
Message Sequen
e ChartsBlaise Genest1, An
a Mus
holl1, and Doron Peled21 LIAFA, Universit�e Paris VII & CNRS2, pl. Jussieu, 
ase 7014, 75251 Paris 
edex 05, Fran
e2 Department of Computer S
ien
e, University of Warwi
kCoventry, CV4 7AL, United KingdomAbstra
t. Message sequen
e 
harts (MSC) are a graphi
al notationstandardized by the ITU and used for the des
ription of 
ommuni
ations
enarios between asyn
hronous pro
esses. This survey 
ompares MSCsand 
ommuni
ating �nite-state automata, presenting two fundamentalvalidation problems on MSCs, model-
he
king and implementability.1 Introdu
tionModeling and validation, whether formal or ad-ho
, are important steps in sys-tem design. Over the last 
ouple of de
ades, various methods and tools weredeveloped for de
reasing the amount of design and development errors. A 
om-mon 
omponent of su
h methods and tools is the use of formalisms for spe
ifyingthe behavior and requirements of the system. Experien
e has shown that someformalisms, su
h as �nite-state ma
hines, are parti
ularly appealing, due to their
onvenient mathemati
al properties. In parti
ular, the expressive power of �nite-state ma
hines is identi
al to regular languages, an important and well-studied
lass of languages. Although their expressiveness is restri
ted, �nite-state ma-
hines are used for the in
reasingly su

essful automati
 veri�
ation of softwareand hardware, also 
alled model-
he
king [8, 10℄. One of the biggest 
hallenges indeveloping new validation te
hnology based on �nite-state ma
hines is to makethis model popular among system engineers.The Message Sequen
e Charts (MSC) model has be
ome popular in soft-ware development throughout its visual representation, depi
ting the involvedpro
esses as verti
al lines, and ea
h message as an arrow between the sour
eand the target pro
esses, a

ording to their o

urren
e order. An internationalstandard [1℄, and its in
lusion in the UML standard, has in
reased the popular-ity. The standard has also extended the notation to Message Sequen
e Graphs(MSGs), whi
h 
onsist of �nite transition systems, where ea
h state embeds asingle MSC. En
ouraged by the su

ess of the formalism among software devel-opers, te
hniques and tools for analyzing MSCs and MSGs have been developed.In this survey we des
ribe the formal analysis of MSCs and MSGs. The
lass of systems that 
an be des
ribed using this formalism does not dire
tly
orrespond to a well-studied 
lass su
h as regular languages. It turns out thatMSGs are in
omparable with the 
lass of �nite-state 
ommuni
ation proto
ols.One thus needs to separately study the expressiveness of MSG languages, and



adapt the validation algorithms. Several new algorithms are suggested in orderto 
he
k MSG properties, mostly related to an automati
 translation from MSGspe
i�
ation into skeletons of 
on
urrent programs. Our survey 
on
entrates onthe following subje
ts:Expressiveness: Comparing the expressive power of MSGs to the expressivepower of other formalisms, in parti
ular 
ommuni
ating �nite-state ma-
hines.Veri�
ation: The ability to apply automati
 veri�
ation algorithms on MSGs,and the various formalisms used to de�ne properties of MSGs.Implementability: The ability to obtain an automati
 translation from MSGspe
i�
ation into skeletons of 
ode.Generalizations and Restri
tions: Various extensions and restri
tions of thestandard notation are suggested in order to 
apture further systems, and onthe other hand, to obtain de
idability of important de
ision pro
edures.Very re
ently, several MSC-based spe
i�
ation formalisms have been pro-posed, su
h as Live Sequen
e Charts [17℄, Triggered MSCs [30℄, Net
harts [25℄and Template MSCs [12℄. The motivation behind these models is to in
rease theexpressiveness of the notation, and to make their usage by designers even more
onvenient.2 Message Sequen
e Graphs and Communi
atingFinite-State Ma
hinesWe present in this se
tion two spe
i�
ation formalisms for 
ommuni
ation pro-to
ols, Message Sequen
e Charts and Communi
ating Finite-State Ma
hines.Message Sequen
e Charts (MSC for short) is a s
enario language standard-ized by the ITU [1℄. They are simple diagrams depi
ting the a
tivity and 
ommu-ni
ations in a distributed system. The entities parti
ipating in the intera
tionsare 
alled instan
es (or pro
esses). They are represented by verti
al lines, onwhi
h the behavior of ea
h single pro
ess is des
ribed by a sequen
e of events.Message ex
hanges are depi
ted by arrows from the sender to the re
eiver. Inaddition to messages, atomi
 events, timers, lo
al/global 
onditions 
an also berepresented.De�nition 1 A Message Sequen
e Chart (MSC for short) is a tuple M =hP ; E; C; `;m;<i where:{ P is a �nite set of pro
esses,{ E is a �nite set of events,{ C is a �nite set of names for messages and lo
al a
tions,{ ` : E ! T = fp!q(a); p?q(a); p(a) j p 6= q 2 P ; a 2 Cg labels an event with itstype: in pro
ess p, either a send p!q(a)of message a to pro
ess q, or a re
eivep?q(a) of message a from pro
ess q, or a lo
al event p(a). The labeling `partitions the set of events by type (send, re
eive, or lo
al), E = S �SR �SL,and by pro
ess, E = �Sp2P Ep. 2



{ m : S ! R is a bije
tion mat
hing ea
h send to the 
orresponding re
eive. Ifm(s) = r, then `(s) = p!q(a) and `(r) = p?q(a) for some pro
esses p; q 2 Pand some message name a 2 C.{ <� E �E is an a
y
li
 relation between events 
onsisting of:1. a total order on Ep, for every pro
ess p 2 P, and2. s < r, whenever m(s) = r.The event labeling ` impli
itly de�nes the pro
ess pr(e) for ea
h event eas pr(e) = p if e 2 Ep (equivalently, `(e) 2 fp!q(a); p?q(a); p(a)g for some q 2P ; a 2 C). Sin
e point-to-point 
ommuni
ation is usually FIFO (�rst-in-�rst-out)we make in the following the same assumption for MSCs. That is, we assume thatwhenever m(s1) = r1, m(s2) = r2 holds with pr(s1) = pr(s2), pr(r1) = pr(r2)and s1 < s2, then we also have r1 < r2.The example in �gure 1 is an MSC M with messages sent between twopro
esses p1; p2. It 
orresponds to a s
enario of the alternating bit proto
ol, inwhi
h the sender p1 is for
ed to resend the message to the re
eiver p2, sin
e p2'sa
knowledgments arrive too late.
p

message

process

1 p2

Fig. 1. MSC exe
ution of the alternating bit proto
ol.The relation < is 
alled the visual order on the MSC, sin
e it 
orrespondsto its graphi
al representation. It is 
omprised of the pro
ess ordering andthe message ordering, pairwise between send and mat
hing re
eive. Sin
e <is required to be a
y
li
, its re
exive-transitive 
losure <� is a partial orderon the set E of events, whi
h we will denote for simpli
ity also by �. Anyextension of � to a total order on E is 
alled a linearization of M . We de-note by Lin(M) the set of all labeled linearizations of an MSC M , Lin(M) =f`(e1) � � � `(en) j e1 � � � en is a linearization of Mg.3



