
7 Algorithms for Parity Games

Hartmut Klauck�

School of Mathematics
Institute for Advanced Study, Princeton

7.1 Introduction

It is the aim of this chapter to review some of the algorithmic approaches to the
problem of computing winning strategies (resp. of deciding if a player has a win-
ning strategy from a given vertex) in parity games with finite arenas and other
two-player games. Parity games are equivalent via linear time reductions to the
problem of modal µ-calculus model checking (see Chapters 10 and 9), and this
model checking problem plays a major role in computer-aided verification. Fur-
thermore we will see that the problem is not too hard in a complexity-theoretic
sense, while no efficient algorithm for it is known so far. Also parity games are
the simplest of a whole chain of two-player games for which no efficient solu-
tions are known, further underlining the importance of looking for an efficient
algorithm solving this particular problem.

We will explain why the problem of solving parity games lies in UP∩ co-UP,
explore its relations to some other games, and describe the theoretically most
efficient algorithm for the problem known so far. Furthermore we describe work
on more practically oriented algorithms following the paradigm of strategy im-
provement, for which a theoretical analysis stays elusive so far.

Recall that in a parity game we are given a (finite) graph with vertices labeled
by natural numbers. The vertex set is partitioned into vertices in which Player 0
moves and vertices in which Player 1 moves. In an initialized game we are also
given a starting vertex. In a play of the game a token is placed on the starting
vertex and is then moved over the graph by Player 0 and Player 1, each making
their move if the token is on one of their vertices. For simplicity we assume
that the graph is bipartite, so that each move from a Player 1 vertex leads to a
Player 0 vertex and vice versa. Each player follows some strategy. If the highest
priority of a vertex occurring infinitely often in the play is odd, then Player 1
wins, otherwise Player 0 wins. See Chapter 2 for more details.

Exercise 7.1. Show that one can convert any parity game on a nonbipartite game
arena into an equivalent parity game on a bipartite arena in linear time.

It is an important (and deep) result that the players may restrict themselves
to memoryless strategies (i.e., define their strategy by picking once and for all a
neighbor for each of their vertices thus not considering the path on which they
arrive there), see Theorem 6.6 in the previous chapter. This also implies that
for each vertex one of the players has a winning strategy, so there are no draws!
� Supported by NSF Grant CCR 9987854.

E. Grädel et al. (Eds.): Automata, Logics, and Infinite Games, LNCS 2500, pp. 107-129, 2002.
 Springer-Verlag Berlin Heidelberg 2002

108 Hartmut Klauck

If the players use memoryless strategies, a play of the game leads after a finite
number of steps to a cycle in the underlying graph.

Rabin [148] first showed a complementation lemma for parity automata work-
ing on infinite trees (while providing a decidability result for a certain logic)
implicitly also proving the determinacy result for parity games. The applica-
tion of games to the complementation problem is due to Büchi [21]. Gurevich
and Harrington [77] gave an abbreviated proof of Rabin’s result, and Emerson
and Jutla [55] another simplified proof by showing equivalence to the modal
µ-calculus model checking problem (in which complementation is trivial). Their
result also implies that in fact a player who has a strategy so that he wins in an
initialized game also has a memoryless winning strategy. See also [126, 203] for
further work on these problems.

The first question arising is, of course, whether one can decide the winner
in a parity game efficiently, i.e., whether one can find the player who wins if
the play starts at a given vertex, given that this player plays optimally. We
are also interested in finding winning strategies. The aforementioned result that
the players can restrict themselves to memoryless strategies immediately implies
that the following trivial approach is successful (using exponential time): for a
given vertex go through all strategies of Player 1. For each such strategy go
through all strategies of Player 0 and check who wins. If there is a strategy of
Player 1 that wins against all strategies of Player 0 declare Player 1 the winner,
otherwise Player 0 wins. It is the main purpose of this chapter to review some
more efficient algorithms solving this problem.

Why are we interested in this problem? There are at least two reasons. One
is that the problem is deeply related to several important topics. First of all
the problem is equivalent to the problem of modal µ-calculus model checking
[55, 56], which in turn is of large importance for computer-aided verification.
So better algorithms for the problem lead to better model checkers, making
more expressive types of logical statements about finite systems checkable by
efficient algorithms. The modal µ-calculus was defined first by Kozen in [100],
see Chapter 10. Parity games are also at the heart of an interconnection between
languages defined by automata operating on infinite trees and monadic second
order logic [183], see Chapter 12.

Another important reason to study the problem is its current complexity-
theoretic classification. It is known [92] to lie in UP∩ co-UP (and thus “not too
far above P”, see [142]), but not known to be in P so far, and it is one of the
few natural problems so. Trying to find a polynomial algorithm for the problem
is a natural pursuit.

In this chapter we describe the best algorithm for the problem known so
far (from [93]), show that the problem is in UP ∩ co-UP (following [92]), and
discuss other promising approaches to get better algorithms for the problem,
mainly the strategy improvement approach first defined in [85], and employed
in a completely combinatorial algorithm given in [191].

Further we discuss the connection of the game to other games of infinite du-
ration played on graphs, and see that it is the least difficult to solve of a series of
such games all lying in NP∩co-NP. So it is the most natural candidate to attack!

7 Algorithms for Parity Games 109

This chapter is structured as follows: in the next section we introduce several
games on graphs considered in the chapter and explore some of their properties.
In Section 7.3 we deduce a first simple algorithm for the problem based on [204],
which is already quite good in both time and space complexity. In Section 7.4
we show why the problem is in UP ∩ co-UP. In Section 7.5 we describe the
efficient algorithm due to Jurdziński [93], which yields approximately a quadrat-
ically improved runtime compared to the simple algorithm (while maintaining
the space complexity). Section 7.6 discusses promising and more practical ap-
proaches based on strategy improvement. Section 7.7 collects a few conclusions.

Note that throughout the chapter logarithms are always base two, and that
space complexity is measured in the logarithmic cost measure (since we will be
dealing with problems involving weights). Regarding time complexity we will
stick to the measure in which elementary arithmetic operations cost unit time,
however. Also note that we will consider max-parity games throughout the chap-
ter, except in Section 7.5, where we will consider min-parity games to save some
notation.

7.2 Some More Infinite Games

To describe our algorithms for the solution of parity games and the containment
of this problem in UP ∩ co-UP, we will take a detour via some other two-player
games, which will be introduced now. Note that most of these games are no
games of chance, so no randomness is used in playing these games, just like
e.g. in the game of chess. Picking a good strategy in such a game may only be
hard because it takes a lot of time to do so! Also all these are games of full
information, in which all relevant data are accessible to both players as opposed
to e.g. most card games.

For definitions of infinite games, strategies, winning regions and related no-
tions we refer to Chapter 2.

The first kind of games we consider are parity games as defined in Chapter 2.
Recall the memoryless determinacy theorem for parity games, Theorem 6.6 in
Chapter 6.

Another natural kind of games are mean payoff games [49].

Definition 7.1. A mean payoff game is a quadruple (A, ν, d, w), where A
is an arena without dead ends, ν and d are natural numbers, and w : E →
{−d, . . . , d} assigns an integer weight to each edge.

