and vie-versa. For instane, the CFM generating the alternating bit protoolfrom example 1 an be transformed into the CMSG in �gure 3. (For CMSCs wedraw unmathed events by the solid end of a half-dotted message arrow, thatsuggests the type of the mathing event.)Theorem 1. Any CFM an be transformed into an equivalent CMSG of expo-nential size.4 Validating MSC Spei�ations: Model-Cheking andImplementationMSG spei�ations are used very early in the design proess. Revealing designerrors before implementing is of primary importane. This has motivated the de-7
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Fig. 3. CMSG depiting the alternating bit protool.sign of algorithms that hek spei� properties of MSGs suh as rae onditions[4, 28℄ and deteting non-loal hoie [7, 19, 18℄. Model-heking MSG spei�a-tions has been onsidered w.r.t. properties expressed as MSG [27℄, automata [6℄and partial-order logis [29, 24℄. Another test that may reveal the inomplete-ness of an MSG spei�ation is the one for implementability. Here, we want toknow whether the spei�ation an be transformed into a state-based, distributedmodel as CFM. As disussed in setion 4.2, the de�nition of implementability isnot anonial, and the results strongly depend on the variant we onsider.4.1 Model-ChekingIn the ommon model-heking approah (see for reent textbooks [8, 10℄) weusually desribe bad exeution sequenes using the same formalism as for spe-ifying the system (e.g., �nite automata over in�nite words). Then we need tohek the emptiness of the intersetion between the bad sequenes and the sys-tem, and ounter-examples an be obtained if the intersetion is non-empty. Inthe MSC setting we annot use omplementation as with �nite automata. First,the omplement of an MSG is not �nitely generated, thus it an never be repre-sented by an MSG. Seondly, even if we take the omplement w.r.t. the MSCsgenerated by the same set of atoms, the omplement annot be represented byan MSG in general. This is similar to the fat that the omplement of a ratio-nal trae language is not rational, in general [11℄. Therefore, we onsider twovariants of model-heking, positive and negative model-heking. In both aseswe speify the property P we want to hek, as well as the system S itself, byMSGs. For negative model-heking we view P as a set of bad MSC exeutionsand we ask whether L(P )\L(S) = ;. For positive model-heking we view P asa set of good MSC exeutions and we ask whether L(S) � L(P ).In the general setting of MSG spei�ations, both model-heking variantsare undeidable [6, 27℄. This holds even if the property P is given by a �nite-stateautomaton or an LTL formula [6℄:Theorem 1 Given a �nite-state automaton P and an MSG graph G, it is un-deidable whether L(P ) \ L(G) = ;. 8



The proof for theorem 1 is a straightforward redution from Post's orrespon-dene problem (PCP). Reall that an instane of PCP onsists of pairs of words(xi; yi)1�i�k over the alphabet f0; 1g. Then we ask for a non-empty sequene ofindies i1; : : : ; in suh that xi1 � � �xin = yi1 � � � yin .The MSG G onsists of (k + 2) nodes v0; v1; : : : ; vk; vf . Node v0 (vf , resp.)is initial (�nal, resp.), and labeled by the empty MSC. Node vi is labeledby a sequene of messages from p1 to p2 labeled 0 or 1 suh that the se-quene of labels equals xi, and a message from p3 to p4 labeled by i. Thereis a transition from v0 to eah of vi, from eah vi to vf , and one from vfto v0. The automaton P aepts preisely the set (X1 + � � � + Xk)+, whereeah Xi is a �nite word de�ned as follows: Let yi = a1 � � � am, then Xi =p1!p2(a1)p2?p1(a1) � � � p1!p2(am)p2?p1(am) p3!p4(i)p4?p3(i).Clearly, sine there is no synhronization between the proess pairs fp1; p2gand fp3; p4g, both the MSG and the automaton desribe MSCs with two parallelthreads, one over the PCP words (x for G, y for P ) and the other over theorresponding indies. The non-empty intersetion between G and P revealsthen a PCP solution.Remark. Note that the undeidability proof above does not rely on the un-boundedness of hannels, sine G is existentially-bounded. Atually the on-strution an be slightly modi�ed suh that G beomes universally-bounded, byadding an aknowledgment after eah message. The true reason for undeidabil-ity is onurreny, sine G and P use di�erent linearizations of the same partialorders of MSC. 2Several deidable variants of model-heking