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Abstract. Message sequence charts (MSC) are a graphical notation
standardized by the I'TU and used for the description of communication
scenarios between asynchronous processes. This survey compares MSCs
and communicating finite-state automata, presenting two fundamental
validation problems on MSCs, model-checking and implementability.

1 Introduction

Modeling and validation, whether formal or ad-hoc, are important steps in sys-
tem design. Over the last couple of decades, various methods and tools were
developed for decreasing the amount of design and development errors. A com-
mon component of such methods and tools is the use of formalisms for specifying
the behavior and requirements of the system. Experience has shown that some
formalisms, such as finite-state machines, are particularly appealing, due to their
convenient mathematical properties. In particular, the expressive power of finite-
state machines is identical to reqular languages, an important and well-studied
class of languages. Although their expressiveness is restricted, finite-state ma-
chines are used for the increasingly successful automatic verification of software
and hardware, also called model-checking [8,10]. One of the biggest challenges in
developing new validation technology based on finite-state machines is to make
this model popular among system engineers.

The Message Sequence Charts (MSC) model has become popular in soft-
ware development throughout its visual representation, depicting the involved
processes as vertical lines, and each message as an arrow between the source
and the target processes, according to their occurrence order. An international
standard [1], and its inclusion in the UML standard, has increased the popular-
ity. The standard has also extended the notation to Message Sequence Graphs
(MSGs), which consist of finite transition systems, where each state embeds a
single MSC. Encouraged by the success of the formalism among software devel-
opers, techniques and tools for analyzing MSCs and MSGs have been developed.

In this survey we describe the formal analysis of MSCs and MSGs. The
class of systems that can be described using this formalism does not directly
correspond to a well-studied class such as regular languages. It turns out that
MSGs are incomparable with the class of finite-state communication protocols.
One thus needs to separately study the expressiveness of MSG languages, and



adapt the validation algorithms. Several new algorithms are suggested in order
to check MSG properties, mostly related to an automatic translation from MSG
specification into skeletons of concurrent programs. Our survey concentrates on
the following subjects:

Ezpressiveness: Comparing the expressive power of MSGs to the expressive
power of other formalisms, in particular communicating finite-state ma-
chines.

Verification: The ability to apply automatic verification algorithms on MSGs,
and the various formalisms used to define properties of MSGs.

Implementability: The ability to obtain an automatic translation from MSG
specification into skeletons of code.

Generalizations and Restrictions: Various extensions and restrictions of the
standard notation are suggested in order to capture further systems, and on
the other hand, to obtain decidability of important decision procedures.

Very recently, several MSC-based specification formalisms have been pro-
posed, such as Live Sequence Charts [17], Triggered MSCs [30], Netcharts [25]
and Template MSCs [12]. The motivation behind these models is to increase the
expressiveness of the notation, and to make their usage by designers even more
convenient.

2 Message Sequence Graphs and Communicating
Finite-State Machines

We present in this section two specification formalisms for communication pro-
tocols, Message Sequence Charts and Communicating Finite-State Machines.

Message Sequence Charts (MSC for short) is a scenario language standard-
ized by the ITU [1]. They are simple diagrams depicting the activity and commu-
nications in a distributed system. The entities participating in the interactions
are called instances (or processes). They are represented by vertical lines, on
which the behavior of each single process is described by a sequence of events.
Message exchanges are depicted by arrows from the sender to the receiver. In
addition to messages, atomic events, timers, local/global conditions can also be
represented.

Definition 1 A Message Sequence Chart (MSC for short) is a tuple M =
(P,E,C,t,m,<) where:

— P is a finite set of processes,

— E is a finite set of events,

— C is a finite set of names for messages and local actions,

—(:E— T ={plg(a),p?q(a),p(a) | p# q € P,a € C} labels an event with its
type: in process p, either a send plq(a)of message a to process q, or a receive
p?q(a) of message a from process q, or a local event p(a). The labeling ¢
partitions the set of events by type (send, receive, or local), E = S|JR|JL,
and by process, E = |Jpep Ep.



—m:S — R is a bijection matching each send to the corresponding receive. If
m(s) =, then {(s) = plq(a) and £L(r) = p?q(a) for some processes p,q € P
and some message name a € C.

— < C E x E is an acyclic relation between events consisting of:

1. a total order on E,, for every process p € P, and
2. s <r, whenever m(s) =r.

The event labeling ¢ implicitly defines the process pr(e) for each event e
as pr(e) = p if e € E, (equivalently, ¢(e) € {plq(a),p?q(a),p(a)} for some q €
P,a € C). Since point-to-point communication is usually FIFO (first-in-first-out)
we make in the following the same assumption for MSCs. That is, we assume that
whenever m(s1) = r1, m(s2) = o holds with pr(s;) = pr(s2), pr(ri) = pr(ra)
and s; < sg, then we also have r; < ro.

The example in figure 1 is an MSC M with messages sent between two
processes p1,p2. It corresponds to a scenario of the alternating bit protocol, in
which the sender p; is forced to resend the message to the receiver p,, since py’s
acknowledgments arrive too late.

Pq P>

process

message —>

Fig. 1. MSC execution of the alternating bit protocol.

The relation < is called the wvisual order on the MSC, since it corresponds
to its graphical representation. It is comprised of the process ordering and
the message ordering, pairwise between send and matching receive. Since <
is required to be acyclic, its reflexive-transitive closure <* is a partial order
on the set E of events, which we will denote for simplicity also by <. Any
extension of < to a total order on E is called a linearization of M. We de-
note by Lin(M) the set of all labeled linearizations of an MSC M, Lin(M) =
{l(er)---L(epn) | €1+ ey is a linearization of M}.