Player 0 wins a play v0v1 · · · , if

lim inf
t→∞

1
t

t∑
i=1

w(vi−1, vi) ≥ ν.

We also refer to the above limit as the value that Player 0 wins from Player 1
after the play.

Exercise 7.2. Extend the above definition so that dead ends are allowed. Do this
in a way so that both games are equivalent.

110 Hartmut Klauck

[147] and [92] describe polynomial time reductions from parity games to mean
payoff games. We will show how to perform such a reduction in the next section.
So parity games are not harder to solve than mean payoff games. Again it is
known that memoryless strategies suffice for the players of mean payoff games.
Surprisingly the proof is much easier than in the case of parity games.

Theorem 7.2 ([49]). Let (A, ν, d, w) be a mean payoff game. Then Player 0 has
a winning strategy from a set of vertices iff Player 0 has a memoryless winning
strategy from that set.

More precisely, for each vertex v0 there is a number ν(v0), called the value
of v0, such that

(a) Player 0 has a memoryless strategy so that for every play v0v1 · · · in which
he follows this strategy

lim inf
t→∞

1
t

t∑
i=1

w(vi−1, vi) ≥ ν(v0).

(b) Player 1 has a memoryless strategy so that for every v0v1 · · · in which she
follows this strategy

lim sup
t→∞

1
t

t∑
i=1

w(vi−1, vi) ≤ ν(v0).

The above theorem allows us to speak of an optimal strategy, which means
a strategy that ensures for all plays (starting at some vertex v) that the corre-
sponding player wins at least the value ν(v).

To obtain the above result Ehrenfeucht and Mycielski also introduce a finite
variant of mean payoff games in which the play stops as soon as a loop is closed
and then the payoff of that loop is analyzed. Both games turn out to be basically
equivalent [49].

In the next section we will show how to solve mean payoff games in pseu-
dopolynomial time, i.e., in time polynomial in the size of the graph and the unary
encoded weights. Together with the reduction from parity games this yields an
algorithm for parity games which is already quite good.

The next games we consider are discounted payoff games [204]. Here the
importance of the weights decreases by a constant factor each time step in a
play. So intuitively only a finite beginning of the play is important. Basically
this can be viewed as yet another kind of averaging. The game will be important
for technical reasons.

Definition 7.3. A discounted payoff game is a tuple (A, ν, d, w, λ) where
A is an arena without dead ends, ν and d are natural numbers, w : E →
{−d, . . . , d} assigns an integer weight to each edge, and 0 < λ < 1 is the discount.

Player 0 wins a play v0v1 · · · , if

(1− λ)
∞∑

i=0

λiw(vi, vi+1) ≥ ν.

7 Algorithms for Parity Games 111

We also refer to the above left hand side as the value that Player 0 wins from
Player 1 after the play.

The correction term (1 − λ) arises to make sure that the value of a game
using only edges of weight a is also a.

Zwick and Paterson prove that for each vertex in a discounted payoff game
one of the players has a memoryless winning strategy. We will see the reason
for this in Section 7.4. Furthermore we will see in that section that mean payoff
games can be reduced in polynomial time to discounted payoff games. Note
however that the proofs for the facts that memoryless winning strategies exist
become simpler with each game defined so far (and that such a result for a more
difficult game does not immediately imply the corresponding result for the easier
game).

The most general games we mention are the simple stochastic games
defined by Condon [40]. In these finite games the vertex set is partitioned into
three sets of vertices: vertices in which Player 0 moves, in which Player 1 moves,
and random vertices, in which a random successor is chosen, plus two vertices
in which 1 is paid by Player 0 to Player 1 resp. 0 is paid by Player 0 to Player 1
(and the game ends). The expected amount paid to Player 1 is the result of
the game. Zwick and Paterson [204] show that discounted payoff games can
be reduced to simple stochastic games. So these are the most difficult to solve
of the games considered here. Moreover they are the only games of chance we
consider! Still it is possible to decide in NP∩co-NP whether the payoff of Player 1
exceeds a certain threshold. The reduction from parity games to simple stochastic
games that results increases the game arena only by a constant factor. Using an
algorithm by Ludwig [117], which solves simple stochastic games with fan-out 2,
and the reductions we get the following corollary.

Corollary 7.4. There is a randomized algorithm which computes the winning
regions of a given parity game with m edges in expected time 2O(

√
m).

This is the best algorithm we know if the number of different priorities as-
signed to vertices is larger than

√
m. The algorithm is notably subexponential,

if the graph is sparse. The time bound is understood as the expected value of
the running time (over coin tosses of the algorithm) in the worst case (over all
inputs).

7.3 A Simple Algorithm

In this section we want to describe a relatively simple algorithm for solving parity
games, or rather mean payoff games. The approach can also be adapted to solve
discounted payoff games.

Let us consider a parity game (A, Ω) where Ω assigns d different priorities to
the vertices. Our whole objective is to decrease the dependence of the runtime on
d, see Section 6.4 for the first algorithm in this direction presented here. Actually,
for very large d our algorithms will not be better than the trivial exponential

112 Hartmut Klauck

time algorithm testing all strategies. Why do we consider this parameter as
important? In applications to model checking this parameter gives us the depth
of nested fixed points used in expressions we want to check. The weaker the
dependence on d is, the more complicated formulae can be checked, e.g. for
all constant d our algorithm is polynomial time, which is not so for the trivial
algorithm. To see the effect of this compare with Theorem 10.19. Another concern
will be space complexity, which we prefer small as well.

In a first step we give the reduction to mean payoff games as in [92]. After-
wards we describe the algorithm of Zwick and Paterson [204] for these games
and analyze its performance for the original parity games. The algorithm will
be finding fixed points of a certain natural function, a property which also holds
(for a less obvious function) for the more complicated algorithm in section 7.5.

Lemma 7.5. A parity game on n vertices using d different priorities can be
reduced in polynomial time to a mean payoff game on n vertices using weights
from the set {−nd−1, . . . , nd−1}, and using the same game arena.

Moreover winning strategies of the parity game are winning strategies of the
mean payoff game and vice versa.

Proof. Suppose our parity game is (A, Ω). W.l.o.g. the priorities are {0, . . . , d−
1}. The mean payoff game uses the same arena. An edge originating at a vertex v
with priority i = Ω(v) receives the weight w(v, u) = (−1)ini. Let ν = 0. Clearly
all weights lie in the range {−nd−1, . . . , nd−1}. This defines our mean payoff
game (A, 0, nd, w).

We claim that the value of the mean payoff game exceeds 0 for a pair of
memoryless strategies iff the same strategies lead to a play of the game in which
the highest priority vertex occurring infinitely often has an even priority.

W.l.o.g. we may assume that the players use memoryless strategies when
playing the mean payoff game, see Theorem 7.2. Then a play corresponds to a
path ending in a cycle. In the limit defining the value of the play the weights
on the initial segment before the cycle contribute zero. So the value of the game
is positive iff the sum of the weights on the cycle is positive. The weights are
from the set {−nd−1, nd−2,−nd−3, . . . ,−n, 1}, assuming for concreteness that
d is even. Assume the weight wmax with the largest absolute value appearing
on the cycle is positive. Then the sum of the weights on the cycle is at least
wmax − (n−1)wmax/n > 0, since there are at most n−1 edges with weights not
equal to wmax in the cycle. The maximal weight is on an edge originating from
the vertex of highest priority, which must be even. Symmetrically if the weight
of largest absolute value is negative, the highest priority vertex must be odd.