have been onsidered in subse-quent papers. Some of them are obtained by restriting the properties we want tohek, others are obtained by restriting the system spei�ation. However, sev-eral variants are based on a similar idea. Suppose for instane that the propertyP is given by a linearization-losed �nite-state automaton A. That is, for everyword w 2 L(A), the automaton A also aepts every linearization v 2 Lin(M)of the MSC M de�ned by w. In this ase it suÆes to onsider representativelinearizations of the system MSG G: We hoose for every node v of G somelinearization of the MSC labeling v, say lv. Then we de�ne a �nite-state au-tomaton A(G) from G by replaing the label of v by lv. Thus, states of A(G)are labeled by words. It is easy to see now that L(G) \ L(A) 6= ; if and only ifL(A(G)) \ L(A) 6= ;, and L(G) � L(A) if and only if L(A(G)) � L(A).Among the model-heking variants that led to algorithmi solutions we referto the following ones:{ Model-heking with gaps [28℄: The property P is given by an MSG, but itssemantis di�ers from the semantis of the system G. An exeution M of Pis mathed with gaps by an exeution M 0 of G if there is an embedding �of the events of M in the set of events of M 0 suh that the visual order ispreserved: whenever e < f in M , we have �(e) <0 �(f) in M 0. This problemhas been shown to be NP-omplete (even if P is an ayli MSG).9



The main reason for deidability of model-heking with gaps is that gapslead to very restrited languages, for whih we an ompute a sort of lineari-zation-losure.{ Using partial-order spei�ations [29, 24℄: Here, the property P is given by apartial-order logi, whih makes it linearization-losed. In [29℄ a logi derivedfrom a fragment of TLC [5℄ is proposed for MSGs. Basially, this logi or-responds to CTL interpreted over partial-order graphs of MSCs, where theedge relation is the immediate suessor relation (on eah proess, resp. forsend/reeive pairs). It is shown in [29℄ how to onstrut an exponential-size automaton from the spei�ation, hene model-heking is PSPACEw.r.t. the spei�ation (and only linear in the size of the system). In [24℄the spei�ation formalism is MSO, interpreted over partial-order graphs ofMSCs. Here, the omplexity is non-elementary, as it is already in the wordase.A further approah leading to a deidable model-heking problem is to syn-tatially restrit the MSGs, see setions 5 and 6 for details.4.2 ImplementabilityAs previously mentioned, the MSG formalism is useful as a spei�ation nota-tion, but it does not provide diretly a protool model. Suh a model is usuallystate-based and distributed, whereas MSGs provide an impliit global ontrolover the behavior of the proesses. This allows for spei�ations that are not im-plementable beause of global hoies (see for instane �gure 4 whih is disussedbelow). Being able to generate an implementation for an MSC spei�ation alsoallows to perform tests on the level of requirements, hene it is not longer re-quired to generate ode before testing.The protool model generally used is CFM over the same set of proesses asthe MSG spei�ation. But we still have some hoie for the semantis of theimplementation. For instane, we ould allow for an implementation with more(or less) behavior than the MSG. The most natural notion is that the imple-mentation is equivalent to the MSG: An MSG G is implementable, if some CFMA exists suh that L(A) = L(G). Furthermore, we allow the implementation toontain additional data in messages. That is, the message ontents of the CFMome from a �nite set C0 = C �D, where C is the set of message ontents of theMSG and D is some �nite set. Then, the equality L(A) = L(G) is required upto the additional data D. A further, even more relaxed notion of implementabil-ity, would also allow for additional messages. Notie that this would make everyMSG implementable, sine the additional messages an be used for synhroniz-ing all proesses after eah node. We do not allow additional messages, sine inmany appliations they are neither desired nor possible (e.g., appliations whereaknowledgments annot be provided).The �rst notion of implementation, whih we denote as standard implemen-tation, has been proposed in [2, 3℄. The standard implementation of the MSGG = hV;R; v0; Vf ; �i over the proess set P does not add any data and it is fully10