Since the specification of a communication protocol consists of many sce-
narios, either in positive or in negative form, a high-level description is needed
for combining them together and defining infinite sets of (finite or infinite) sce-
narios. The Z.120 standard description introduces high-level MSCs using non-
deterministic branching, concatenation and iteration of finite MSCs. The se-
mantics is provisional, that is, the high-level MSC usually describes possible
behaviors of the system. Formally, a Message Sequence Graph (MSG for short)
G = (V,R,v°% V§, \) consists of a finite transition system (V, R,v°, V}) with set
of nodes V and set of transitions R C V x V, initial node v° € V and terminal
nodes Vy C V. In pictures, the initial node is marked by an incoming arrow,
and final nodes by outgoing arrows. Each node v is labeled by the finite MSC
A(v). For instance, the MSG in figure 2 describes the possible runs of a protocol
for connecting a user U with a server S through a firewall F'. After a connec-
tion request (initial node A) either the server accepts the user and the firewall
grants the access (final node B), or else the server’s accept arrives too late (after
the firewall denied the access, node C'). This negative behavior can repeat (loop
between A and C) and leads eventually to an error (final node D).

U F S U F S
NI [connect  |A ack | |B
/
test }
grant
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ail c | =
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rd 3 off
/
ack N

Fig. 2. Communication protocol represented by an MSG.

An execution of an MSG G is the labeling A(vg)A(v1) -+ - A(vg) of some ac-
cepting path v = vg,vy,...,vp € Vy of G, ie., (v;,0i41) € Rfor every 0 < i < k.
For example, ACAB in figure 2 is the execution of G in which the connection
fails once, but the second request succeeds. The set of executions of G is denoted
by L(G), the set of linearizations of executions of G is denoted by Lin(G). The
size of a MSG G (denoted |G|) is the sum of the sizes of its nodes.

Of course, the semantics of MSGs depends on the definition of the MSC prod-
uct. We consider the usual weak product of MSCs, that concatenates MSCs along



the process lines. Let M; = <P, Ey, Cy, ly,my, <1> and My = <P, Es, Cs, U,
ma, <2) be MSCs over the same set of processes P. The product M; M- is the
MSC (P, E; ) B2, C1 UC2, £1 UL, myUmse, <) over the disjoint union of events,
with the visual order given by:

<=<1U<aU{(e f) € By x Ey |pr(e) =pr(f)}.

Note that there is no synchronization between different processes when moving
from one node to the next one (weak product). Hence, it is possible that one pro-
cess is still involved in some actions of M, while another process has advanced
to an event of Ms.

A related standardized specification notation for telecommunication appli-
cations is SDL (Specification and Description Language, ITU Z.100). SDL is
dedicated to the design of real-time, distributed systems and involves complex
features as hierarchy, procedure calls and abstract data types. The basic theoreti-
cal model behind SDL are nested communicating finite-state machines. We recall
the definition of (flat) communicating finite-state machines (CFM for short).

A CFM A = (A,)pep consists of finite-state machines A, associated with
processes p € P, which communicate over unbounded, error-free, FIFO channels.
The content of a channel is a word over a finite alphabet C. With each pair
(p,q) € P? of distinct processes we associate a channel C, ,. Each finite-state
machine A, is described by a tuple A, = (S,, A, —,, F},) consisting of a set of
local states Sp, a set of actions A, a set of final states F}, and a transition relation
—p C Sp x Ay x Sp. The computation begins in an initial state s° € [T cp Sp-
The actions of A, are either local actions or sending/receiving a message. We
use the same notations as for MSCs. Sending message a € C from process p to
process ¢ is denoted by plg(a) and it means that a is appended to the channel
Cp,q- Receiving message a by p from ¢ is denoted by p?¢(a) and it means that
a must be the first message in Cy ,, which will be then removed from C,,. A
local action a on process p is denoted by I,(a). We denote a run of the CFM
as successful, if each process p finishes the execution in some final state and all
channels are empty. The set of successful runs of A is denoted £(A). The size
of Ais }° |Ap| and is denoted |AJ.

Note that each successful run of a CFM defines an MSC. Conversely, with
each MSC M = (P, E,C,{,m, <) we can associate an equivalent CFM, by defin-
ing the behavior of process p as the (ordered) sequence of events E,. However,
the two formalisms MSG and CFM are incomparable in general, as discussed in
the next section.

3 Comparing MSG and CFM

Comparing the expressivity of MSG and CFM is interesting for at least two
reasons. First, both formalisms are heavily used in protocol design, sometimes
for specifying different parts of a system at different stages of the design process.
Second, MSCs are usually intended as early requirements, for a rough description
of the desired/undesired behavior. Thus, the question whether the described



behavior can be turned into a protocol (implementability/realizability problem)
is an important validation step in the design process.

A qualitative comparison between MSG and CFM concerns two important
parameters, control and channels. Control in a CFM is inherently local, since
it corresponds to local transition functions. The control structure of an MSG is
global, since the branching from a node concerns all processes occurring in the
future execution. The global control mechanism of an MSG is actually imposed
by the visual character of the diagram graph, in which MSCs are composed
sequentially. One problem arising from the global control is that an MSG G
might be non-implementable, i.e., no CFM A exists with £(A) = L(G). For a
simple example, consider the MSG G consisting of a single node v with a self-
loop, labeled by a message from p; to p» and another message from ps to py.
Since the MSCs in £(G) must contain equally many messages from p; to p2 and
from p3 to p4, there can be no equivalent CFM.