Sin
e the spe
i�
ation of a 
ommuni
ation proto
ol 
onsists of many s
e-narios, either in positive or in negative form, a high-level des
ription is neededfor 
ombining them together and de�ning in�nite sets of (�nite or in�nite) s
e-narios. The Z.120 standard des
ription introdu
es high-level MSCs using non-deterministi
 bran
hing, 
on
atenation and iteration of �nite MSCs. The se-manti
s is provisional, that is, the high-level MSC usually des
ribes possiblebehaviors of the system. Formally, a Message Sequen
e Graph (MSG for short)G = hV;R; v0; Vf ; �i 
onsists of a �nite transition system (V;R; v0; Vf ) with setof nodes V and set of transitions R � V � V , initial node v0 2 V and terminalnodes Vf � V . In pi
tures, the initial node is marked by an in
oming arrow,and �nal nodes by outgoing arrows. Ea
h node v is labeled by the �nite MSC�(v). For instan
e, the MSG in �gure 2 des
ribes the possible runs of a proto
olfor 
onne
ting a user U with a server S through a �rewall F . After a 
onne
-tion request (initial node A) either the server a

epts the user and the �rewallgrants the a

ess (�nal node B), or else the server's a

ept arrives too late (afterthe �rewall denied the a

ess, node C). This negative behavior 
an repeat (loopbetween A and C) and leads eventually to an error (�nal node D).
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Fig. 2. Communi
ation proto
ol represented by an MSG.An exe
ution of an MSG G is the labeling �(v0)�(v1) � � ��(vk) of some a
-
epting path v0 = v0; v1; : : : ; vk 2 Vf of G, i.e., (vi; vi+1) 2 R for every 0 � i < k.For example, ACAB in �gure 2 is the exe
ution of G in whi
h the 
onne
tionfails on
e, but the se
ond request su

eeds. The set of exe
utions of G is denotedby L(G), the set of linearizations of exe
utions of G is denoted by Lin(G). Thesize of a MSG G (denoted jGj) is the sum of the sizes of its nodes.Of 
ourse, the semanti
s of MSGs depends on the de�nition of the MSC prod-u
t. We 
onsider the usual weak produ
t of MSCs, that 
on
atenates MSCs along4



the pro
ess lines. Let M1 = hP ; E1; C1; `1 ;m1; <1i and M2 = hP ; E2; C2; `2;m2; <2i be MSCs over the same set of pro
esses P . The produ
t M1M2 is theMSC hP ; E1 �SE2; C1[C2; `1[`2; m1[m2; <i over the disjoint union of events,with the visual order given by:< = <1 [ <2 [f(e; f) 2 E1 �E2 j pr(e) = pr(f)g :Note that there is no syn
hronization between di�erent pro
esses when movingfrom one node to the next one (weak produ
t). Hen
e, it is possible that one pro-
ess is still involved in some a
tions of M1, while another pro
ess has advan
edto an event of M2.A related standardized spe
i�
ation notation for tele
ommuni
ation appli-
ations is SDL (Spe
i�
ation and Des
ription Language, ITU Z.100). SDL isdedi
ated to the design of real-time, distributed systems and involves 
omplexfeatures as hierar
hy, pro
edure 
alls and abstra
t data types. The basi
 theoreti-
al model behind SDL are nested 
ommuni
ating �nite-state ma
hines. We re
allthe de�nition of (
at) 
ommuni
ating �nite-state ma
hines (CFM for short).A CFM A = (Ap)p2P 
onsists of �nite-state ma
hines Ap asso
iated withpro
esses p 2 P , whi
h 
ommuni
ate over unbounded, error-free, FIFO 
hannels.The 
ontent of a 
hannel is a word over a �nite alphabet C. With ea
h pair(p; q) 2 P2 of distin
t pro
esses we asso
iate a 
hannel Cp;q. Ea
h �nite-statema
hine Ap is des
ribed by a tuple Ap = (Sp; Ap;!p; Fp) 
onsisting of a set oflo
al states Sp, a set of a
tions Ap, a set of �nal states Fp and a transition relation!p� Sp � Ap � Sp. The 
omputation begins in an initial state s0 2 Qp2P Sp.The a
tions of Ap are either lo
al a
tions or sending/re
eiving a message. Weuse the same notations as for MSCs. Sending message a 2 C from pro
ess p topro
ess q is denoted by p!q(a) and it means that a is appended to the 
hannelCp;q . Re
eiving message a by p from q is denoted by p?q(a) and it means thata must be the �rst message in Cq;p, whi
h will be then removed from Cq;p. Alo
al a
tion a on pro
ess p is denoted by lp(a). We denote a run of the CFMas su

essful, if ea
h pro
ess p �nishes the exe
ution in some �nal state and all
hannels are empty. The set of su

essful runs of A is denoted L(A). The sizeof A is Pp jApj and is denoted jAj.Note that ea
h su

essful run of a CFM de�nes an MSC. Conversely, withea
h MSC M = hP ; E; C; `;m;<i we 
an asso
iate an equivalent CFM, by de�n-ing the behavior of pro
ess p as the (ordered) sequen
e of events Ep. However,the two formalisms MSG and CFM are in
omparable in general, as dis
ussed inthe next se
tion.3 Comparing MSG and CFMComparing the expressivity of MSG and CFM is interesting for at least tworeasons. First, both formalisms are heavily used in proto
ol design, sometimesfor spe
ifying di�erent parts of a system at di�erent stages of the design pro
ess.Se
ond, MSCs are usually intended as early requirements, for a rough des
riptionof the desired/undesired behavior. Thus, the question whether the des
ribed5



behavior 
an be turned into a proto
ol (implementability/realizability problem)is an important validation step in the design pro
ess.A qualitative 
omparison between MSG and CFM 
on
erns two importantparameters, 
ontrol and 
hannels. Control in a CFM is inherently lo
al, sin
eit 
orresponds to lo
al transition fun
tions. The 
ontrol stru
ture of an MSG isglobal, sin
e the bran
hing from a node 
on
erns all pro
esses o