So the mean payoff game and the parity game behave in the same way for
each pair of memoryless strategies, thus they are equivalent, and have the same
winning regions, and the same strategies lead to a win. ��

Now we show how to solve mean payoff games efficiently if the weights are
small.

7 Algorithms for Parity Games 113

Theorem 7.6. Given a mean payoff game (A, ν, d, w) where the arena has n
vertices and m edges, the winning region for Player 0 can be computed in time
O(n3md) and space O(n · (log d+ logn)).

Proof. It is our goal to find the values of the vertices efficiently. This immediately
gives us the winning region. Let νk(v) denote the following value: the players play
the game for k steps starting from vertex v (so they construct a path of length
k), then νk(v) denotes the sum of the edge weights traversed if both players play
optimally.

We want to compute the values ν(v) as the limit over k of the νk(v). First
let us characterize the latter value.

For every v ∈ V :

νk(v) =
{
max(v,u)∈E{w(v, u) + νk−1(u)} if v ∈ V0,
min(v,u)∈E{w(v, u) + νk−1(u)} if v ∈ V1.

(7.1)

Clearly ν0(v) = 0 for all v ∈ V . Using this recursion we can easily compute
νk(v) for all v ∈ V in time O(km). Recall that we allow arithmetic operations
in unit time. Now we investigate how quickly νk(v)/k approaches ν(v).

Lemma 7.7. For all v ∈ V :

νk(v)/k − 2nd/k ≤ ν(v) ≤ νk(v)/k + 2nd/k.

First let us conclude the theorem from the above lemma. We compute all the
values νk(v) for k = 4n3d. This takes time O(n3md). All we have to store are
the νi(v) for the current i and i− 1. These are numbers of O(log(kd)) bits each,
so we need space O(n(log d+ logn)).

Now we estimate ν(v) by ν′(v) = νk(v)/k. Clearly

ν′(v) − 1
2n(n− 1)

< ν′(v) − 2nd
k

≤ ν(v) ≤ ν′(v) + 2nd
k
< ν′(v) +

1
2n(n− 1)

.

Now ν(v) can be expressed as the sum of weights on a cycle divided by the
length of the cycle due to Theorem 7.2, and is thus a rational with denominator
at most n. The minimal distance between two such rationals is at least 1

n(n−1) ,
so there is exactly one rational number of this type in our interval. It is also easy
to find this number. We can go through all denominators l from 1 to n, estimate
ν(v) as �ν′(v) · l�/l and �ν′(v) · l�/l, if one of these numbers is in the interval,
we have found the solution. This takes about O(n) steps.

Knowing the vector of values of the game it is easy to compute winning
strategies by fixing memoryless strategies that satisfy equation 7.1.

Proof of Lemma 7.7. It is proved in [49] that the values of vertices in a mean
payoff game and in its following finite variant are equal: the game is played as
the infinite mean payoff game, but when the play forms a cycle the play ends
and the mean value of the edges on that cycle is paid to Player 0. Also the
optimal such value can be obtained using the same memoryless strategies as in
the infinite case.

114 Hartmut Klauck

Let f0 be a memoryless strategy of Player 0 that achieves the maximal values
for all vertices (against optimal strategies of Player 1) in the finite version of
the game. Let Player 1 play according to some (not necessarily memoryless)
strategy. We show that the value of a k step play starting in v is at least (k −
(n− 1)) · ν(v) − (n− 1)d. Consider any play of length k. The edges of the play
are placed consecutively on a stack. Whenever a cycle is formed, the cycle is
removed from the stack. Since the edges lying on the stack directly before the
removal of the cycle correspond to a play which has just formed its first cycle, the
mean value of the edges on the cycle is at least ν(v), because of the optimality
of f0 against all strategies of Player 1 in the finite version of the game. This
process continues, until the play is over and the stack contains no more cycles.
In this case there are at most n − 1 edges on the stack. The weight of each
such edge is at least −d. Thus the value of the k step play is always at least
(k− (n− 1)) · ν(v)− (n− 1)d > k · ν(v)− 2nd. So we know there is a memoryless
strategy for Player 0, so that he wins at least k · ν(v) − 2nd in the k step play,
no matter what Player 1 does. The other inequality is proved similarly. ��

Note that the above proof uses the memoryless determinacy theorem for
mean payoff games [49].

Exercise 7.3. (1) Prove that mean payoff games and their finite variants are
equal in the above sense. Hint: Use the above idea with the stack.

(2) Use 1. to show that mean payoff games enjoy memoryless determinacy.

Corollary 7.8. Given a parity game (A, Ω) where d different priorities are as-
signed to vertices, the winning region and strategy of Player 0 can be computed
in time O(nd+2m) and space O(d · n logn).

So there is a rather efficient solution to the problem if d is small. In section
5 we will see how to further reduce the dependence on d.

7.4 The Problem Is in UP ∩ co-UP

In this section we consider the problem from a complexity-theoretic point of
view. First observe that the problem of deciding whether a given vertex belongs
to the winning region of Player 0 in a given parity game is in NP: simply guess a
memoryless strategy for Player 0. Then remove all edges which are not consistent
with the strategy. Then one has to determine whether Player 1 can win if Player 0
uses his strategy, which comes down to testing whether there is no path from
the designated vertex to a cycle whose highest priority is odd. This is decidable
in deterministic polynomial time.

Exercise 7.4. Show that the following problem can be decided in polynomial
time: input is a game arena in which Player 0’s strategy is fixed (all vertices of
Player 0 have outdegree 1) plus a vertex in the arena. Is there a path from the
vertex to a cycle in which the highest priority is odd?

7 Algorithms for Parity Games 115

Furthermore since each vertex is either in Player 0’s or in Player 1’s winning
region, the same argument gives an NP algorithm for deciding Player 1’s winning
region, which is a co-NP algorithm for deciding Player 0’s winning region. Thus
parity games are solvable in NP∩co-NP. This strongly indicates that the problem
is not NP-complete, since otherwise NP would be closed under complement and
the polynomial hierarchy would collapse (see e.g. [142]).

Now we review a result by Jurdziński [92] saying that the complexity of
the problem is potentially even lower. First we define (for completeness) the
complexity class UP (see [142]).

Definition 7.9. A problem is in the class UP, if there is a polynomial time non-
deterministic Turing machine, such that for each input that is accepted exactly
one computation accepts.

The class UP is believed to be a rather weak subclass of NP.
Our plan to put parity games into UP is as follows: we again use the reduction

to mean payoff games. Then we show how to reduce these to discounted payoff
games. There is an algorithm due to Zwick and Paterson for solving these games
in a very similar fashion to the one described in the previous section. This gives
us a set of equations whose unique solution is the vector of values of the game.
Furthermore using simple facts from linear algebra we prove that these solutions
can be specified with very few bits. Thus we get our unique and short witnesses.
Again the argument for co-UP is symmetric.