determined by the MSG, being de�ned proess by proess: The automaton Apfor proess p generates the projetion of L(G) on the events of proess p.We all an MSG standard-implementable if it is implementable w.r.t. thestandard version of implementability. Notie that this notion is atually tooweak, sine it aptures just a small subset of implementable spei�ations. Thesimplest ounter-example (see �gure 4) is a set of two MSCs over the proessesp1, p2 where the �rst MSCM1 has a message from p1 to p2, followed by one fromp2 to p1. In the seond MSC M2 we have �rst a message from p2 to p1, then onefrom p1 to p2. These two MSCs are not standard-implementable sine we anombine the projetion ofM1 on p1 with the projetion ofM2 on p2 and we obtainthe MSCM3. This set is not implementable even with additional data. Changingslightly this example we obtain one whih is not standard-implementable, butis implementable with additional data. For this, we just add at the beginningof both M1, M2 a �rst unlabeled message from p1 to p2, see �gure 5. Thenthe non-implementability argument given previously still works. However, withadditional data we use the initial message for letting p1 deide on the outomeM1 or M2, and inform p2.
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Fig. 4. The set fM1;M2g is not implementable (it does not ontain the implied MSCM3).Two striking weaknesses of the standard notion is that not even simple MSGsare standard-implementable, as seen from the example above. Furthermore, forthe restrited lass of regular MSGs de�ned in setion 5, the question of standard-implementability is undeidable. However, regular MSGs are implementable withadditional data, see setion 5 for more details.Nevertheless, the results of [2, 3℄ show that standard implementability be-omes deidable at least for regular MSGs if one looks for deadlok-free imple-mentations, only (alled safe realizability in [2, 3℄), albeit with high algorithmiomplexity. A CFM is alled a deadlok-free implementation of an MSG G ifL(A) = L(G) and every on�guration of A that has no suessor, is suh thatall proesses have reahed a �nal state and all hannels are empty. Deadlok-freeness is of ourse required in pratie, sine real-life protools should not beaborted in some unlean state. We will reall the various results on the imple-mentability problem in setions 5 and 6.11
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5 Regular MSC Spei�ationsRegular MSGs have been proposed in the ontext of model-heking, as a sub-lass for whih both variants of model-heking are deidable [6, 27℄. It is a syn-tati restrition that ensures that the set of all linearizations, i.e., the set Lin(G),is regular. Regular MSGs provided to be a theoretially robust lass, in termsof logial and automata-theoreti haraterizations. In partiular, regular MSGsan be implemented with additional data by CFM with universally-boundedhannels. However,the CFM implementation is not deadlok-free, in general.A set X of �nite MSCs is alled regular if Lin(X) is a regular string languageover the alphabet T of event types [20℄. Moreover, there is a syntati onditionensuring that an MSG G generates a regular set L(G) of MSCs. This onditionroughly means that ommuniation in a loop must be aknowledged to all ativeproesses. Formally, we need to de�ne the ommuniation graph of an MSC M :it is a direted graph over the set of ommuniating proesses in M with anedge from proess p to proess q whenever M ontains a message from p to q.An MSG G is alled a regular MSG (loally-synhronized in [27℄, bounded in[6℄) if any MSC labeling a loop of G has a strongly onneted ommuniationgraph. This ondition is o-NP omplete [27℄.For an example, onsider the MSG in �gure 2. It is a regular MSG, sineevery loop involves only A;C, and the ommuniation graph of AC is stronglyonneted (the �rewall is onneted with both user and server by bidiretionalars).Putting together the results from [6, 27, 20℄ we have the following relationshipbetween regular sets of MSCs and regular MSGs:Theorem 2 1. For every regular MSG G the set L(G) of generated MSCs isregular [6, 27℄.2. For every regular and �nitely generated set X of MSCs there exists a regularMSG G with X = L(G) [20℄.The main interest in regular MSGs was to obtain a sublass of MSC spei�-ations with a deidable model-heking problem:Theorem 3 [6, 27℄ The negative model-heking problem L(G) \ L(H) 