urring in thefuture exe
ution. The global 
ontrol me
hanism of an MSG is a
tually imposedby the visual 
hara
ter of the diagram graph, in whi
h MSCs are 
omposedsequentially. One problem arising from the global 
ontrol is that an MSG Gmight be non-implementable, i.e., no CFM A exists with L(A) = L(G). For asimple example, 
onsider the MSG G 
onsisting of a single node v with a self-loop, labeled by a message from p1 to p2 and another message from p3 to p4.Sin
e the MSCs in L(G) must 
ontain equally many messages from p1 to p2 andfrom p3 to p4, there 
an be no equivalent CFM.We turn now to the se
ond parameter, namely 
hannels. Although none of themodels impose any (universal) bound on the 
hannel 
apa
ity, validation taskssu
h as model-
he
king tend to be \more" de
idable for MSGs than for CFMsthat are Turing 
omplete, see [9℄. The reason is that MSGs have existentially-bounded 
hannels, i.e., for ea
h MSG G there exists an integer b su
h that everyMSC in L(G) 
an be exe
uted with 
hannels of size at most b. Formally, aset X of MSCs is 
alled existentially-bounded if there exists some b su
h thatevery MSC M 2 X has some linearization w 2 Lin(M) satisfying the followingproperty: for every pair of distin
t pro
esses p; q and every pre�x v of w, it holdsthat 0 � Pa2C jvjp!q(a) �Pa2C jvjq?p(a) � b. For an MSG G the bound b islinear in the maximal size of the MSCs labeling the nodes of G. For an exampleof property that is unde
idable for CFM (but not for MSG) one 
an 
onsider thequestion whether a CFM generates at least one MSC [9℄. A less trivial exampleis pattern-mat
hing : given an MSC M and an MSG G, we ask whether there issome exe
ution N 2 L(G) and a fa
torization N = N1MN2, where N1; N2 areboth MSCs. The pattern-mat
hing algorithm des
ribed in [12, 13℄ uses heavilythe fa
t that MSGs are existentially-bounded (with an priori known bound).More generally, some CFMs 
annot be transformed into MSGs sin
e MSGsare �nitely generated. That is, for any MSG G there exists a �nite set X of �niteMSCs su
h that any exe
ution M 2 L(G) 
an be written as a (�nite or in�nite)produ
t M = M1M2 � � �Mk of fa
tors from X , Mi 2 X for all i. A typi
alexample of CFM that is not �nitely generated 
orresponds to the alternatingbit proto
ol. The exe
utions of this proto
ol in
lude the family of MSCs thatgeneralize the pattern of the MSC shown in �gure 1 with n 
rossing messages forevery n. None of these MSCsM 
an be de
omposed asM =M1M2 withM1;M2non-empty MSCs, sin
e in
luding a send in M1 for
es to add another send onthe other pro
ess (the one pre
eding the 
orresponding re
eive). More generally,an MSC M is 
alled atomi
 (or atom), if for any de
omposition M = M1M2where both M1;M2 are MSCs, at most one is non-empty. For another exampleof atomi
 MSC, 
onsider the MSC M3 in �gure 4. The set of atoms generatingthe MSC exe
utions of an MSG G is denoted At(G). It is a �nite set and it6



represents a 
anoni
 set of generators of L(G). Moreover, it 
an 
omputed by asimple linear-time algorithm, see [19℄.On the potentially in�nite alphabet At of atomi
 MSCs, we 
an de�ne anindependen
e (
ommutation) relation I � At � At by letting AI A0 i� pr(A) \pr(A0) = ;. Noti
e that AI A0 implies that A;A0 
ommute, AA0 = A0A, and thatthe de
omposition of any MSC into atoms is unique up to 
ommuting adja
entatoms A;A0 with AI A0.Returning to the alternating bit example, it is easily seen that the set oflinearizations Lin(M) of the represented MSC M is regular. Note that in thisparti
ular example every linearization of M has 
hannel bound at most 3. We
all a set X of MSCs universally-bounded if for every MSC M 2 X , everylinearization w 2 Lin(M), every pre�x v of w and every pair of distin
t pro
essesp; q we have 0 � Pa2C jvjp!q(a) �Pa2C jvjq?p(a) � b. Noti
e also that su
h auniversal 
hannel bound for an MSG G does not suÆ
e for Lin(G) being aregular set. Hen
e, even if the spe
i�
ation is given as �nite-state automaton A,we 
annot automati
ally transform A into an equivalent MSG G. This led to anextension of the MSG formalism, namely to Compositional Message Sequen
eGraphs (CMSG, for short) [16℄. A 
ompositional MSC (CMSC, for short) isde�ned as an MSC, ex
ept that the message fun
tion m is partially de�ned. Asend that does not belong to the domain of the message fun
tion m, or a re
eivenot belonging to the range of m, are 
alled unmat
hed events. The produ
t oftwo CMSC M1M2 is de�ned as for MSC, but in addition the k-th unmat
hedsend of M1 is mat
hed with the k-th unmat
hed re
eive of M2 (if they exist)in su
h a way that the FIFO property is satis�ed by mat
hed events. Hen
e,the produ
t of CMSCs is only partially de�ned. Moreover, it is not asso
iative,hen
e we de�ne a produ
t M1M2 � � �Mk as parenthesized from left to right.It is not very diÆ
ult to see that any CFM 
an be transformed into anequivalent CMSG of exponential size. The rough idea is that nodes 
orrespond topairs (state,event), where state is a global state of the CFM and event is an eventenabled in state. There is a transition from (state1,event1) to (state2,event2)if state2 is obtained from state1 by an event1-transition (that modi�es state1a