First we state the following observation from [204], which says that a mean
payoff game yields always a discounted payoff game of almost the same value, if
the discount factor is chosen large enough. The proof is similar to the proof of
Lemma 7.7.

Lemma 7.10. Let (A, ν, d, w) be a mean payoff game with an arena on n ver-
tices, played beginning in vertex v. Then rounding the value of the discounted
payoff game (A, ν, d, w, λ) with λ ≥ 1 − 1/(4n3/d) to the nearest rational with
denominator smaller than n yields the value of the mean payoff game.

The following characterization of the values of vertices in a discounted payoff
game will be useful [204].

Lemma 7.11. The value vector ν̄ = (ν(v1), . . . , ν(vn)) containing the values of
vertices in a discounted payoff game equals the unique solution of the following
system of n equations

xv =
{
max(v,u)∈E{(1− λ) · w(v, u) + λxu} if v ∈ V0,
min(v,u)∈E{(1− λ) · w(v, u) + λxu} if v ∈ V1.

(7.2)

Proof. Let F be a function that maps a vector x̄ to the vector ȳ such that

yv =
{
max(v,u)∈E{(1− λ) · w(v, u) + λxu} if v ∈ V0,
min(v,u)∈E{(1− λ) · w(v, u) + λxu} if v ∈ V1.

116 Hartmut Klauck

Then we are interested in vectors x̄ with x̄ = F (x̄), the fixed points of F . Let
||ȳ||∞ denote the maximum norm, then

∀ȳ, z̄ : ||F (ȳ)− F (z̄)||∞ ≤ λ||ȳ − z̄||∞.

Since 0 < λ < 1 we have that F is a contracting function (with respect to the
maximum norm). Thus the limit x̄ = limn→∞ F

n(0) exists and is the unique
solution to x̄ = F (x̄).

Now Player 0 can use the following strategy, provided he knows the vector
x̄ = F (x̄): at vertex v choose the neighboring vertex u that maximizes (1 −
λ)w(v, u) + λxu. Then Player 0 wins at least xv in a play starting at v. On the
other hand Player 1 may fix a strategy analogously so that her loss is also at
most xv. Thus the solution of F (x̄) = x̄ is the vector of values of the game. ��

Obviously this lemma leads to a UP algorithm for the solution of discounted
payoff games, if the vector of values can be described by short numbers. Then we
can just guess these numbers and verify that the equations are satisfied. What is
a short number? The number must be representable using a polynomial number
of bits in the size of the game. The size of the game is the length of a description
of the game, including edge weights and λ.

But first let us note that the strategies obtained from the system of equations
are indeed memoryless. The proof of Lemma 7.11 does not presuppose such a
memoryless determinacy result.

Corollary 7.12. Let (A, ν, d, w, λ) be a discounted payoff game. Then Player 0
[Player 1] has a winning strategy from a set of vertices iff Player 0 [Player 1]
has a memoryless winning strategy from that set.

Lemma 7.13. The solution of the equations 7.2 can be written with polynomi-
ally many bits.

Proof. Let N be the size of the binary representation of the discounted payoff
game. Let ν̄ be the unique solution of the equations. Then this vector can be
written

ν̄ = (1− λ) · w̄ + λ ·Q · ν̄,

where w̄ is a suitable vector containing weights w(v, u), and Q is a 0,1-matrix
containing only a single one per row. Note that in order to write down this
system of equations one has to know the winning strategy.

Assume that λ = a/b is a rational included in the game representation, with
integers a, b satisfying log a, log b < N . Let A = b ·I−a ·Q for the identity matrix
I, then A is an integer matrix with at most two nonzero integer entries per row.

The above equation can then be rewritten

A · ν̄ = (b − a) · w̄.

Due to Cramer’s rule the solution of this system can be written as the vector
containing detAv/ detA on position v where Av is obtained from A by replacing
column v with (a− b) · w̄.

7 Algorithms for Parity Games 117

The entries of A and Av are bounded in absolute value by 2N . This implies
that the determinants of the matrices A,Av are at most 2O(N ·|V |). But then the
solution of the system of equation can be written by using a polynomial number
of bits in the length N . ��

So we get the following.

Corollary 7.14. Deciding whether a vertex is in the winning region of Player 0
is possible in UP ∩ co-UP for parity games, mean payoff games, and discounted
payoff games.

Exercise 7.5. Formally describe how a nondeterministic Turing machine can
solve the decision problem associated to parity games unambiguously in polyno-
mial time.

Exercise 7.6. Devise an algorithm for discounted payoff games similar to the
algorithm described in Theorem 7.6.

7.5 A Better Algorithm

Now we describe the best algorithm for the solution of parity games known so
far, again due to Jurdziński [93]. The time complexity of the algorithm is O(d ·
m · n

	d/2

	d/2
) for min-parity games with n vertices, m edges, and d ≥ 2 different

priorities. An algorithm with comparable time complexity has been given by
Seidl in [161]. But as opposed to previous algorithms Jurdziński’s algorithm uses
only space polynomially depending on d, namelyO(dn log n), when achieving this
time bound (note that we use the logarithmic measure for space complexity).

The algorithm is fairly simple to describe and analyze after several technical
concepts have been explained.

First note that we will apply comparisons in the following to tuples of natural
numbers, referring to their lexicographical ordering. Furthermore we will use
symbols like <i, referring to the lexicographical ordering when restricted to the
first i components of a tuple (ignoring the other components). So e.g. (2, 4, 3) <
(2, 4, 5), but (2, 4, 3) =2 (2, 4, 5). Denote [i] = {0, . . . , i− 1}.

For a technical reason in this section Player 0 wins, if the lowest priority
occurring infinitely often is even, i.e., we are considering min-parity games. The
max-parity game can obviously be reduced to this variant and vice versa. Also
we exclude dead ends from the game graph, see Exercise 2.8.

Exercise 7.7. How can we reduce min-parity to max-parity games?

Fix a memoryless strategy of one player. This can be regarded as throwing
out all edges which are not consistent with this strategy. The remaining game
graph will be called a solitaire game, since the game is now played by one
player only. Obviously it suffices for this player to find a path leading to a cycle
in which the lowest vertex priority makes him win the game! So call a cycle
even, if the lowest priority of a vertex in the cycle is even, and otherwise odd.

118 Hartmut Klauck

Furthermore call a memoryless strategy f0 of Player 0 closed on a set of
vertices W , if every play starting in W and consistent with f0 stays in W , i.e.,
if for all v ∈ W ∩ V0 : f0(v) ∈W and for all v ∈W ∩ V1 and all u ∈ vE : u ∈W .

Now we see a simple condition that makes a player win:

Lemma 7.15. Let f0 be a memoryless strategy of Player 0 which is closed on a
set W . Then f0 is a winning strategy from all vertices in W iff all simple cycles
in the restriction of the solitaire game of f0 to the vertices in W are even.

Proof. From each vertex either Player 1 or Player 0 has a winning strategy. If
Player 1 has a winning strategy, then this can be assumed to be memoryless. So
assume Player 0 plays according to f0 and consider the resulting solitaire game.
Then Player 1 can win from a vertex v iff she can fix an edge for each vertex so
that the resulting path from v ends in a simple cycle which is odd. If no such
cycle exists, Player 1 cannot win (and Player 0 wins). If such a cycle exists, then
Player 1 wins iff she can find a path to that cycle. This happens at least for all
vertices on that cycle, so there are vertices where f0 is not winning. ��

The key notion in the algorithm will be a parity progress measure. These are
labelings of the vertices of graphs with tuples of natural numbers having certain
properties. First we consider such labelings for solitaire games.