6= ;where G is a regular MSG, is PSPACE-omplete. The positive model-hekingproblem L(G) � L(H) where H is a regular MSG, is EXPSPACE-omplete.The theorem above shows that model-heking MSGs is rather expensive,whih is atually not very surprising when we deal with onurrent models. Thereason is MSGs are more ompat than �nite-state automata. The upper boundsin the theorem above are based on the fat that if G is a regular MSG then wean ompute a �nite automaton of exponential size generating Lin(G).Regular MSC languages also have nie haraterizations in the logial andommuniating automata framework. The logi used in [21, 24℄ is MSO withatomi propositions `(e) = t 2 T , e � f and e 2 E that have the usual interpre-tation, as type labeling, partial order of the MSC and membership in a seondorder variable E. 13



Theorem 4 [21, 22℄ Let X be a universally-bounded set of MSCs. The followingassertions are equivalent:1. X an be implemented by a (deterministi) CFM with additional data.2. There exists an MSO formula � suh that X is the set of bounded MSCssatisfying �.In the �rst part of the theorem above the implementation is not deadlok-free, sine the onstruted CFM uses global �nal states for aepting X . On theother hand, as we mentioned in setion 5, the standard implementation is notreally helpful when applied to regular MSGs (the upper bound is due to [3℄, andthe lower bound to [23℄):Theorem 2. [3, 23℄ It is undeidable to know whether a regular MSG is standard-implementable. It is EXPSPACE-omplete to know whether a regular MSG isstandard-implementable without deadloks.Remark. The undeidability result in theorem 2 heavily depends on the fatthat hannels are FIFO. Without FIFO, standard implementability for regularMSGs beomes deidable [26℄. 26 Globally-Cooperative MSGsAs seen in setion 5, model-heking for regular MSGs is deidable and oftratable omplexity (PSPACE for the basi variant). However, the situationis far from being ideal. Notie �rst that some trivial protools annot be repre-sented by regular MSGs. For instane, the protool where proess p1 an sendany number of messages to proess p2. The reason is that regular MSGs haveuniversally bounded hannels, whih restrits severely their expressive power.Seond, for real life ommuniation protools one an usually �nd a (suÆientlylarge) bound b so that any run of the protool an be exeuted with hannelseah bounded by b. Similarly to MSGs, we all suh protools existentially b-bounded. Whereas an algorithm exists to hek whether a CFM or a �nite-statemahine is existentially b-bounded for a given b, its omplexity depends severely(exponentially) on b. Hene, in pratie we annot hope to be able to �x a suÆ-iently large bound b that takes are of all exeutions. The last problem is thatwe annot obtain in general an automaton generating all linearizations of exeu-tions for models that are stritly more expressive than regular MSGs. Instead,we an try to use representative linearizations rather than all linearizations, re-quiring that the set of representative linearizations is b-bounded, with b as smallas possible.De�nition 1 An MSG G is alled globally-ooperative (g-MSG for short) ifevery loop of G has a weakly onneted ommuniation graph.Thus, an MSGG is a g-MSG if any MSCM labeling a loop annot be writtenas M = M1jjM2 with M1;M2 non-empty MSCs with no ommon proess. It is14



o-NP omplete to know whether an MSG is a g-MSG. For an example of ag-MSG, see �gure 6, or suppose that we add a self-loop on node A in �gure2. The MSG thus obtained is not regular anymore, but it is a g-MSG. Clearly,every regular MSG is also a g-MSG. Moreover, it an be noted that regularMSGs orrespond exatly to g-MSGs with universally-bounded hannels.The representative linearizations that we use for model-heking are the lin-earizations that exeute atoms one by one. More preisely, for any M 2 L(G)we onsider only linearizations in Lin(M) of the form w = w1 � � �wn, whereM = A1 � � �An is some deomposition of M into atoms Ai and wi 2 Lin(Ai) forall i. Let us denote by Lina(G) � Lin(G) the set of suh linearizations of MSCsof L(G). For an example, let G be the graph onsisting of a single node with aself-loop, labeled by a message from p1 to p2. Let s = p1!p2 and r = p2?p1, thenLina(G) = (sr)�. Of ourse, Lin(G) is not regular, it orresponds to the Dyklanguage over one pair of brakets.