ording to the lo
al transition relation). It is easy to 
he
k that any CMSCexe
ution of the CFM with no unmat
hed re
eive is an exe
ution of the CMSG,and vi
e-versa. For instan
e, the CFM generating the alternating bit proto
olfrom example 1 
an be transformed into the CMSG in �gure 3. (For CMSCs wedraw unmat
hed events by the solid end of a half-dotted message arrow, thatsuggests the type of the mat
hing event.)Theorem 1. Any CFM 
an be transformed into an equivalent CMSG of expo-nential size.4 Validating MSC Spe
i�
ations: Model-Che
king andImplementationMSG spe
i�
ations are used very early in the design pro
ess. Revealing designerrors before implementing is of primary importan
e. This has motivated the de-7
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Fig. 3. CMSG depi
ting the alternating bit proto
ol.sign of algorithms that 
he
k spe
i�
 properties of MSGs su
h as ra
e 
onditions[4, 28℄ and dete
ting non-lo
al 
hoi
e [7, 19, 18℄. Model-
he
king MSG spe
i�
a-tions has been 
onsidered w.r.t. properties expressed as MSG [27℄, automata [6℄and partial-order logi
s [29, 24℄. Another test that may reveal the in
omplete-ness of an MSG spe
i�
ation is the one for implementability. Here, we want toknow whether the spe
i�
ation 
an be transformed into a state-based, distributedmodel as CFM. As dis
ussed in se
tion 4.2, the de�nition of implementability isnot 
anoni
al, and the results strongly depend on the variant we 
onsider.4.1 Model-Che
kingIn the 
ommon model-
he
king approa
h (see for re
ent textbooks [8, 10℄) weusually des
ribe bad exe
ution sequen
es using the same formalism as for spe
-ifying the system (e.g., �nite automata over in�nite words). Then we need to
he
k the emptiness of the interse
tion between the bad sequen
es and the sys-tem, and 
ounter-examples 
an be obtained if the interse
tion is non-empty. Inthe MSC setting we 
annot use 
omplementation as with �nite automata. First,the 
omplement of an MSG is not �nitely generated, thus it 
an never be repre-sented by an MSG. Se
ondly, even if we take the 
omplement w.r.t. the MSCsgenerated by the same set of atoms, the 
omplement 
annot be represented byan MSG in general. This is similar to the fa
t that the 
omplement of a ratio-nal tra
e language is not rational, in general [11℄. Therefore, we 
onsider twovariants of model-
he
king, positive and negative model-
he
king. In both 
aseswe spe
ify the property P we want to 
he
k, as well as the system S itself, byMSGs. For negative model-
he
king we view P as a set of bad MSC exe
utionsand we ask whether L(P )\L(S) = ;. For positive model-
he
king we view P asa set of good MSC exe
utions and we ask whether L(S) � L(P ).In the general setting of MSG spe
i�
ations, both model-
he
king variantsare unde
idable [6, 27℄. This holds even if the property P is given by a �nite-stateautomaton or an LTL formula [6℄:Theorem 1 Given a �nite-state automaton P and an MSG graph G, it is un-de
idable whether L(P ) \ L(G) = ;. 8



The proof for theorem 1 is a straightforward redu
tion from Post's 
orrespon-den
e problem (PCP). Re
all that an instan
e of PCP 
onsists of pairs of words(xi; yi)1�i�k over the alphabet f0; 1g. Then we ask for a non-empty sequen
e ofindi
es i1; : : : ; in su
h that xi1 � � �xin = yi1 � � � yin .The MSG G 
onsists of (k + 2) nodes v0; v1; : : : ; vk; vf . Node v0 (vf , resp.)is initial (�nal, resp.), and labeled by the empty MSC. Node vi is labeledby a sequen
e of messages from p1 to p2 labeled 0 or 1 su
h that the se-quen
e of labels equals xi, and a message from p3 to p4 labeled by i. Thereis a transition from v0 to ea
h of vi, from ea
h vi to vf , and one from vfto v0. The automaton P a

epts pre
isely the set (X1 + � � � + Xk)+, whereea
h Xi is a �nite word de�ned as follows: Let yi = a1 � � � am, then Xi =p1!p2(a1)p2?p1(a1) � � � p1!p2(am)p2?p1(am) p3!p4(i)p4?p3(i).Clearly, sin
e there is no syn
hronization between the pro
ess pairs fp1; p2gand fp3; p4g, both the MSG and the automaton des
ribe MSCs with two parallelthreads, one over the PCP words (x for G, y for P ) and the other over the
orresponding indi
es. The non-empty interse
tion between G and P revealsthen a PCP solution.Remark. Note that the unde
idability proof above does not rely on the un-boundedness of 
hannels, sin
e G is existentially-bounded. A
tually the 
on-stru
tion 
an be slightly modi�ed su
h that G be
omes universally-bounded, byadding an a
knowledgment after ea
h message. The true reason for unde
idabil-ity is 
on
urren
y, sin
e G and P use di�erent linearizations of the same partialorders of MSC. 2Several de
idable variants of model-
he
king have been 
onsidered in subse-quent papers. Some of them are obtained by restri
ting the properties we want to
he
k, others are obtained by restri
ting the system spe
i�
ation. However, sev-eral variants are based on a similar idea. Suppose for instan
e that the propertyP is given by a linearization-
losed �nite-state automaton A. That is, for everyword w 2 L(A), the automaton A also a

epts every linearization v 2 Lin(M)of the MSC M de�ned by w. In this 
ase it suÆ
es to 
onsider representativelinearizations of the system MSG G: We 
hoose for every node v of G somelinearization of the MSC labeling v, say lv. Then we de�ne a �nite-state au-tomaton A(G) from G by repla
ing the label of v by lv. Thus, states of A(G)are labeled by words. It is easy to see now that L(G) \ L(A) 6= ; if and only ifL(A(G)) \ L(A) 6= ;, and L(G) � L(A) if and only if L(A(G)) � L(A).Among the model-
he
king variants that led to algorithmi
 solutions we referto the following ones:{ Model-
he
king with gaps [28℄: The property P is given by an MSG, but itssemanti
s di�ers from the semanti
s of the system G. An exe
ution M of Pis mat
hed with gaps by an exe
ution M 0 of G if there is an embedding �of the events of M in the set of events of M 0 su
h that the visual order ispreserved: whenever e < f in M , we have �(e) <0 �(f) in M 0. This problemhas been shown to be NP-
omplete (even if P is an a
y
li
 MSG).9