Definition 7.16. Let (A, Ω) be a solitaire game with vertex prioritiesΩ(v) ≤ d.
A function ρ : V0 ∪ V1 → INd+1 is a parity progress measure for the solitaire
game, if for all edges (v, w):

(a) ρ(v) ≥Ω(v) ρ(w) if Ω(v) is even.
(b) ρ(v) >Ω(v) ρ(w) if Ω(v) is odd.

The intuition behind the above definition is best explained through the fol-
lowing lemma.

Lemma 7.17. If there is a parity progress measure for a solitaire game G =
(A, Ω), then all simple cycles in G are even.

In particular in this case Player 0’s strategy used to derive G is winning.

Proof. Let ρ be a parity progress measure for a solitaire game G. Suppose there
is an odd cycle v1, . . . , vl in G, let i = Ω(v1) be the lowest priority on the cycle,
which is odd. Then according to the definition of a parity progress measure
ρ(v1) >i ρ(v2) ≥i · · · ≥i ρ(vl) ≥i ρ(v1), which is a contradiction. ��

So parity progress measures are witnesses for winning strategies. It is true
that the above condition can also be reversed, i.e., if Player 0 wins from all
vertices, then there is a parity progress measure. But an important feature will
be that we can show the reverse condition while considering only a suitably
bounded number of parity progress measures. We will then be able to replace
the search for a winning strategy by the search for a parity progress measure
from a relatively small set.

7 Algorithms for Parity Games 119

To define this “small” set let G = (A, Ω) be a solitaire game and Ω be a
function mapping vertices to {0, . . . , d}, and let Vi denote the set of vertices
having priority i. By definition there are d+ 1 such sets. Instead of using INd+1

as the range of values of our parity progress measure we will use a setMG defined
by

MG := [1]× [|V1|+ 1]× [1]× [|V3|+ 1]× [1]× · · · × [1]× [|Vd|+ 1],

assuming for simplicity that d is odd.

Lemma 7.18. If all simple cycles in a solitaire game G = (A, Ω) are even, then
there is a parity progress measure ρ : V →MG.

Proof. We define the parity progress measure explicitly from the solitaire game
G (as opposed to the inductive proof given in [93]). Let ai(v) be the maximal
number of vertices with priority i occurring on any path in G starting in v
and containing no vertex with priority smaller than i. This value is infinite,
if infinitely many vertices with priority i occur on some path with no smaller
priority occurring on that path. If v has priority smaller than i or there is no
path featuring a vertex with priority i but no smaller priority, then ai(v) = 0.

We then set ρ(v) = (0, a1(v), 0, a3(v), 0, . . . , 0, ad(v)) and claim that this is
a parity progress measure with the desired property.

First assume that some ai(v) is not finite for some odd i. Then there is an
infinite path starting at v such that the path contains no vertex with lower
priority than i, but infinitely many vertices with priority i. Thus the path must
contain some vertex with priority i twice, and we can construct a cycle with
least priority i, a contradiction to the assumption of the lemma.

Now we show that we have actually defined a mapping ρ : V → MG . As-
sume that ai(v) is larger than the number of vertices with priority i. Due to
the definition of ai(v) there is a path originating in v such that ai(v) vertices
with priority i show up before a vertex with priority smaller than i. If ai(v) is
larger than the number of vertices with priority i, such a vertex occurs twice.
Consequently there is a cycle containing as least priority i, again a contradiction.

It remains to show that we defined a parity progress measure. Let (v, w) be
any edge and i any odd number. If i = Ω(v), then ai(v) = ai(w) + 1. For all
smaller odd i we get ai(v) ≥ ai(w), because the edge (v, w) extended by a path
starting in w that contains k vertices with priority i but no smaller priority,
yields a path starting in v that contains k vertices with priority i but no smaller
priority. Thus for all v with odd priority ρ(v) >Ω(v) ρ(w) and for all v with even
priority ρ(v) ≥Ω(v) ρ(w). ��

The construction allows a nice interpretation of the constructed parity prog-
ress measure. The tuple assigned to a vertex contains for all odd priorities the
maximal number of times this priority can be seen if Player 1 moves over the
graph, until a vertex with smaller priority is seen. Note that this interpretation
is not applicable to all parity progress measures.

120 Hartmut Klauck

Exercise 7.8. Find a parity game and a parity progress measure for which the
above intuition is not true.

What have we achieved by now? Given a strategy of one player we can
construct the solitaire game. Then a parity progress measure for such a graph
exists if and only if Player 0 has a winning strategy from all vertices. Also
parity progress measures from a relatively small set suffice for this. Our current
formulation does not allow to deal with graphs in which both winning regions
are nonempty. Secondly we have to extend our notion of a progress measure
to deal with game arenas, i.e., to graphs in which Player 1 has more than one
option to choose a strategy.

Now consider again the construction of the parity progress measure given in
the proof of the above lemma. If we drop the condition that all simple cycles
are even, then some of the values ai(v) are infinite. Clearly, if ai(v) = ∞, then
there is a path from v that sees infinitely many odd i and no smaller priorities,
so Player 1 might just walk that path and win. If, on the other hand, there is no
i with ai(v) = ∞, then Player 1 cannot win from v, because all paths starting
in v eventually reach an even priority occurring infinitely often. Note that we
excluded dead ends from game arenas in this section. We have a clear distinction
of the winning regions in a solitaire game.

So we introduce one more symbol into MG . Let M�
G denote MG ∪{�} where

� is larger than all elements of MG in the order >i for all i. If we identify all
ρ(v) containing the value ∞ at least once with �, we get an extended parity
progress measure for solitaire games where the vertices with label � constitute
the winning region of Player 1.

To extend the notion of a progress measure to game arenas, we simply de-
mand that for each vertex in which Player 0 moves, there is at least one neighbor
satisfying a progress relation.

Definition 7.19. Let prog(ρ, v, w) denote the leastm ∈M�
G such thatm ≥Ω(v)

ρ(w), and, if Ω(v) is odd, then m >Ω(v) ρ(w) or m = ρ(w) = �.
A function ρ : V →M�

G is a game progress measure, if for all v ∈ V the
following two conditions hold:

(a) if v ∈ V0 then ρ ≥Ω(v) prog(ρ, v, w) for some edge (v, w).
(b) if v ∈ V1 then ρ ≥Ω(v) prog(ρ, v, w) for all edges (v, w).

Furthermore let ||ρ|| = {v ∈ V : ρ(v) �= �}.

Let us explain the intuition behind the above definition. A parity progress
measure captures the existence of a winning strategy for Player 0 from all ver-
tices in a solitaire game. The key feature of a parity progress measure is that
it decreases on edges originating from vertices with odd parity and does not
increase on other edges (with respect to some order depending on the priorities
of vertices).