We turn now to the second parameter, namely channels. Although none of the
models impose any (universal) bound on the channel capacity, validation tasks
such as model-checking tend to be “more” decidable for MSGs than for CFMs
that are Turing complete, see [9]. The reason is that MSGs have ezistentially-
bounded channels, i.e., for each MSG G there exists an integer b such that every
MSC in £(G) can be executed with channels of size at most b. Formally, a
set X of MSCs is called existentially-bounded if there exists some b such that
every MSC M € X has some linearization w € Lin(M) satisfying the following
property: for every pair of distinct processes p, ¢ and every prefix v of w, it holds
that 0 < > co Vlptga) = 2oace [Plg7pa) < b. For an MSG G the bound b is
linear in the maximal size of the MSCs labeling the nodes of G. For an example
of property that is undecidable for CFM (but not for MSG) one can consider the
question whether a CFM generates at least one MSC [9]. A less trivial example
is pattern-matching: given an MSC M and an MSG @, we ask whether there is
some execution N € L(G) and a factorization N = Ny M N», where Ny, Ny are
both MSCs. The pattern-matching algorithm described in [12,13] uses heavily
the fact that MSGs are existentially-bounded (with an priori known bound).

More generally, some CFMs cannot be transformed into MSGs since MSGs
are finitely generated. That is, for any MSG G there exists a finite set X of finite
MSCs such that any execution M € L(G) can be written as a (finite or infinite)
product M = MM, --- Mj, of factors from X, M; € X for all i. A typical
example of CFM that is not finitely generated corresponds to the alternating
bit protocol. The executions of this protocol include the family of MSCs that
generalize the pattern of the MSC shown in figure 1 with n crossing messages for
every n. None of these MSCs M can be decomposed as M = My My with My, M,
non-empty MSCs, since including a send in M; forces to add another send on
the other process (the one preceding the corresponding receive). More generally,
an MSC M is called atomic (or atom), if for any decomposition M = M; M,
where both Mj, M, are MSCs, at most one is non-empty. For another example
of atomic MSC, consider the MSC M3 in figure 4. The set of atoms generating
the MSC executions of an MSG G is denoted At(G). It is a finite set and it



represents a canonic set of generators of £(G). Moreover, it can computed by a
simple linear-time algorithm, see [19].

On the potentially infinite alphabet At of atomic MSCs, we can define an
independence (commutation) relation I C At x At by letting AT A’ iff pr(A) N
pr(A’) = 0. Notice that AT A’ implies that A, A’ commute, AA" = A’ A, and that
the decomposition of any MSC into atoms is unique up to commuting adjacent
atoms A, A’ with AT A'.

Returning to the alternating bit example, it is easily seen that the set of
linearizations Lin(A/) of the represented MSC M is regular. Note that in this
particular example every linearization of M has channel bound at most 3. We
call a set X of MSCs wuniversally-bounded if for every MSC M € X, every
linearization w € Lin(M), every prefix v of w and every pair of distinct processes
p,q we have 0 < Y7 - [Vlpiga) = 2acc |V]g7p(a) < b. Notice also that such a
universal channel bound for an MSG G does not suffice for Lin(G) being a
regular set. Hence, even if the specification is given as finite-state automaton A,
we cannot automatically transform A into an equivalent MSG G. This led to an
extension of the MSG formalism, namely to Compositional Message Sequence
Graphs (CMSG, for short) [16]. A compositional MSC (CMSC, for short) is
defined as an MSC, except that the message function m is partially defined. A
send that does not belong to the domain of the message function m, or a receive
not belonging to the range of m, are called unmatched events. The product of
two CMSC M M, is defined as for MSC, but in addition the k-th unmatched
send of M; is matched with the k-th unmatched receive of M, (if they exist)
in such a way that the FIFO property is satisfied by matched events. Hence,
the product of CMSCs is only partially defined. Moreover, it is not associative,
hence we define a product My Ms - - - My, as parenthesized from left to right.

It is not very difficult to see that any CFM can be transformed into an
equivalent CMSG of exponential size. The rough idea is that nodes correspond to
pairs (state,event), where state is a global state of the CFM and event is an event
enabled in state. There is a transition from (statel.eventl) to (state2,event2)
if state2 is obtained from statel by an eventl-transition (that modifies statel
according to the local transition relation). It is easy to check that any CMSC
execution of the CFM with no unmatched receive is an execution of the CMSG,
and vice-versa. For instance, the CFM generating the alternating bit protocol
from example 1 can be transformed into the CMSG in figure 3. (For CMSCs we
draw unmatched events by the solid end of a half-dotted message arrow, that
suggests the type of the matching event.)

Theorem 1. Any CFM can be transformed into an equivalent CMSG of expo-
nential size.

4 Validating MSC Specifications: Model-Checking and
Implementation

MSG specifications are used very early in the design process. Revealing design
errors before implementing is of primary importance. This has motivated the de-



Fig. 3. CMSG depicting the alternating bit protocol.

sign of algorithms that check specific properties of MSGs such as race conditions
[4,28] and detecting non-local choice [7,19,18]. Model-checking MSG specifica-
tions has been considered w.r.t. properties expressed as MSG [27], automata. [6]
and partial-order logics [29,24]. Another test that may reveal the incomplete-
ness of an MSG specification is the one for implementability. Here, we want to
know whether the specification can be transformed into a state-based, distributed
model as CFM. As discussed in section 4.2, the definition of implementability is
not canonical, and the results strongly depend on the variant we consider.