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3Fig. 6. Globally-ooperative MSG.We an use representative linearizations for model-heking as follows. LetG;H be two MSGs. Then it is easy to see that L(G) \ L(H) = ; if and onlyif Lina(G) \ Lina(H) = ; (respetively, L(G) � L(H) if and only if Lina(G) �Lina(H). Reall that for any MSG G, atoms of L(G) are �nite and �nitely many.Hene the set of representative linearizations Lina(G) is b-bounded, where b issuh that G is existentially b-bounded. For getting a regular set of representativelinearizations Lina(G) we impose a theoretially well-known restrition, that ofloop-onnetedness.We an hange slightly the graph of a g-MSG G by replaing eah node vlabeled by some non-empty MSC M by a path of new nodes v1; : : : ; vk wherevi is labeled by Ai and M = A1 � � �Ak is some deomposition of M into atomsAi. The new graph G0 an be seen as an automaton with states labeled overthe alphabet of atoms At(G). The property of G being a g-MSG translatesto G0 being loop-onneted, whih is a well-known property from the theoryof Mazurkiewiz traes. It means that every loop of G0 is labeled by a sub-alphabet of At = At(G) that is onneted w.r.t. the symmetri dependeneD = (At � At) n I , that is ADA0 if A and A0 share at least one proess. Withthis restrition it is well-known that the losure under ommutation I of theregular set generated by G0 is regular, and an automaton generating the losure15



an be e�etively omputed [11, 27℄. From this automaton we obtain Lina(G)and an automaton generating it simply by replaing every atom A 2 At(G) bysome linearization of A. Sine the size of the automaton generating Lina(G) isexponential in the size of G we obtain:Theorem 5 [15℄ Given a g-MSG G and an arbitrary MSG H, it is PSPACE-omplete to deide whether L(G)\L(H) = ;. The positive model-heking prob-lem L(G) � L(H) where H is a g-MSG, is EXPSPACE-omplete.Notie that the omplexity of model-heking g-MSGs is not higher than forregular MSGs. Moreover, the situation for g-MSGS is better, sine we do nothave to ompute all linearizations, but a smaller subset that has the additionalproperty of being b-bounded for a small b, yielding an algorithm that is faster inpratie than the one given for regular MSGs. A regular MSG G is universallyB-bounded with a B that an be exponential in the size of G.We turn now to the implementation problem. The situation here enforesthe idea that that universal hannel bounds are not needed. For the safe variantof the standard implementability problem, i.e., where the implementation is notallowed any additional data but must be deadlok free, the omplexity is thesame for regular MSGs and for g-MSGs:Theorem 6 [3, 23℄ Given a g-MSG G, it is EXPSPACE-omplete to deidewhether there exists a deadlok-free CFM A with L(G) = L(A).Again, this result is not really pratial, given the high omplexity. Moreover,in pratie it might be the ase that the standard implementation does not workfor some g-MSG G, but that G is still implementable with a little more data.For an example see �gure 8 in setion 7.In the ase where one allows data to be added to messages but deadloksare not allowed, there are g-MSGs that annot be implemented. For instane,onsider the g-MSG G in �gure 6 with two nodes with self-loops, and two edgesbetween them. Both nodes are labeled by MSCs with two