The main reason for de
idability of model-
he
king with gaps is that gapslead to very restri
ted languages, for whi
h we 
an 
ompute a sort of lineari-zation-
losure.{ Using partial-order spe
i�
ations [29, 24℄: Here, the property P is given by apartial-order logi
, whi
h makes it linearization-
losed. In [29℄ a logi
 derivedfrom a fragment of TLC [5℄ is proposed for MSGs. Basi
ally, this logi
 
or-responds to CTL interpreted over partial-order graphs of MSCs, where theedge relation is the immediate su

essor relation (on ea
h pro
ess, resp. forsend/re
eive pairs). It is shown in [29℄ how to 
onstru
t an exponential-size automaton from the spe
i�
ation, hen
e model-
he
king is PSPACEw.r.t. the spe
i�
ation (and only linear in the size of the system). In [24℄the spe
i�
ation formalism is MSO, interpreted over partial-order graphs ofMSCs. Here, the 
omplexity is non-elementary, as it is already in the word
ase.A further approa
h leading to a de
idable model-
he
king problem is to syn-ta
ti
ally restri
t the MSGs, see se
tions 5 and 6 for details.4.2 ImplementabilityAs previously mentioned, the MSG formalism is useful as a spe
i�
ation nota-tion, but it does not provide dire
tly a proto
ol model. Su
h a model is usuallystate-based and distributed, whereas MSGs provide an impli
it global 
ontrolover the behavior of the pro
esses. This allows for spe
i�
ations that are not im-plementable be
ause of global 
hoi
es (see for instan
e �gure 4 whi
h is dis
ussedbelow). Being able to generate an implementation for an MSC spe
i�
ation alsoallows to perform tests on the level of requirements, hen
e it is not longer re-quired to generate 
ode before testing.The proto
ol model generally used is CFM over the same set of pro
esses asthe MSG spe
i�
ation. But we still have some 
hoi
e for the semanti
s of theimplementation. For instan
e, we 
ould allow for an implementation with more(or less) behavior than the MSG. The most natural notion is that the imple-mentation is equivalent to the MSG: An MSG G is implementable, if some CFMA exists su
h that L(A) = L(G). Furthermore, we allow the implementation to
ontain additional data in messages. That is, the message 
ontents of the CFM
ome from a �nite set C0 = C �D, where C is the set of message 
ontents of theMSG and D is some �nite set. Then, the equality L(A) = L(G) is required upto the additional data D. A further, even more relaxed notion of implementabil-ity, would also allow for additional messages. Noti
e that this would make everyMSG implementable, sin
e the additional messages 
an be used for syn
hroniz-ing all pro
esses after ea
h node. We do not allow additional messages, sin
e inmany appli
ations they are neither desired nor possible (e.g., appli
ations wherea
knowledgments 
annot be provided).The �rst notion of implementation, whi
h we denote as standard implemen-tation, has been proposed in [2, 3℄. The standard implementation of the MSGG = hV;R; v0; Vf ; �i over the pro
ess set P does not add any data and it is fully10



determined by the MSG, being de�ned pro
ess by pro
ess: The automaton Apfor pro
ess p generates the proje
tion of L(G) on the events of pro
ess p.We 
all an MSG standard-implementable if it is implementable w.r.t. thestandard version of implementability. Noti
e that this notion is a
tually tooweak, sin
e it 
aptures just a small subset of implementable spe
i�
ations. Thesimplest 
ounter-example (see �gure 4) is a set of two MSCs over the pro
essesp1, p2 where the �rst MSCM1 has a message from p1 to p2, followed by one fromp2 to p1. In the se
ond MSC M2 we have �rst a message from p2 to p1, then onefrom p1 to p2. These two MSCs are not standard-implementable sin
e we 
an
ombine the proje
tion ofM1 on p1 with the proje
tion ofM2 on p2 and we obtainthe MSCM3. This set is not implementable even with additional data. Changingslightly this example we obtain one whi
h is not standard-implementable, butis implementable with additional data. For this, we just add at the beginningof both M1, M2 a �rst unlabeled message from p1 to p2, see �gure 5. Thenthe non-implementability argument given previously still works. However, withadditional data we use the initial message for letting p1 de
ide on the out
omeM1 or M2, and inform p2.
M1

M2 M3

p1 p2 p1 p2 p1 p2

Fig. 4. The set fM1;M2g is not implementable (it does not 
ontain the implied MSCM3).Two striking weaknesses of the standard notion is that not even simple MSGsare standard-implementable, as seen from the example above. Furthermore, forthe restri
ted 
lass of regular MSGs de�ned in se
tion 5, the question of standard-implementability is unde
idable. However, regular MSGs are implementable withadditional data, see se
tion 5 for more details.Nevertheless, the results of [2, 3℄ show that standard implementability be-
omes de
idable at least for regular MSGs if one looks for deadlo
k-free imple-mentations, only (
alled safe realizability in [2, 3℄), albeit with high algorithmi

omplexity. A CFM is 
alled a deadlo
k-free implementation of an MSG G ifL(A) = L(G) and every 
on�guration of A that has no su

essor, is su
h thatall pro
esses have rea
hed a �nal state and all 
hannels are empty. Deadlo
k-freeness is of 
ourse required in pra
ti
e, sin
e real-life proto
ols should not beaborted in some un
lean state. We will re
all the various results on the imple-mentability problem in se
tions 5 and 6.11
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Fig. 5. CFM implementing the set fM1;M2g with additional data.
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5 Regular MSC Spe
i�
ationsRegular MSGs have been proposed in the 
ontext of model-
he
king, as a sub-
lass for whi
h both variants of model-
he
king are de
idable [6, 27℄. It is a syn-ta
ti
 restri
tion that ensures that the set of all linearizations, i.e., the set Lin(G),is regular. Regular MSGs provided to be a theoreti
ally robust 
lass, in termsof logi
al and automata-theoreti
 
hara
terizations. In parti
ular, regular MSGs
an be implemented with additional data by CFM with universally-bounded
hannels. However,the CFM implementation is not deadlo
k-free, in general.A set X of �nite MSCs is 
alled regular if Lin(X) is a regular string languageover the alphabet T of event types [20℄. Moreover, there is a synta
ti
 
onditionensuring that an MSG G generates a regular set L(G) of MSCs. This 
onditionroughly means that 
ommuni
ation in a loop must be a
knowledged to all a
tivepro
esses. Formally, we need to de�ne the 
ommuni
ation graph of an MSC M :it is a dire
ted graph over the set of 
ommuni
ating pro
esses in M with anedge from pro
ess p to pro
ess q whenever M 
ontains a message from p to q.An MSG G is 
alled a regular MSG (lo
ally-syn
hronized in [27℄, bounded in[6℄) if any MSC labeling a loop of G has a strongly 
onne
ted 
ommuni
ationgraph. This 
ondition is 
o-NP 
omplete [27℄.For an example, 
onsider the MSG in �gure 2. It is a regular MSG, sin
eevery loop involves only A;C, and the 
ommuni
ation graph of AC is strongly
onne
ted (the �rewall is 
onne
ted with both user and server by bidire
tionalar
s).Putting together the results from [6, 27, 20℄ we have the following relationshipbetween regular sets of MSCs and regular MSGs:Theorem 2 1. For every regular MSG G the set L(G) of generated MSCs isregular [6, 27℄.2. For every regular and �nitely generated set X of MSCs there exists a regularMSG G with X = L(G) [20℄.The main interest in regular MSGs was to obtain a sub
lass of MSC spe
i�-
ations with a de
idable model-
he
king problem:Theorem 3 [6, 27℄ The negative model-
he
king problem L(G) \ L(H) 6= ;where G is a regular MSG, is PSPACE-
omplete. The positive model-
he
kingproblem L(G) � L(H) where H is a regular MSG, is EXPSPACE-
omplete.The theorem above shows that model-
he
king MSGs is rather expensive,whi
h is a
tually not very surprising when we deal with 
on
urrent models. Thereason is MSGs are more 
ompa
t than �nite-state automata. The upper boundsin the theorem above are based on the fa
t that if G is a regular MSG then we
an 
ompute a �nite automaton of exponential size generating Lin(G).Regular MSC languages also have ni
e 
hara
terizations in the logi
al and
ommuni
ating automata framework. The logi
 used in [21, 24℄ is MSO withatomi
 propositions `(e) = t 2 T , e � f and e 2 E that have the usual interpre-tation, as type labeling, partial order of the MSC and membership in a se
ondorder variable E. 13