4.1 Model-Checking

In the common model-checking approach (see for recent textbooks [8,10]) we
usually describe bad execution sequences using the same formalism as for spec-
ifying the system (e.g., finite automata over infinite words). Then we need to
check the emptiness of the intersection between the bad sequences and the sys-
tem, and counter-examples can be obtained if the intersection is non-empty. In
the MSC setting we cannot use complementation as with finite automata. First,
the complement of an MSG is not finitely generated, thus it can never be repre-
sented by an MSG. Secondly, even if we take the complement w.r.t. the MSCs
generated by the same set of atoms, the complement cannot be represented by
an MSG in general. This is similar to the fact that the complement of a ratio-
nal trace language is not rational, in general [11]. Therefore, we consider two
variants of model-checking, positive and negative model-checking. In both cases
we specify the property P we want to check, as well as the system S itself, by
MSGs. For negative model-checking we view P as a set of bad MSC executions
and we ask whether £(P) N L(S) = 0. For positive model-checking we view P as
a set of good MSC executions and we ask whether £(S) C L(P).

In the general setting of MSG specifications, both model-checking variants
are undecidable [6, 27]. This holds even if the property P is given by a finite-state
automaton or an LTL formula [6]:

Theorem 1 Given a finite-state automaton P and an MSG graph G, it is un-
decidable whether L(P) N L(G) = {).



The proof for theorem 1 is a straightforward reduction from Post’s correspon-
dence problem (PCP). Recall that an instance of PCP consists of pairs of words
(z3,Y:)1<i<k over the alphabet {0,1}. Then we ask for a non-empty sequence of
indices 41, ...,%, such that z;, ---z;, =y, -~ ¥i,, -

The MSG G consists of (k + 2) nodes v°,vy,...,vx,v/. Node v° (vf, resp.)
is initial (final, resp.), and labeled by the empty MSC. Node v; is labeled
by a sequence of messages from p; to p» labeled 0 or 1 such that the se-
quence of labels equals z;, and a message from ps to ps labeled by i. There
is a transition from v° to each of v;, from each v; to v/, and one from v/
to vg. The automaton P accepts precisely the set (X; + --- + X;), where
each X; is a finite word defined as follows: Let y; = aj---ay,,, then X; =
pi'p2(a1)p2?pi(ar) - - pr'pa(am)p2?p1(am) ps'pa(i)pa?ps (i).

Clearly, since there is no synchronization between the process pairs {p1,p2}
and {ps, ps}, both the MSG and the automaton describe MSCs with two parallel
threads, one over the PCP words (z for G, y for P) and the other over the
corresponding indices. The non-empty intersection between GG and P reveals
then a PCP solution.

Remark. Note that the undecidability proof above does not rely on the un-
boundedness of channels, since G is existentially-bounded. Actually the con-
struction can be slightly modified such that G becomes universally-bounded, by
adding an acknowledgment after each message. The true reason for undecidabil-
ity is concurrency, since G and P use different linearizations of the same partial
orders of MSC. |

Several decidable variants of model-checking have been considered in subse-
quent papers. Some of them are obtained by restricting the properties we want to
check, others are obtained by restricting the system specification. However, sev-
eral variants are based on a similar idea. Suppose for instance that the property
P is given by a linearization-closed finite-state automaton A. That is, for every
word w € L(A), the automaton A also accepts every linearization v € Lin(M)
of the MSC M defined by w. In this case it suffices to consider representative
linearizations of the system MSG G: We choose for every node v of G some
linearization of the MSC labeling v, say [,. Then we define a finite-state au-
tomaton A(G) from G by replacing the label of v by [,. Thus, states of A(G)
are labeled by words. It is easy to see now that £(G) N L(A) # 0 if and only if
L(AG))NL(A) #0, and L(G) C L(A) if and only if L(A(G)) C L(A).

Among the model-checking variants that led to algorithmic solutions we refer
to the following ones:

— Model-checking with gaps [28]: The property P is given by an MSG, but its
semantics differs from the semantics of the system G. An execution M of P
is matched with gaps by an execution M' of G if there is an embedding ¢
of the events of M in the set of events of M’ such that the visual order is
preserved: whenever e < f in M, we have ¢(e) <’ ¢(f) in M'. This problem
has been shown to be NP-complete (even if P is an acyclic MSG).



The main reason for decidability of model-checking with gaps is that gaps
lead to very restricted languages, for which we can compute a sort of lineari-
zation-closure.

— Using partial-order specifications [29,24]: Here, the property P is given by a
partial-order logic, which makes it linearization-closed. In [29] a logic derived
from a fragment of TLC [5] is proposed for MSGs. Basically, this logic cor-
responds to CTL interpreted over partial-order graphs of MSCs, where the
edge relation is the immediate successor relation (on each process, resp. for
send/receive pairs). It is shown in [29] how to construct an exponential-
size automaton from the specification, hence model-checking is PSPACE
w.r.t. the specification (and only linear in the size of the system). In [24]
the specification formalism is MSO, interpreted over partial-order graphs of
MSCs. Here, the complexity is non-elementary, as it is already in the word
case.

A further approach leading to a decidable model-checking problem is to syn-
tactically restrict the MSGs, see sections 5 and 6 for details.

4.2 Implementability

As previously mentioned, the MSG formalism is useful as a specification nota-
tion, but it does not provide directly a protocol model. Such a model is usually
state-based and distributed, whereas MSGs provide an implicit global control
over the behavior of the processes. This allows for specifications that are not im-
plementable because of global choices (see for instance figure 4 which is discussed
below). Being able to generate an implementation for an MSC specification also
allows to perform tests on the level of requirements, hence it is not longer re-
quired to generate code before testing.