messages, one from p1to p2 and one from p3 to p2. The �rst node has its messages arrying the data a,while the seond node arries the data b. Both nodes are initial and �nal. In anyCFM implementation proesses p1 and p3 should deide to send either both aor both b, but this is impossible with no additional synhronization (messages).Hene, this protool annot be implemented without deadloks. It remains openwhether every g-MSG an be implemented with additional data and allowingdeadloks. The onjeture in [15℄ is that this is always possible.7 Choie and ImplementabilityDeadlok-free implementability being a key feature required for ommuniatingprotools, tratable algorithms that help implementing an MSG with additionaldata are needed. One reasonable way of doing this is �rst to exhibit a non-trivialsublass of MSGs that is always implementable with additional data and no16



deadloks. Then we want to test whether an MSG an be represented inside oursublass, preserving the MSC language.As mentioned before, the reason for non-implementability of an MSG is theglobal ontrol, whereas the hoie in a CFM must be done loally. The idea isthen to de�ne MSGs that have only loal hoies, that is any node is ontrolledby a single proess [7, 19℄.De�nition 2 An MSG G = hV;R; v0; Vf ; �i is alled loal-hoie (l-MSG forshort) if eah MSC labeling any node v of G is a triangle, that is it has a singleminimal event min(v) in the partial order �. Moreover, min(w) belongs to theproess set of node v, whenever (v; w) 2 R.Figure 7 shows an l-MSG G. Note that G is equivalent to the MSG in �gure2, whih is not an l-MSG. Cheking that an MSG is loal-hoie an be donein polynomial time.
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U F SFig. 7. Loal-hoie MSG.It is not very hard to translate a l-MSG into a deadlok-free CFM, usinglinear additional data. The idea is to use a leader proess and to let the urrentleader hoose the urrent node to be exeuted and the next leader. The node ishosen among the nodes that follow the node being exeuted, and that beginwith a minimal event belonging to the leader. The next leader should be hosenamong the minimal proesses of nodes that follow the hosen node.In the proedure polling state below proess p waits for a message informingit about the next node to exeute and the next leader:17



void polling_state()f while (true) fif p reeives a message (a,v,q) thenf urrent node=v; next leader=q; return;g g gInitially, the urrent node is initialized by letting next leader = pr(min((v0)).Before exeuting its event from urrent node, proess p goes to a polling state,unless it is the leader proess. Here is the algorithm for proess p:initialization();while (true)f if (p 6= next leader) polling_state();else furrent node=guess(urrent node);next leader=guessp(urrent node);gexeute_path(urrent node); gThe algorithm exeute path(urrent node) above makes that proess p exe-utes its events from urrent node, if any. In this ase eah message sent by pontains the additional data (urrent node, next leader).Theorem 7 [15℄ Every l-MSG G is implementable by a deadlok-free CFMwith additional data whih is of size linear in jGj.Note that in a triangle (see de�nition 2), every proess but the minimalproess begins by a reeive. A proess that is hosen to be the leader is alwaysinformed, sine it ours in the node where it is hosen.