Theorem 4 [21, 22℄ Let X be a universally-bounded set of MSCs. The followingassertions are equivalent:1. X 
an be implemented by a (deterministi
) CFM with additional data.2. There exists an MSO formula � su
h that X is the set of bounded MSCssatisfying �.In the �rst part of the theorem above the implementation is not deadlo
k-free, sin
e the 
onstru
ted CFM uses global �nal states for a

epting X . On theother hand, as we mentioned in se
tion 5, the standard implementation is notreally helpful when applied to regular MSGs (the upper bound is due to [3℄, andthe lower bound to [23℄):Theorem 2. [3, 23℄ It is unde
idable to know whether a regular MSG is standard-implementable. It is EXPSPACE-
omplete to know whether a regular MSG isstandard-implementable without deadlo
ks.Remark. The unde
idability result in theorem 2 heavily depends on the fa
tthat 
hannels are FIFO. Without FIFO, standard implementability for regularMSGs be
omes de
idable [26℄. 26 Globally-Cooperative MSGsAs seen in se
tion 5, model-
he
king for regular MSGs is de
idable and oftra
table 
omplexity (PSPACE for the basi
 variant). However, the situationis far from being ideal. Noti
e �rst that some trivial proto
ols 
annot be repre-sented by regular MSGs. For instan
e, the proto
ol where pro
ess p1 
an sendany number of messages to pro
ess p2. The reason is that regular MSGs haveuniversally bounded 
hannels, whi
h restri
ts severely their expressive power.Se
ond, for real life 
ommuni
ation proto
ols one 
an usually �nd a (suÆ
ientlylarge) bound b so that any run of the proto
ol 
an be exe
uted with 
hannelsea
h bounded by b. Similarly to MSGs, we 
all su
h proto
ols existentially b-bounded. Whereas an algorithm exists to 
he
k whether a CFM or a �nite-statema
hine is existentially b-bounded for a given b, its 
omplexity depends severely(exponentially) on b. Hen
e, in pra
ti
e we 
annot hope to be able to �x a suÆ-
iently large bound b that takes 
are of all exe
utions. The last problem is thatwe 
annot obtain in general an automaton generating all linearizations of exe
u-tions for models that are stri
tly more expressive than regular MSGs. Instead,we 
an try to use representative linearizations rather than all linearizations, re-quiring that the set of representative linearizations is b-bounded, with b as smallas possible.De�nition 1 An MSG G is 
alled globally-
ooperative (g
-MSG for short) ifevery loop of G has a weakly 
onne
ted 
ommuni
ation graph.Thus, an MSGG is a g
-MSG if any MSCM labeling a loop 
annot be writtenas M = M1jjM2 with M1;M2 non-empty MSCs with no 
ommon pro
ess. It is14




o-NP 
omplete to know whether an MSG is a g
-MSG. For an example of ag
-MSG, see �gure 6, or suppose that we add a self-loop on node A in �gure2. The MSG thus obtained is not regular anymore, but it is a g
-MSG. Clearly,every regular MSG is also a g
-MSG. Moreover, it 
an be noted that regularMSGs 
orrespond exa
tly to g
-MSGs with universally-bounded 
hannels.The representative linearizations that we use for model-
he
king are the lin-earizations that exe
ute atoms one by one. More pre
isely, for any M 2 L(G)we 
onsider only linearizations in Lin(M) of the form w = w1 � � �wn, whereM = A1 � � �An is some de
omposition of M into atoms Ai and wi 2 Lin(Ai) forall i. Let us denote by Lina(G) � Lin(G) the set of su
h linearizations of MSCsof L(G). For an example, let G be the graph 
onsisting of a single node with aself-loop, labeled by a message from p1 to p2. Let s = p1!p2 and r = p2?p1, thenLina(G) = (sr)�. Of 
ourse, Lin(G) is not regular, it 
orresponds to the Dy
klanguage over one pair of bra
kets.
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3Fig. 6. Globally-
ooperative MSG.We 
an use representative linearizations for model-
he
king as follows. LetG;H be two MSGs. Then it is easy to see that L(G) \ L(H) = ; if and onlyif Lina(G) \ Lina(H) = ; (respe
tively, L(G) � L(H) if and only if Lina(G) �Lina(H). Re
all that for any MSG G, atoms of L(G) are �nite and �nitely many.Hen
e the set of representative linearizations Lina(G) is b-bounded, where b issu
h that G is existentially b-bounded. For getting a regular set of representativelinearizations Lina(G) we impose a theoreti
ally well-known restri
tion, that ofloop-
onne
tedness.We 
an 
hange slightly the graph of a g
-MSG G by repla
ing ea
h node vlabeled by some non-empty MSC M by a path of new nodes v1; : : : ; vk wherevi is labeled by Ai and M = A1 � � �Ak is some de
omposition of M into atomsAi. The new graph G0 
an be seen as an automaton with states labeled overthe alphabet of atoms At(G). The property of G being a g
-MSG translatesto G0 being loop-
onne
ted, whi
h is a well-known property from the theoryof Mazurkiewi
z tra
es. It means that every loop of G0 is labeled by a sub-alphabet of At = At(G) that is 
onne
ted w.r.t. the symmetri
 dependen
eD = (At � At) n I , that is ADA0 if A and A0 share at least one pro
ess. Withthis restri
tion it is well-known that the 
losure under 
ommutation I of theregular set generated by G0 is regular, and an automaton generating the 
losure15