The protocol model generally used is CFM over the same set of processes as
the MSG specification. But we still have some choice for the semantics of the
implementation. For instance, we could allow for an implementation with more
(or less) behavior than the MSG. The most natural notion is that the imple-
mentation is equivalent to the MSG: An MSG G is implementable, if some CFM
A exists such that £(A) = £(G). Furthermore, we allow the implementation to
contain additional data in messages. That is, the message contents of the CFM
come from a finite set ' = C x D, where C is the set of message contents of the
MSG and D is some finite set. Then, the equality £(A) = £(G) is required up
to the additional data D. A further, even more relaxed notion of implementabil-
ity, would also allow for additional messages. Notice that this would make every
MSG implementable, since the additional messages can be used for synchroniz-
ing all processes after each node. We do not allow additional messages, since in
many applications they are neither desired nor possible (e.g., applications where
acknowledgments cannot be provided).

The first notion of implementation, which we denote as standard implemen-
tation, has been proposed in [2,3]. The standard implementation of the MSG
G = (V,R,v°, Vy, \) over the process set P does not add any data and it is fully
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determined by the MSG, being defined process by process: The automaton A4,
for process p generates the projection of £(G) on the events of process p.

We call an MSG standard-implementable if it is implementable w.r.t. the
standard version of implementability. Notice that this notion is actually too
weak, since it captures just a small subset of implementable specifications. The
simplest counter-example (see figure 4) is a set of two MSCs over the processes
p1, p2 where the first MSC M; has a message from p; to p2, followed by one from
p2 to p1. In the second MSC M- we have first a message from p» to p;, then one
from p; to p». These two MSCs are not standard-implementable since we can
combine the projection of M; on p; with the projection of M> on p, and we obtain
the MSC M3. This set is not implementable even with additional data. Changing
slightly this example we obtain one which is not standard-implementable, but
is implementable with additional data. For this, we just add at the beginning
of both My, M- a first unlabeled message from p; to po, see figure 5. Then
the non-implementability argument given previously still works. However, with
additional data we use the initial message for letting p; decide on the outcome
M, or M, and inform ps.

P P2 P P P2

P2
\ /
1 — MZ ~— MB ><

Fig. 4. The set {M1, M2} is not implementable (it does not contain the implied MSC
Ms).

M

Two striking weaknesses of the standard notion is that not even simple MSGs
are standard-implementable, as seen from the example above. Furthermore, for
the restricted class of regular MSGs defined in section 5, the question of standard-
implementability is undecidable. However, regular MSGs are implementable with
additional data, see section 5 for more details.

Nevertheless, the results of [2,3] show that standard implementability be-
comes decidable at least for regular MSGs if one looks for deadlock-free imple-
mentations, only (called safe realizability in [2,3]), albeit with high algorithmic
complexity. A CFM is called a deadlock-free implementation of an MSG G if
L(A) = L(G) and every configuration of A that has no successor, is such that
all processes have reached a final state and all channels are empty. Deadlock-
freeness is of course required in practice, since real-life protocols should not be
aborted in some unclean state. We will recall the various results on the imple-
mentability problem in sections 5 and 6.

11
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Fig. 5. CFM implementing the set {M;, M>} with additional data.
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5 Regular MSC Specifications

Regular MSGs have been proposed in the context of model-checking, as a sub-
class for which both variants of model-checking are decidable [6,27]. It is a syn-
tactic restriction that ensures that the set of all linearizations, i.e., the set Lin(G),
is regular. Regular MSGs provided to be a theoretically robust class, in terms
of logical and automata-theoretic characterizations. In particular, regular MSGs
can be implemented with additional data by CFM with universally-bounded
channels. However,the CFM implementation is not deadlock-free, in general.

A set X of finite MSCs is called regular if Lin(X) is a regular string language
over the alphabet 7 of event types [20]. Moreover, there is a syntactic condition
ensuring that an MSG G generates a regular set £(G) of MSCs. This condition
roughly means that communication in a loop must be acknowledged to all active
processes. Formally, we need to define the communication graph of an MSC M:
it is a directed graph over the set of communicating processes in M with an
edge from process p to process ¢ whenever M contains a message from p to q.
An MSG G is called a regular MSG (locally-synchronized in [27], bounded in
[6]) if any MSC labeling a loop of G has a strongly connected communication
graph. This condition is co-NP complete [27].

For an example, consider the MSG in figure 2. It is a regular MSG, since
every loop involves only A, C, and the communication graph of AC' is strongly
connected (the firewall is connected with both user and server by bidirectional
arcs).

Putting together the results from [6, 27, 20] we have the following relationship
between regular sets of MSCs and regular MSGs:

Theorem 2 1. For every reqular MSG G the set L(G) of generated MSCs is
regular [6, 27].

2. For every regular and finitely generated set X of MSCs there exists a regular
MSG G with X = L(G) [20].

The main interest in regular MSGs was to obtain a subclass of MSC specifi-
cations with a decidable model-checking problem:

Theorem 3 [6, 27] The negative model-checking problem L(G) N L(H) # 0
where G is a reqular MSG, is PSPACE-complete. The positive model-checking
problem L(G) C L(H) where H is a reqular MSG, is EXPSPACE-complete.

The theorem above shows that model-checking MSGs is rather expensive,
which is actually not very surprising when we deal with concurrent models. The
reason is MSGs are more compact than finite-state automata. The upper bounds
in the theorem above are based on the fact that if G is a regular MSG then we
can compute a finite automaton of ezponential size generating Lin(G).