In a game arena (as opposed to a solitaire game) the strategy of Player 0 is
not fixed, i.e., usually vertices belonging to both players have outdegree larger

7 Algorithms for Parity Games 121

than one. Also there are usually nonempty winning regions for Player 0 and for
Player 1.

A game progress measure is defined with respect to Player 0. For each vertex
the above “decreasing” property must hold for some edge, if the vertex belongs
to Player 0, and for all edges, if the vertex belongs to Player 1. So we demand
the existence of an edge with the “decreasing” property for the multiple edges
originating in vertices belonging to Player 0. Furthermore we have introduced
the � element to deal with vertices in the possibly nonempty winning region of
Player 1. Note that in case we have assigned the top element to a vertex we can-
not demand that an edge leading to that vertex decreases the progress measure.
That is the reason for introducing the complications in the prog-notation.

If we restrict a game graph with a game progress measure ρ to the vertices
in ||ρ||, we get a solitaire game with a parity progress measure. Assume that this
parity progress measure equals the one constructed in the proof of Lemma 7.18.
In this case we get the following interpretation of the game progress measure:
the component ρi(v) for some odd i and some v �∈ ||ρ|| contains the number of
times Player 1 may force Player 0 to see priority i before some smaller priority
occurs, if Player 0 tries to minimize that value and Player 1 tries to maximize it.
Unfortunately this intuition does not hold true for all possible parity progress
measures as noted before, see Exercise 7.8

It is easy to find a game progress measure by assigning � to all vertices. This
measure does not tell us much. But it will turn out that we can try to maximize
the size of ||ρ|| and find the winning region of Player 0.

First we define a strategy from the measure ρ. Let fρ
0 : V0 → V be a strategy

for Player 0 defined by taking for each vertex v a successor w which minimizes
ρ(w).

Lemma 7.20. If ρ is a game progress measure, then fρ
0 is a winning strategy

for Player 0 from all vertices in ||ρ||.

Proof. Restrict the game arena to the vertices in ||ρ||. If we now fix the strategy
fρ
0 we get that ρ is a parity progress measure on the resulting solitaire game. This
implies that all simple cycles in the solitaire game are even (using Lemma 7.17)
and the strategy wins from all vertices in ||ρ||, if fρ

0 is closed on ||ρ|| due to
Lemma 7.15. But this is true, since the strategy would violate the conditions of
its game progress measure if it would use an edge leading from ||ρ|| to a vertex
labeled � in the solitaire game. ��

So we are after game progress measures with large ||ρ||.

Lemma 7.21. For each parity game there is a game progress measure ρ such
that ||ρ|| is the winning region of Player 0.

Proof. Since each vertex is either in the winning region of Player 0 or of Player 1
we can assume that a winning strategy for Player 0 never leaves his winning set,
otherwise Player 1 could win after such a step. Fixing a memoryless winning
strategy with this winning region and restricting the vertices to the winning

122 Hartmut Klauck

region yields a solitaire game G containing no simple even cycle. Thus due to
Lemma 7.18 there is a parity progress measure ρ with values in MG . If we now
set ρ(v) = � for all vertices outside of G we get a game progress measure as
demanded. ��

We are now almost done. Given a game, we have to find a game progress
measure that has a maximal number of vertices which do not have value �. But
it is actually not really clear how to compute game progress measures at all,
except trivial ones.

So we take the following approach. We consider the set of all functions V →
M�

G . Our goal is to find one such function which is a game progress measure,
and in particular one with a maximal winning region. First we define an ordering
on these functions. Let ρ, σ be two such functions, then ρ � σ, if for all v ∈ V
we have ρ(v) ≤ σ(v). If also ρ �= σ, then we write ρ < σ. With this ordering we
have a complete lattice structure on our set of functions. We will define certain
monotone operators in this lattice. The game progress measure we are looking
for is the least common fixed point of these operators.

We start from a function mapping all vertices to the all zero vector and apply
the set of operators that “push the function” towards a game progress measure.
Eventually this process will actually stop at a fixed point of the operators.

The applied operators work on one vertex label only, and in the worst case
during a run of the algorithm the label of such a vertex may take on all its
possible values. But then the number of such steps is no more than n times the
number of all labels, which is n · |M�

G |.
Let us define the operators now.

Definition 7.22. The operator Lift(ρ, v) is defined for v ∈ V and ρ : V →M�
G

as follows:

Lift(ρ, v)(u) :=

ρ(u) if u �= v,
max{ρ(v),min(v,w)∈E prog(ρ, v, w)} if u = v ∈ V0,
max{ρ(v),max(v,w)∈E prog(ρ, v, w)} if u = v ∈ V1.

The following lemmas are obvious.

Lemma 7.23. For all v ∈ V the operator Lift(·, v) is monotone with respect to
the ordering �.

Lemma 7.24. A function ρ : V → M�
G is a game progress measure iff it is a

simultaneous fixed point of all Lift(·, v) operators, i.e., iff Lift(ρ, v) � ρ for all
v ∈ V .

Exercise 7.9. Prove the lemmas.

Now we have a correspondence between fixed points and game progress mea-
sures. We are interested in a game progress measure inducing the winning region.
To find such a measure we will be computing the least simultaneous fixed point
of all the operators. Due to a theorem of Tarski [175] and Knaster such a least
fixed point exists and can be computed in the following way (see also Chapter 20
in the appendix):

7 Algorithms for Parity Games 123

We start with the function µ assigning 0 to every vertex. Then as as long
as µ <Lift(µ, v) for some v, apply the lift operator µ :=Lift(µ, v).

When the algorithm terminates, it has found the least simultaneous fixed
point of all lift operators. This is a game progress measure, and as we have seen
it is easy to derive a strategy for Player 0 from it.

Theorem 7.25. The winning region of Player 0 and Player 0’s winning strategy
in a parity game with n vertices, m edges, and d ≥ 2 different priorities can be

computed in time O(d ·m ·
(

n
	d/2

)	d/2

) and space O(dn logn).

Proof. First let us argue that the algorithm actually finds the winning region
of Player 0. The computed game progress measure µ is the least simultaneous
fixed point of all the lift operators. The strategy fµ

0 induced by µ is a winning
strategy on the set of vertices ||µ|| due to Lemma 7.20. Therefore ||µ|| is a subset
of Player 0’s winning region. Furthermore ||µ|| is the largest set of vertices not
assigned � over all game progress measures. Thus it must be Player 0’s winning
region due to Lemma 7.21.

Now let us calculate the complexity of the algorithm. The space is very easy
to calculate. For each vertex we have to store an element of M�

G , which consists
of d numbers from the set [n]. Thus space used is O(d · n logn).

The time can be bounded as follows. The Lift(ρ, v) operator can be im-
plemented in time O(d · outdegree(v)). Every vertex may be lifted at most
|MG | times, so the time is upper bounded by O(|MG | · d ·

∑
v outdegree(v)) =

O(md|MG |), if we ensure that we can always find a liftable vertex in constant
time. This is possible by maintaining a queue of liftable vertices. In the begin-
ning we insert all liftable vertices. Later we get a liftable vertex out of the queue,
lift it, and test all predecessors of the vertex for liftability. Liftable vertices are
marked liftable in an array, and if they change from non-liftable to liftable they
are inserted into the queue. These operations are possible within the given time
bound.