an be e�e
tively 
omputed [11, 27℄. From this automaton we obtain Lina(G)and an automaton generating it simply by repla
ing every atom A 2 At(G) bysome linearization of A. Sin
e the size of the automaton generating Lina(G) isexponential in the size of G we obtain:Theorem 5 [15℄ Given a g
-MSG G and an arbitrary MSG H, it is PSPACE-
omplete to de
ide whether L(G)\L(H) = ;. The positive model-
he
king prob-lem L(G) � L(H) where H is a g
-MSG, is EXPSPACE-
omplete.Noti
e that the 
omplexity of model-
he
king g
-MSGs is not higher than forregular MSGs. Moreover, the situation for g
-MSGS is better, sin
e we do nothave to 
ompute all linearizations, but a smaller subset that has the additionalproperty of being b-bounded for a small b, yielding an algorithm that is faster inpra
ti
e than the one given for regular MSGs. A regular MSG G is universallyB-bounded with a B that 
an be exponential in the size of G.We turn now to the implementation problem. The situation here enfor
esthe idea that that universal 
hannel bounds are not needed. For the safe variantof the standard implementability problem, i.e., where the implementation is notallowed any additional data but must be deadlo
k free, the 
omplexity is thesame for regular MSGs and for g
-MSGs:Theorem 6 [3, 23℄ Given a g
-MSG G, it is EXPSPACE-
omplete to de
idewhether there exists a deadlo
k-free CFM A with L(G) = L(A).Again, this result is not really pra
ti
al, given the high 
omplexity. Moreover,in pra
ti
e it might be the 
ase that the standard implementation does not workfor some g
-MSG G, but that G is still implementable with a little more data.For an example see �gure 8 in se
tion 7.In the 
ase where one allows data to be added to messages but deadlo
ksare not allowed, there are g
-MSGs that 
annot be implemented. For instan
e,
onsider the g
-MSG G in �gure 6 with two nodes with self-loops, and two edgesbetween them. Both nodes are labeled by MSCs with two messages, one from p1to p2 and one from p3 to p2. The �rst node has its messages 
arrying the data a,while the se
ond node 
arries the data b. Both nodes are initial and �nal. In anyCFM implementation pro
esses p1 and p3 should de
ide to send either both aor both b, but this is impossible with no additional syn
hronization (messages).Hen
e, this proto
ol 
annot be implemented without deadlo
ks. It remains openwhether every g
-MSG 
an be implemented with additional data and allowingdeadlo
ks. The 
onje
ture in [15℄ is that this is always possible.7 Choi
e and ImplementabilityDeadlo
k-free implementability being a key feature required for 
ommuni
atingproto
ols, tra
table algorithms that help implementing an MSG with additionaldata are needed. One reasonable way of doing this is �rst to exhibit a non-trivialsub
lass of MSGs that is always implementable with additional data and no16



deadlo
ks. Then we want to test whether an MSG 
an be represented inside oursub
lass, preserving the MSC language.As mentioned before, the reason for non-implementability of an MSG is theglobal 
ontrol, whereas the 
hoi
e in a CFM must be done lo
ally. The idea isthen to de�ne MSGs that have only lo
al 
hoi
es, that is any node is 
ontrolledby a single pro
ess [7, 19℄.De�nition 2 An MSG G = hV;R; v0; Vf ; �i is 
alled lo
al-
hoi
e (l
-MSG forshort) if ea
h MSC labeling any node v of G is a triangle, that is it has a singleminimal event min(v) in the partial order �. Moreover, min(w) belongs to thepro
ess set of node v, whenever (v; w) 2 R.Figure 7 shows an l
-MSG G. Note that G is equivalent to the MSG in �gure2, whi
h is not an l
-MSG. Che
king that an MSG is lo
al-
hoi
e 
an be donein polynomial time.

test

AC

fail ack

Dswitch 
off

U F S

info

connect

test

grant ack

info

connect

AB

U F S

U F SFig. 7. Lo
al-
hoi
e MSG.It is not very hard to translate a l
-MSG into a deadlo
k-free CFM, usinglinear additional data. The idea is to use a leader pro
ess and to let the 
urrentleader 
hoose the 
urrent node to be exe
uted and the next leader. The node is
hosen among the nodes that follow the node being exe
uted, and that beginwith a minimal event belonging to the leader. The next leader should be 
hosenamong the minimal pro
esses of nodes that follow the 
hosen node.In the pro
edure polling state below pro
ess p waits for a message informingit about the next node to exe
ute and the next leader:17



void polling_state()f while (true) fif p re
eives a message (a,v,q) thenf 
urrent node=v; next leader=q; return;g g gInitially, the 
urrent node is initialized by letting next leader = pr(min((v0)).Before exe
uting its event from 
urrent node, pro
ess p goes to a polling state,unless it is the leader pro
ess. Here is the algorithm for pro
ess p:initialization();while (true)f if (p 6= next leader) polling_state();else f
urrent node=guess(
urrent node);next leader=guessp(
urrent node);gexe
ute_path(
urrent node); gThe algorithm exe
ute path(
urrent node) above makes that pro
ess p exe-
utes its events from 
urrent node, if any. In this 
ase ea
h message sent by p
ontains the additional data (
urrent node, next leader).Theorem 7 [15℄ Every l
-MSG G is implementable by a deadlo
k-free CFMwith additional data whi
h is of size linear in jGj.Note that in a triangle (see de�nition 2), every pro
ess but the minimalpro
ess begins by a re
eive. A pro
ess that is 
hosen to be the leader is alwaysinformed, sin
e it o

urs in the node where it is 
hosen.
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3Fig. 8. L
-MSG not implementable without additional data.It is important to see that if additional data is forbidden, then there arel
-MSG that are not implementable, even when allowing deadlo
ks. Consider18