Regular MSC languages also have nice characterizations in the logical and
communicating automata framework. The logic used in [21,24] is MSO with
atomic propositions £(e) =t € T, e < f and e € E that have the usual interpre-
tation, as type labeling, partial order of the MSC and membership in a second
order variable E.
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Theorem 4 [21, 22] Let X be a universally-bounded set of MSCs. The following
assertions are equivalent:

1. X can be implemented by a (deterministic) CFM with additional data.
2. There exists an MSO formula ¢ such that X is the set of bounded MSCs

satisfying ¢.

In the first part of the theorem above the implementation is not deadlock-
free, since the constructed CFM uses global final states for accepting X. On the
other hand, as we mentioned in section 5, the standard implementation is not
really helpful when applied to regular MSGs (the upper bound is due to [3], and
the lower bound to [23]):

Theorem 2. [3, 23] It is undecidable to know whether a reqular MSG is standard-
implementable. It is EXPSPACE-complete to know whether a reqular MSG is
standard-implementable without deadlocks.

Remark. The undecidability result in theorem 2 heavily depends on the fact
that channels are FIFO. Without FIFO, standard implementability for regular
MSGs becomes decidable [26]. O

6 Globally-Cooperative MSGs

As seen in section 5, model-checking for regular MSGs is decidable and of
tractable complexity (PSPACE for the basic variant). However, the situation
is far from being ideal. Notice first that some trivial protocols cannot be repre-
sented by regular MSGs. For instance, the protocol where process p; can send
any number of messages to process py. The reason is that regular MSGs have
universally bounded channels, which restricts severely their expressive power.
Second, for real life communication protocols one can usually find a (sufficiently
large) bound b so that any run of the protocol can be executed with channels
each bounded by b. Similarly to MSGs, we call such protocols ewistentially b-
bounded. Whereas an algorithm exists to check whether a CFM or a finite-state
machine is existentially b-bounded for a given b, its complexity depends severely
(exponentially) on b. Hence, in practice we cannot hope to be able to fix a suffi-
ciently large bound b that takes care of all executions. The last problem is that
we cannot obtain in general an automaton generating all linearizations of execu-
tions for models that are strictly more expressive than regular MSGs. Instead,
we can try to use representative linearizations rather than all linearizations, re-
quiring that the set of representative linearizations is b-bounded, with b as small
as possible.

Definition 1 An MSG G is called globally-cooperative (gc-MSG for short) if
every loop of G has a weakly connected communication graph.

Thus, an MSG G is a ge-MSG if any MSC M labeling a loop cannot be written
as M = M;||M> with M, M> non-empty MSCs with no common process. It is
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co-NP complete to know whether an MSG is a gc-MSG. For an example of a
gc-MSG, see figure 6, or suppose that we add a self-loop on node A in figure
2. The MSG thus obtained is not regular anymore, but it is a gc-MSG. Clearly,
every regular MSG is also a gc-MSG. Moreover, it can be noted that regular
MSGs correspond exactly to ge-MSGs with universally-bounded channels.

The representative linearizations that we use for model-checking are the lin-
earizations that execute atoms one by one. More precisely, for any M € L(G)
we consider only linearizations in Lin(M) of the form w = wy ---w,, where
M = A;--- A, is some decomposition of M into atoms A; and w; € Lin(A;) for
all i. Let us denote by Lin®(G) C Lin(G) the set of such linearizations of MSCs
of £(G). For an example, let G be the graph consisting of a single node with a
self-loop, labeled by a message from p; to ps. Let s = py!ps and r = po7py, then
Lin®(G) = (sr)*. Of course, Lin(G) is not regular, it corresponds to the Dyck
language over one pair of brackets.

af) bO
7 s RDY4

P1 Po P3 P1 Po P3

Fig. 6. Globally-cooperative MSG.

We can use representative linearizations for model-checking as follows. Let
G, H be two MSGs. Then it is easy to see that £(G) N L(H) = 0 if and only
if Lin*(G) NLin*(H) = ( (respectively, L(G) C L(H) if and only if Lin®(G) C
Lin®(H). Recall that for any MSG G, atoms of £(G) are finite and finitely many.
Hence the set of representative linearizations Lin®(G) is b-bounded, where b is
such that G is existentially b-bounded. For getting a regular set of representative
linearizations Lin®(G) we impose a theoretically well-known restriction, that of
loop-connectedness.

We can change slightly the graph of a gc-MSG G by replacing each node v
labeled by some non-empty MSC M by a path of new nodes vy, ...,v; where
v; is labeled by A; and M = A; --- Ay is some decomposition of M into atoms
A;. The new graph G' can be seen as an automaton with states labeled over
the alphabet of atoms At(G). The property of G being a gc-MSG translates
to G’ being loop-connected, which is a well-known property from the theory
of Mazurkiewicz traces. It means that every loop of G' is labeled by a sub-
alphabet of At = At(G) that is connected w.r.t. the symmetric dependence
D = (At x At) \ I, that is AD A" if A and A’ share at least one process. With
this restriction it is well-known that the closure under commutation I of the
regular set generated by G’ is regular, and an automaton generating the closure
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can be effectively computed [11,27]. From this automaton we obtain Lin®(G)
and an automaton generating it simply by replacing every atom A € At(G) by
some linearization of A. Since the size of the automaton generating Lin®(G) is
exponential in the size of G we obtain:

Theorem 5 [15] Given a gc-MSG G and an arbitrary MSG H, it is PSPACE-
complete to decide whether L(G)NL(H) = (). The positive model-checking prob-
lem L(G) C L(H) where H is a ge-MSG, is EXPSPACE-complete.