It remains now to estimate the size of MG . First assume that priority 0 is
used, and also assume that there are vertices with priorities i for all 0 ≤ i ≤ d−1.
If some priority is missing, we can diminish the higher priorities by 2 without
changing the game. Then

|MG | =
	d/2
∏
i=1

(|V2i−1|+ 1).

We have
	d/2
∑
i=1

(|V2i−1|+ 1) ≤
d−1∑
i=0

|Vi| ≤ n,

because there is at least one vertex with every even priority, and there are at
most n vertices. Such a product is maximized when all the factors are equal, and
can thus be bounded by

124 Hartmut Klauck

(
n

�d/2�

)	d/2

.

Now assume that priority 0 is not used. Then w.l.o.g. the priorities used are
{1, 2, . . . , d}. Inspection of the argument shows that it works in this case as well,
by switching the roles of the players in the proof and in the algorithm. ��

Now let us mention that one has indeed to specify in which order the Lift
operators are applied, leading to a possible improvement by using a suitable such
order. But Jurdziński has shown [93] that there is an example where for each
such order policy the time bound is basically tight.

Exercise 7.10. Consider the following graph H4,3 where quadratic vertices be-
long to Player 1 and all other vertices to Player 0. The numbers in the vertices
are the priorities.

1 1 1

2 2 2 2 2 2 2

3 3 3

4 4 4 4 4 4 4

5 5 5

6 6 6 6 6 6 6

7 7 78 8 8 8

Fig. 7.1. The graph H4,3

Show that the vertices with priority 7 are lifted 44 times, no matter what
lifting policy is used. For this observe that for all vertices except those in the
second, indented layer Player 0 has a winning strategy, for all vertices in the
second layer Player 1 has a winning strategy, and hence � is the label assigned
to these vertices in the least progress measure. Furthermore show that the Lift
operator increases the labels of vertices with priority 7 only to their successors.

Generalize the graph to a family of graphs H�,b with (+−1) ·(3b+1)+(2b+1)
vertices and priorities from the set {1, . . . , 2+}. Show that some vertices are lifted
(b + 1)� times no matter what lifting policy is used. Conclude that the running
time bound of Theorem 7.25 is basically tight, in particular that the running
time is exponential in d.

7 Algorithms for Parity Games 125

7.6 The Strategy Improvement Approach

In this section we briefly review another promising approach to solve parity
games, which should also be useful in implementations. A rigorous theoretical
analysis of this approach is missing, however.

The approach follows a quite general paradigm called strategy improve-
ment. In this approach one starts with a pair of strategies for Player 0 and Player
1, and applies some simple operation on one player’s strategy to “improve” it.
Then the other player responds with an optimal strategy given the first player’s
strategy. This process is iterated. Of course it has to be made precise, what a
better strategy is.

Strategy improvement was first proposed by Hoffman and Karp in 1966
[85] for stochastic games. Their algorithm proceeds basically by starting from
any pair of strategies, and in each iteration considers a vertex, that can be
“switched”, in our context a vertex at which changing the strategy “improves”
the solution. Then the player whose strategy is not yet changed responds with
an optimal strategy according to the other player’s strategy. This is done until
no such iteration is possible. In this case both strategies are optimal. One has to
show in particular, how to compute an optimal response strategy. Furthermore
is must be made clear what an improved strategy is (this is easy for stochastic
games). It is still unknown whether the Hoffmann-Karp algorithm terminates in
polynomial time.

Strategy improvement algorithms for parity games have been proposed by
Puri [147] and by Vöge and Jurdziński [191]. Both algorithms can do one itera-
tion in polynomial time, but the actual number of iterations may be large. The
algorithm due to Puri has the drawback that it is not a discrete algorithm, but
involves linear programming and high precision arithmetic. So we discuss some of
the ideas of the algorithm presented in [191]. Note that also the aforementioned
algorithm of Ludwig for simple stochastic games [117] falls into this category.

The algorithm follows the approach described above. First a strategy of
Player 0 is chosen randomly. Then an “optimal” response strategy is generated.
After this the strategy of Player 0 is “improved” by some simple operation. This
is done until both steps do not change the strategies anymore.

Instead of dealing with the strategies directly another combinatorial object
is considered, and connected to strategies. This object is a valuation. Roughly
speaking a valuation assigns to each vertex relevant information on a play start-
ing from that vertex. Certain types of valuations correspond to strategy pairs.
Furthermore an order is defined on valuations which captures whether one val-
uation is more valuable than another. This ordering allows to define optimal
valuations. Furthermore simple improvement rules can be defined. This gives us
all ingredients needed for a strategy improvement algorithm.

The first notion we need captures the kind of information we want to assign
to single vertices. Note that we are again considering max-parity games, in which
the vertex of highest priority occurring infinitely often is decisive. Furthermore,
without loss of generality, we assume that no priority occurs twice.

126 Hartmut Klauck

Definition 7.26. Let (A, Ω) be some parity game. Let wπ denote the vertex
with highest priority occurring infinitely often in a play π. Let Pπ denote the
set of vertices encountered in play π before wπ appears first and having higher
priority than wπ . Let l(x) denote the size of the set of vertices encountered before
wπ appears first.

The triple (wπ , Pπ, lπ) is called the play profile of π.
A valuation is a mapping which assigns a play profile to every vertex.
A valuation is induced by a pair of strategies if it assigns to every vertex v

the play profile of the play consistent with the strategies and starting at v.

Exercise 7.11. Construct a parity game and a valuation so that no pair of strate-
gies corresponds to the valuation.

Construct a parity game and a valuation so that more than one pair of
strategies corresponds to the valuation.

Obviously not all valuations are consistent with strategy pairs. We are looking
for some nice conditions under which this is the case.

Consider the play profiles of vertices u, v with u = f0(v) in a valuation in-
duced by strategies f0, f1. Call the plays originating at those vertices π(u), π(v).
Now obviously the most relevant vertex occurring infinitely often in the plays
starting at u and at v is the same. We can distinguish three cases.

(1) wπ(v) has larger or equal priority than v, but is not equal to v. In this case
Pπ(u) = Pπ(v) and lπ(u) = lπ(v) − 1.

(2) wπ(v) has smaller priority than v. In this case Pπ(v) = Pπ(u) ∪ {v} and
lπ(u) = lπ(v) − 1.

(3) wπ(v) = v. In this case Pπ(v) = ∅ and lπ(v) = 0. Furthermore Pπ(u) = ∅, since
there are no vertices on the cycle, which are more relevant than v.

These conditions allow us to define what we call a progress ordering. We
say that two vertices v, u obey a progress relation with respect to a valuation
φ if the above conditions hold for the play profiles assigned to the vertices, and
write v /φ u.

The following is straightforward.

Lemma 7.27. Let φ be a valuation satisfying v /φ f0(v) resp. v /φ f1(v) for all
v ∈ V , then (f0, f1) induces φ.

Our goal is still to give sufficient conditions for valuations which are induced
by some pair of strategies.

We call a valuation φ locally progressive, if

∀u ∈ V ∃v ∈ V : v ∈ uE ∧ u /φ v.

This characterizes those valuations induced by strategies.

Lemma 7.28. A valuation is locally progressive iff there exists a strategy pair
inducing the valuation.