for example an l
-MSG with three nodes 1; 2; 3, see �gure 8. The initial node
onsists of a message from pro
ess p1 to p2. Then either node 2 is exe
uted,with pro
ess p1 sending to pro
ess p3, or node 3 is exe
uted with pro
ess p2sending to pro
ess p4. Sin
e pro
esses p1 and p2 do not know whi
h one willbe next (no additional data, same past), both 
an begin, thus both nodes 2and 3 
an start. The exe
ution must stop, and there is no distributed way toknow whether the proto
ol went �ne or not. Hen
e without additional data thisproto
ol is not implementable at all. [19℄ proposes a suÆ
ient 
ondition for thestandard-implementability of l
-MSGs.While lo
al-
hoi
e is de�ned synta
ti
ally, we show that it 
orresponds to asemanti
 property. Moreover, one 
an test whether an MSG is transformable intoa l
-MSG. Triangles are of huge importan
e here. We �rst de�ne a generi
 l
-MSG Hn over triangles of size bounded by n. The MSG Hn has for ea
h triangleT of size at most n, one node vT labeled by T . There is an edge vT ! vT 0 ifpr(min(T 0)) 2 pr(T 0).Proposition 1 [14℄ An MSG G is equivalent to some l
-MSG i� there existssome n su
h that L(G) � L(Hn). If this is the 
ase, then we 
an obtain a l
-MSGequivalent to G, of size exponential in jGj and n.If the test in proposition 1 on G answers yes, then an equivalent l
-MSG 
anbe 
onstru
ted by syn
hronizing G and Hn.While it is PSPACE to test whether L(G) � L(Hn) by theorem 9, the valueof n is not bounded so far. For testing, we need a bound. We use for this thefollowing three stru
tural properties of l
-MSG G.1. Every MSC M in L(G) is a triangle.2. There is a bound b s.t. for every MSC in L(G) 
ontaining a fa
tor (U jjV ) withU; V MSCs (that is, U; V share no pro
ess), either jU j < b or jV j < b. Thisimplies that for an MSG to be equivalent to some l
-MSG, it is ne
essary tobe a g
-MSG.3. There is a bound b s.t. for every MSC in L(G) of the form URV with R anMSC of size at least b, there exists triangle T that is a suÆx of RV , su
hthat min(T ) belongs to R.Obviously, an MSG G that is equivalent to some l
-MSG satis�es these threeproperties. The important point is that the 
onverse holds, too. It allows us tostate:Theorem 8 [14℄ Testing whether an MSG G is equivalent to some l
-MSG isin PSPACE. Moreover, if the answer is positive, then an equivalent l
-MSG ofdoubly exponential size 
an be 
onstru
ted.Proof. We 
an 
he
k whether G is a g
-MSG in 
o-NP [15℄. Che
king the�rst property above is in polynomial time. Che
king the se
ond property forg
-MSG is in 
o-NP. If true, the test provides a bound b that is polynomial injGj. 19



Che
king the third property for g
-MSGs is in PSPACE. If true, the testprovides a bound b that is exponential in jGj.We 
an then 
ompute an equivalent l
-MSG building the produ
t Hb �Lina(G). As b is exponential in jGj and H is exponential in b, the result isat most doubly exponential in jGj. 2One important question is whether lo
al-
hoi
e is expressive enough, else thetest to know whether an MSG is equivalent to some l
-MSG would almost 
er-tainly lead to a negative answer. Comparing l
-MSGs to regular MSGs, l
-MSGstend to be more useful in pra
ti
e. In parti
ular, the restri
tion of universally-bounded 
hannels of regular MSGs is not required for l
-MSGs. Moreover, l
-MSGs 
an be implemented without deadlo
k, while this is not the 
ase for regularMSGs. A drawba
k of l
-MSGs is the fa
t that they ex
lude long parallel MSCs,while this is possible with regular MSGs (albeit not in the same loop of thegraph). A
tually, it would not be diÆ
ult to 
ut a proto
ol into parallel ones,and implement ea
h one using l
-MSGs.Sin
e l
-MSGs form a sub
lass of g
-MSGs, one 
an hope that they areeasier to model-
he
k than g
-MSGs. In order to improve the model-
he
kingalgorithm, triangles 
an be used as generators instead of atoms. For a given l
-MSG ea
h node v labeled by a triangle T 
an be sli
ed into two nodes labeledby triangles R;S, as long as T = RS satis�es pr(min(w)) 2 S for every v ! w.Noti
e that by the de�nition of a triangle, we have that pr(min(S)) 2 R. LetT1 � � �Tn; T 01 � � �T 0n0 be sequen
es of triangles labeling two paths �; �0 in l
-MSGsG;H sli
ed in this way. Then there exist k;X s.t. Ti = T 0i for all i < k, andT 0k = XTk+1 � � �Tn, Tk = XT 0k+1 � � �T 0n0 . Hen
e, Tk+1 � � �Tn is smaller than thelargest node of G. The same applies for T 0k+1 � � �T 0n0 . This idea allows to domodel-
he
king very similarly to word automata.Theorem 9 [15℄ Given two l
-MSGs G;H, the negative model-
he
king ques-tion L(G) \ L(H) = ; 
an be answered in quadrati
 time. The positive model-
he
king question L(G) � L(H) with H an l
-MSG and G an arbitrary MSG, isPSPACE-
omplete.8 Con
lusionsThe MSC/MSG standard is a popular notation for 
on
urrent system spe
i�-
ation, in parti
ular for 
ommuni
ation proto
ols. Stemming from its su

essfuluse by software engineers, new te
hniques and tools have been developed forMSC/MSG analysis. The �nite states model was designed by resear
hers. Al-though this model has many mathemati
al properties, it is not always easy totransfer its related te
hnology to the software developers. The MSC notation, onthe other hand, has gained �rst popularity with the software developers. Conse-quently, this notation does not �t dire
tly the main 
lasses of formal languages.This 
alls for studying the expressiveness of the notation and developing newvalidation and implementation methods.20



It is evident from the 
olle
tion of results surveyed here that one of the main
hallenges in studying MSCs/MSGs is how to a
hieve the appropriate expres-siveness, while maintaining de
idability with respe
t to automati
 veri�
ation.This 
alls for developing various extensions and restri
tions on the allowed 
lassof MSCs/MSGs.The MSC/MSG standard provides an alternative for the 
ommuni
ating au-tomata model. In parti
ular, the main 
ompositional operator for the formeris sequential 
omposition, while the main way to 
onne
t 
ommuni
ating au-tomata is using parallel 
omposition. Although sequential 
omposition is often
onsidered simpler than the parallel one, it is evident that this is not the 
asehere. The reason is that the sequential 
omposition is asyn
hronous, relating par-tial orders. In parti
ular, the parallel 
omposition of two MSCs (i.e., that shareno pro
ess) is expressed when we 
ompose them sequentially (as is the 
ase in
lassi
al Mazurkiewi
z tra
e theory [11℄). This is also manifested by the high
omplexity results on MSG de
ision pro
edures. Note however that sub
lassesas l
-MSGs have the same 
omplexity as �nite-state ma
hines.The theory of MSCs is related to models of true 
on
urren
y, in
luding par-tial orders and Mazurkiewi
z tra
es. While these theories 
ourished in the re
entde
ades, their pra
ti
al use was limited, due to the high 
omplexity they gener-ally possess, when 
ompared to the �nite-state ma
hine model. The MSC modelprovides an important use of these true 
on
urren
y models. The intuitive na-ture of these models is manifested by the use of the MSC as a popular visualnotation for 
on
urren
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