Notice that the complexity of model-checking gc-MSGs is not higher than for
regular MSGs. Moreover, the situation for gc-MSGS is better, since we do not
have to compute all linearizations, but a smaller subset that has the additional
property of being b-bounded for a small b, yielding an algorithm that is faster in
practice than the one given for regular MSGs. A regular MSG G is universally
B-bounded with a B that can be exponential in the size of G.

We turn now to the implementation problem. The situation here enforces
the idea that that universal channel bounds are not needed. For the safe variant
of the standard implementability problem, i.e., where the implementation is not
allowed any additional data but must be deadlock free, the complexity is the
same for regular MSGs and for ge-MSGs:

Theorem 6 [3, 23] Given a gc-MSG G, it is EXPSPACE-complete to decide
whether there exists a deadlock-free CFM A with L(G) = L(A).

Again, this result is not really practical, given the high complexity. Moreover,
in practice it might be the case that the standard implementation does not work
for some gc-MSG G, but that G is still implementable with a little more data.
For an example see figure 8 in section 7.

In the case where one allows data to be added to messages but deadlocks
are not allowed, there are gc-MSGs that cannot be implemented. For instance,
consider the gc-MSG G in figure 6 with two nodes with self-loops, and two edges
between them. Both nodes are labeled by MSCs with two messages, one from p;
to py and one from ps to py. The first node has its messages carrying the data a,
while the second node carries the data b. Both nodes are initial and final. In any
CFM implementation processes p; and ps should decide to send either both a
or both b, but this is impossible with no additional synchronization (messages).
Hence, this protocol cannot be implemented without deadlocks. It remains open
whether every gc-MSG can be implemented with additional data and allowing
deadlocks. The conjecture in [15] is that this is always possible.

7 Choice and Implementability

Deadlock-free implementability being a key feature required for communicating
protocols, tractable algorithms that help implementing an MSG with additional
data are needed. One reasonable way of doing this is first to exhibit a non-trivial
subclass of MSGs that is always implementable with additional data and no
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deadlocks. Then we want to test whether an MSG can be represented inside our
subclass, preserving the MSC language.

As mentioned before, the reason for non-implementability of an MSG is the
global control, whereas the choice in a CFM must be done locally. The idea is
then to define MSGs that have only local choices, that is any node is controlled
by a single process [7,19].

Definition 2 An MSG G = (V,R,v°,V}, ) is called local-choice (1c-MSG for
short) if each MSC labeling any node v of G is a triangle, that is it has a single
minimal event min(v) in the partial order <. Moreover, min(w) belongs to the
process set of node v, whenever (v,w) € R.

Figure 7 shows an lc-MSG G. Note that G is equivalent to the MSG in figure
2, which is not an lc-MSG. Checking that an MSG is local-choice can be done
in polynomial time.

U F S

[ [
connect

U F S
connect
Nl test ‘
info switch D
off
fail ack )

~ N
AC \D U F S

Fig. 7. Local-choice MSG.

It is not very hard to translate a 1le-MSG into a deadlock-free CFM, using
linear additional data. The idea is to use a leader process and to let the current
leader choose the current_node to be executed and the next_leader. The node is
chosen among the nodes that follow the node being executed, and that begin
with a minimal event belonging to the leader. The next_leader should be chosen
among the minimal processes of nodes that follow the chosen node.

In the procedure polling_state below process p waits for a message informing
it about the next node to execute and the next leader:
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void polling_state()
{ while (true) {
if p receives a message (a,v,q) then
{ current_node=v; next_leader=q; return;} } }

Initially, the current node is initialized by letting next_leader = pr(min((v?)).
Before executing its event from current_node, process p goes to a polling state,
unless it is the leader process. Here is the algorithm for process p:

initialization();
while (true)
{ if (p # next_leader) polling_state();
else {current node=guess(current node);
next_leader=guessp(current node) ;}
execute_path(current node); }

The algorithm execute_path(current_node) above makes that process p exe-
cutes its events from current_node, if any. In this case each message sent by p
contains the additional data (current_node, next_leader).

Theorem 7 [15] Every le-MSG G is implementable by a deadlock-free CFM
with additional data which is of size linear in |G|.

Note that in a triangle (see definition 2), every process but the minimal

process begins by a receive. A process that is chosen to be the leader is always
informed, since it occurs in the node where it is chosen.

P4 Pg P3 P4

11 ™ P{ Po P3 Py

2

P1 P2 P3 P4 /
\

3

Fig. 8. Lc-MSG not implementable without additional data.

It is important to see that if additional data is forbidden, then there are
lc-MSG that are not implementable, even when allowing deadlocks. Consider
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for example an lc-MSG with three nodes 1,2, 3, see figure 8. The initial node
consists of a message from process p; to p». Then either node 2 is executed,
with process p; sending to process ps, or node 3 is executed with process p,
sending to process py. Since processes p; and p, do not know which one will
be next (no additional data, same past), both can begin, thus both nodes 2
and 3 can start. The execution must stop, and there is no distributed way to
know whether the protocol went fine or not. Hence without additional data this
protocol is not implementable at all. [19] proposes a sufficient condition for the
standard-implementability of lc-MSGs.

While local-choice is defined syntactically, we show that it corresponds to a
semantic property. Moreover, one can test whether an MSG is transformable into
a le-MSG. Triangles are of huge importance here. We first define a generic lc-
MSG H,, over triangles of size bounded by n. The MSG H,, has for each triangle
T of size at most n, one node vy labeled by T. There is an edge vy — vy if
pr(min(T")) € pr(T").