7 Algorithms for Parity Games 127

Exercise 7.12. Prove the lemma. In particular, first show how to extract a strat-
egy pair from a locally progressive valuation so that the strategy pair induces
the valuation. Then show how to compute a locally progressive valuation when
given a pair of strategies. Analyze the time needed to do so.

We now have a close connection between strategy pairs and locally progressive
valuations. Our original goals were to find a way to get an “optimal” response
strategy, and a way to “improve” strategies by some simple operations. We now
define these with respect to valuations.

The first thing we need is a total ordering on the valuations. Since we assume
that no priority occurs twice, we simply take the order on the priorities.

Next we define another ordering on vertices. Let u ≺ v, if the priority of u
is smaller than the priority of v and v has even priority, and if v has smaller
priority than u and v has odd priority. So this ordering tells us how valuable
vertices are from the point of view of Player 0.

This can be extended to sets of vertices P,Q, saying that P ≺ Q if P �= Q
and the highest vertex in the symmetric difference between P and Q is in Q, if
even, and in P , if odd.

Now extend the order to play profiles. Let (u, P, l) and (v,Q, r) be two play
profiles. Then (u, P, l) ≺ (v,Q, r) if u ≺ v, or if u = v and P ≺ Q or if u = v
and P = Q and [l < r iff v has odd priority].

This captures how advantageous a play profile may be for Player 0 compared
to another play profile. If the most relevant vertex is advantageous, then so is
the profile. If the most relevant vertex is the same, then the sets of vertices more
relevant but occurring only finitely often is decisive. If these are the same, then
the delay until the most relevant vertex appears decides. This is as much as we
can see from the play profile, and the profile has been designed to let us see that
much from it.

We are now able to state what optimal and improved valuations are.

Definition 7.29. A valuation φ is optimal for Player 0, if two vertices u and
v ∈ uE satisfy the progress relation u /φ v only if v is the ≺-maximal successor
of u or if φ(u) = (u, ∅, 0) and v = (u, ∅, k).

A symmetric definition optimal for Player 1. A valuation is optimal if it
is optimal for both players.

In other words, regarding the above defined value ordering the progress re-
lation increases only on optimal edges. Strategies inducing the valuation send
vertices to optimal neighbors.

Definition 7.30. A locally progressive valuation φ is improved for Player 0
in the following way: first a strategy for Player 0 is extracted from φ so that for
each vertex a successor is chosen which is maximal with respect to the ≺-order
on profiles with respect to φ, then a valuation is constructed which is compatible
with this strategy.

Note that if a locally progressive valuation is optimal for Player 0, then a
strategy for Player 0 can be extracted from the valuation by mapping each vertex

128 Hartmut Klauck

to its successor in the progress ordering. This strategy leads from each vertex
to a neighbor which is maximal in the value ordering. We can also extract a
strategy for Player 1 from the valuation. If Player 1 wins in a play from some
vertex v played as determined by those strategies, then Player 1 wins from v
also if Player 0 choses a different strategy, since this other strategy cannot lead
to vertices with a a more advantageous play profile for Player 0. Hence we can
collect the following consequences.

Lemma 7.31. Let φ be a locally progressive valuation which is optimal for
Player 0 [Player 1]. Then the strategies which are compatible with φ are winning
strategies for Player 1 [Player 0] on the set of vertices v whose play profile in φ
is (w,P, l) with Ω(w) odd [even], against all strategies of Player 0 [Player 1].

If φ is optimal (for both players) then all strategies compatible with φ are
winning strategies (from the respective winning regions of the players).

So it suffices to find an optimal valuation! Now we note that improved valu-
ations deserve their name.

Lemma 7.32. If φ is a locally progressive valuation that is optimal for Player 1
and φ′ is a locally progressive valuation that is improved for Player 0 with respect
to φ, then φ(v) � φ′(v) for all v ∈ V .

Hence improving a locally progressive valuation cannot lead to a less advan-
tageous valuation. It is also strictly improved until it is optimal:

Exercise 7.13. Show that a locally progressive valuation that is optimal for
Player 1, and which does not change when it is improved for Player 0, is al-
ready optimal for both players.

Improving valuations is defined in an algorithmic manner via extracting a
improved strategies and computing a valuation induced by the strategies. Note
that this is possible in an efficient manner due to Exercise 7.12.

Now let us briefly describe the structure of the algorithm.
The algorithm starts with a random strategy for Player 0. Then in each

iteration first a locally progressive valuation is computed which is optimal for
Player 1. Player 0 responds by improving his strategy as described in Defini-
tion 7.29. This is done until the iteration does not change the valuations any-
more. Strategies are extracted from the valuations.

Theorem 7.33. The above algorithm computes winning strategies for Player 0
and Player 1. It can be implemented so that each iteration runs in time O(nm).

Proof. The first statement follows from the previous lemmas. For the implemen-
tation we have to discuss the computation of an optimal valuation for Player 1
given a strategy of Player 0.

For this Player 1 fixes Player 0’s strategy and then goes in ascending order
over all the vertices in the resulting solitaire game using the “reward ordering”
≺. For such a vertex v Player 1 tests, if there is a cycle containing v and otherwise

7 Algorithms for Parity Games 129

only vertices of smaller priority. If so, then she computes the set of vertices from
which v can be reached (and thus also the cycle). Then a valuation is computed
on this component alone, and the component is removed, whereupon Player 1
continues with the next v.

To find an optimal valuation for the component from which the mentioned
cycle is reachable, notice that it is optimal for Player 1 to go to the cycle, since
v is the most profitable vertex which may occur infinitely often. It is her goal to
find a path from each vertex that reaches the cycle giving the lowest reward for
Player 0. All these computations are possible in time O(nm).

For more details see [191]. ��

So we have another approach to find winning regions and strategies in parity
games. It is presently unknown how large the number of iterations may be in the
worst case, except for an exponential upper bound. Neither examples with a high
number of iterations nor good general upper bounds are known. Experiments
suggest that the algorithm behaves quite good for some interesting inputs. One
possible critique on this algorithm is that it does not make any use of a possibly
bounded number of priorities, but rather expands the partial order on vertices
induced by the priorities to a total order, resulting in n priorities used.

7.7 Conclusions

We have considered the problem of finding the winning regions of the two players
in a given parity game and in several other graph-based games. We have seen
that the problem can be solved in polynomial time, if the number of different
priorities assigned to vertices is only a constant.

Our interest in the problem comes from its equivalence to model checking in
the modal µ-calculus. Furthermore the problem is important as one of the few
natural problems in UP ∩ co-UP. We have shown how to prove this complexity
theoretic result. It is promising to investigate the complexity of the problem
further. One message is at least that the problem is very unlikely to be NP-
complete.

Furthermore we have discussed a simple, yet rather efficient algorithm, an
algorithm with a quadratically improved time complexity compared to the first
algorithm, and an attempt to solve the problem following the paradigm of strat-
egy improvement.

	7.1 Introduction
	7.2 Some More Infinite Games
	7.3 A Simple Algorithm
	7.4 The Problem Is in UP nco-UP
	7.5 A Better Algorithm
	7.6 The Strategy Improvement Approach
	7.7 Conclusions