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for example an l-MSG with three nodes 1; 2; 3, see �gure 8. The initial nodeonsists of a message from proess p1 to p2. Then either node 2 is exeuted,with proess p1 sending to proess p3, or node 3 is exeuted with proess p2sending to proess p4. Sine proesses p1 and p2 do not know whih one willbe next (no additional data, same past), both an begin, thus both nodes 2and 3 an start. The exeution must stop, and there is no distributed way toknow whether the protool went �ne or not. Hene without additional data thisprotool is not implementable at all. [19℄ proposes a suÆient ondition for thestandard-implementability of l-MSGs.While loal-hoie is de�ned syntatially, we show that it orresponds to asemanti property. Moreover, one an test whether an MSG is transformable intoa l-MSG. Triangles are of huge importane here. We �rst de�ne a generi l-MSG Hn over triangles of size bounded by n. The MSG Hn has for eah triangleT of size at most n, one node vT labeled by T . There is an edge vT ! vT 0 ifpr(min(T 0)) 2 pr(T 0).Proposition 1 [14℄ An MSG G is equivalent to some l-MSG i� there existssome n suh that L(G) � L(Hn). If this is the ase, then we an obtain a l-MSGequivalent to G, of size exponential in jGj and n.If the test in proposition 1 on G answers yes, then an equivalent l-MSG anbe onstruted by synhronizing G and Hn.While it is PSPACE to test whether L(G) � L(Hn) by theorem 9, the valueof n is not bounded so far. For testing, we need a bound. We use for this thefollowing three strutural properties of l-MSG G.1. Every MSC M in L(G) is a triangle.2. There is a bound b s.t. for every MSC in L(G) ontaining a fator (U jjV ) withU; V MSCs (that is, U; V share no proess), either jU j < b or jV j < b. Thisimplies that for an MSG to be equivalent to some l-MSG, it is neessary tobe a g-MSG.3. There is a bound b s.t. for every MSC in L(G) of the form URV with R anMSC of size at least b, there exists triangle T that is a suÆx of RV , suhthat min(T ) belongs to R.Obviously, an MSG G that is equivalent to some l-MSG satis�es these threeproperties. The important point is that the onverse holds, too. It allows us tostate:Theorem 8 [14℄ Testing whether an MSG G is equivalent to some l-MSG isin PSPACE. Moreover, if the answer is positive, then an equivalent l-MSG ofdoubly exponential size an be onstruted.Proof. We an hek whether G is a g-MSG in o-NP [15℄. Cheking the�rst property above is in polynomial time. Cheking the seond property forg-MSG is in o-NP. If true, the test provides a bound b that is polynomial injGj. 19



Cheking the third property for g-MSGs is in PSPACE. If true, the testprovides a bound b that is exponential in jGj.We an then ompute an equivalent l-MSG building the produt Hb �Lina(G). As b is exponential in jGj and H is exponential in b, the result isat most doubly exponential in jGj. 2One important question is whether loal-hoie is expressive enough, else thetest to know whether an MSG is equivalent to some l-MSG would almost er-tainly lead to a negative answer. Comparing l-MSGs to regular MSGs, l-MSGstend to be more useful in pratie. In partiular, the restrition of universally-bounded hannels of regular MSGs is not required for l-MSGs. Moreover, l-MSGs an be implemented without deadlok, while this is not the ase for regularMSGs. A drawbak of l-MSGs is the fat that they exlude long parallel MSCs,while this is possible with regular MSGs (albeit not in the same loop of thegraph). Atually, it would not be diÆult to ut a protool into parallel ones,and implement eah one using l-MSGs.Sine l-MSGs form a sublass of g-MSGs, one an hope that they areeasier to model-hek than g-MSGs. In order to improve the model-hekingalgorithm, triangles an be used as generators instead of atoms. For a given l-MSG eah node v labeled by a triangle T an be slied into two nodes labeledby triangles R;S, as long as T = RS satis�es pr(min(w)) 2 S for every v ! w.Notie that by the de�nition of a triangle, we have that pr(min(S)) 2 R. LetT1 � � �Tn; T 01 � � �T 0n0 be sequenes of triangles labeling two paths �; �0 in l-MSGsG;H slied in this way. Then there exist k;X s.t. Ti = T 0i for all i < k, andT 0k = XTk+1 � � �Tn, Tk = XT 0k+1 � � �T 0n0 . Hene, Tk+1 � � �Tn is smaller than thelargest node of G. The same applies for T 0k+1 � � �T 0n0 . This idea allows to domodel-heking very similarly to word automata.Theorem 9 [15℄ Given two l-MSGs G;H, the negative model-heking ques-tion L(G) \ L(H) = ; an be answered in quadrati time. The positive model-heking question L(G) � L(H) with H an l-MSG and G an arbitrary MSG, isPSPACE-omplete.8 ConlusionsThe MSC/MSG standard is a popular notation for onurrent system spei�-ation, in partiular for ommuniation protools. Stemming from its suessfuluse by software engineers, new tehniques and tools have been developed forMSC/MSG analysis. The �nite states model was designed by researhers. Al-though this model has many mathematial properties, it is not always easy totransfer its related tehnology to the software developers. The MSC notation, onthe other hand, has gained �rst popularity with the software developers. Conse-quently, this notation does not �t diretly the main lasses of formal languages.This alls for studying the expressiveness of the notation and developing newvalidation and implementation methods.20



It is evident from the olletion of results surveyed here that one of the mainhallenges in studying MSCs/MSGs is how to ahieve the appropriate expres-siveness, while maintaining deidability with respet to automati veri�ation.This alls for developing various extensions and restritions on the allowed lassof MSCs/MSGs.The MSC/MSG standard provides an alternative for the ommuniating au-tomata model. In partiular, the main ompositional operator for the formeris sequential omposition, while the main way to onnet ommuniating au-tomata is using parallel omposition. Although sequential omposition is oftenonsidered simpler than the parallel one, it is evident that this is not the asehere. The reason is that the sequential omposition is asynhronous, relating par-tial orders. In partiular, the parallel omposition of two MSCs (i.e., that shareno proess) is expressed when we ompose them sequentially (as is the ase inlassial Mazurkiewiz trae theory [11℄). This is also manifested by the highomplexity results on MSG deision proedures. Note however that sublassesas l-MSGs have the same omplexity as �nite-state mahines.The theory of MSCs is related to models of true onurreny, inluding par-tial orders and Mazurkiewiz traes. While these theories ourished in the reentdeades, their pratial use was limited, due to the high omplexity they gener-ally possess, when ompared to the �nite-state mahine model. The MSC modelprovides an important use of these true onurreny models. The intuitive na-ture of these models is manifested by the use of the MSC as a popular visualnotation for onurreny.Referenes1. ITU-TS reommendation Z.120, 1996.2. R. Alur, K. Etessami, and M. Yannakakis. Inferene of Message Sequene Charts.In Proeedings of the 22nd International Conferene on Software Engineering, Lim-erik (Ireland), pages 304{313. ACM, 2000.3. R. Alur, K. Etessami, and M. Yannakakis. Realizability and veri�ation of MSCgraphs. In Proeedings of the 28th International olloquium on Automata, Lan-guages and Programming (ICALP'01), Crete (Greee) 2001, number 2076 in Le-ture Notes in Computer Siene, pages 797{808. Springer, 2001.4. R. Alur, G. H. Holzmann, and D. A. Peled. An analyzer for message sequeneharts. Software Conepts and Tools, 17(2):70{77, 1996.5. R. Alur, D. Peled, and W. Penzek. Model-heking of ausality properties. InProeedings of the 10th Annual IEEE Symposium on Logi in Computer Siene(LICS '95), pages 90{100. IEEE, 1995.6. R. Alur and M. Yannakakis. Model heking of message sequene harts. InProeedings of the 10th International Conferene on Conurreny Theory CON-CUR'99, Eindhoven (The Netherlands), number 1664 in Leture Notes in Com-puter Siene, pages 114{129. Springer, 1999.7. H. Ben-Abdallah and S. Leue. Syntati detetion of proess divergene and non-loal hoie in message sequene harts. In Proeedings of the Tools and Algo-rithms for the Constrution and Analysis of Systems, Third International Work-shop, TACAS'97, number 1217 in Leture Notes in Computer Siene, pages 259{274, Enshede, The Netherlands, 1997. Springer.21
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