Proposition 1 [1}] An MSG G is equivalent to some lc-MSG iff there ezists
some n such that L(G) C L(H,). If this is the case, then we can obtain a le-MSG
equivalent to G, of size exponential in |G| and n.

If the test in proposition 1 on G answers yes, then an equivalent lc-MSG can
be constructed by synchronizing G and H,,.

While it is PSPACE to test whether £(G) C L(H,,) by theorem 9, the value
of n is not bounded so far. For testing, we need a bound. We use for this the
following three structural properties of lc-MSG G.

1. Every MSC M in £(G) is a triangle.

2. There is a bound b s.t. for every MSC in £(G) containing a factor (U||V') with
U,V MSCs (that is, U,V share no process), either |[U| < b or |V| < b. This
implies that for an MSG to be equivalent to some lc-MSG, it is necessary to
be a gc-MSG.

3. There is a bound b s.t. for every MSC in £(G) of the form URV with R an
MSC of size at least b, there exists triangle T" that is a suffix of RV, such
that min(7") belongs to R.

Obviously, an MSG G that is equivalent to some 1lc-MSG satisfies these three
properties. The important point is that the converse holds, too. It allows us to
state:

Theorem 8 [14] Testing whether an MSG G is equivalent to some lc-MSG is
in PSPACE. Moreover, if the answer is positive, then an equivalent lc-MSG of
doubly exponential size can be constructed.

Proof. We can check whether G is a gc-MSG in co-NP [15]. Checking the
first property above is in polynomial time. Checking the second property for

gc-MSG is in co-NP. If true, the test provides a bound b that is polynomial in
|Gl
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Checking the third property for gc-MSGs is in PSPACE. If true, the test
provides a bound b that is exponential in |G].

We can then compute an equivalent le-MSG building the product Hj X
Lin®(G@). As b is exponential in |G| and H is exponential in b, the result is
at most doubly exponential in |G|. |

One important question is whether local-choice is expressive enough, else the
test to know whether an MSG is equivalent to some lc-MSG would almost cer-
tainly lead to a negative answer. Comparing lc-MSGs to regular MSGs, le-MSGs
tend to be more useful in practice. In particular, the restriction of universally-
bounded channels of regular MSGs is not required for lc-MSGs. Moreover, lc-
MSGs can be implemented without deadlock, while this is not the case for regular
MSGs. A drawback of 1c-MSGs is the fact that they exclude long parallel MSCs,
while this is possible with regular MSGs (albeit not in the same loop of the
graph). Actually, it would not be difficult to cut a protocol into parallel ones,
and implement each one using le-MSGs.

Since 1c-MSGs form a subclass of gc-MSGs, one can hope that they are
easier to model-check than gc-MSGs. In order to improve the model-checking
algorithm, triangles can be used as generators instead of atoms. For a given lc-
MSG each node v labeled by a triangle T' can be sliced into two nodes labeled
by triangles R, S, as long as 7' = RS satisfies pr(min(w)) € S for every v — w.
Notice that by the definition of a triangle, we have that pr(min(S)) € R. Let
Ty---T,,T{ --- T}, be sequences of triangles labeling two paths p, p’ in lc-MSGs
G, H sliced in this way. Then there exist k, X s.t. T; = T} for all i < k, and
T = XTyy1--- T, Tx = XTj -~ T,,. Hence, Ty ---T), is smaller than the
largest node of G. The same applies for T3, ---T},. This idea allows to do
model-checking very similarly to word automata.

Theorem 9 [15] Given two le-MSGs G, H, the negative model-checking ques-
tion L(G) N L(H) =0 can be answered in quadratic time. The positive model-
checking question L(G) C L(H) with H an le-MSG and G an arbitrary MSG, is
PSPACE-complete.

8 Conclusions

The MSC/MSG standard is a popular notation for concurrent system specifi-
cation, in particular for communication protocols. Stemming from its successful
use by software engineers, new techniques and tools have been developed for
MSC/MSG analysis. The finite states model was designed by researchers. Al-
though this model has many mathematical properties, it is not always easy to
transfer its related technology to the software developers. The MSC notation, on
the other hand, has gained first popularity with the software developers. Conse-
quently, this notation does not fit directly the main classes of formal languages.
This calls for studying the expressiveness of the notation and developing new
validation and implementation methods.
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It is evident from the collection of results surveyed here that one of the main
challenges in studying MSCs/MSGs is how to achieve the appropriate expres-
siveness, while maintaining decidability with respect to automatic verification.
This calls for developing various extensions and restrictions on the allowed class
of MSCs/MSGs.

The MSC/MSG standard provides an alternative for the communicating au-
tomata model. In particular, the main compositional operator for the former
is sequential composition, while the main way to connect communicating au-
tomata is using parallel composition. Although sequential composition is often
considered simpler than the parallel one, it is evident that this is not the case
here. The reason is that the sequential composition is asynchronous, relating par-
tial orders. In particular, the parallel composition of two MSCs (i.e., that share
no process) is expressed when we compose them sequentially (as is the case in
classical Mazurkiewicz trace theory [11]). This is also manifested by the high
complexity results on MSG decision procedures. Note however that subclasses
as 1lc-MSGs have the same complexity as finite-state machines.

The theory of MSCs is related to models of true concurrency, including par-
tial orders and Mazurkiewicz traces. While these theories flourished in the recent
decades, their practical use was limited, due to the high complexity they gener-
ally possess, when compared to the finite-state machine model. The MSC model
provides an important use of these true concurrency models. The intuitive na-
ture of these models is manifested by the use of the MSC as a popular visual
notation for concurrency.
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