
1 Automata over infinite words and trees

Exercise 1

The automaton below accepts with the parity condition (maximal priority
visited infinitely often is even), with the priority of a state being equal to the
state number.
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1. Which language is accepted by A?

2. Give an equivalent Büchi automaton.

Exercise 2

Let Σ = {a, b, c, d}. For w ∈ Σω we write inf(w) for the set of letters
occurring infinitely often in w. Let L ⊆ Σω consist of all words w such that
inf(w) ∩ {a, b} 6= ∅ implies c ∈ inf(w).

• Give a Büchi automaton recognizing L.

• Give a deterministic parity automaton recognizing L.

• Show that there is no deterministic Büchi automaton recognizing L.

Exercise 3

1. Given K ⊆ Σ+ we define ~K ⊆ Σω as

~K = {w0w1 · · · | w1 · · ·wi ∈ K for every i ≥ 0}

Show that L ⊆ Σω is recognized by a deterministic Büchi automaton
iff it equals ~K, for some regular language K ⊆ Σ∗.
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2. A Muller automaton A = 〈Q,Σ, δ, q0,F〉 has as acceptance condition a
set of sets of states. A run of A is successful if the ste of states visited
infinitely often belongs to F .

The acceptance condition F ⊆ P(Q) is called realizable if for every
F ∈ F there is some run ρ of A s.t. inf(ρ) = F .

(Landweber) Show that L ⊆ Σω can be recognized by a determinis-
tic Büchi automaton iff every deterministic Muller automaton A =
〈Q,Σ, δ, q0,F〉 that recognizes L and such that F is realizable, also
satisfies the following condition (upward closure):

Whenever F ∈ F and F ⊆ G, also G ∈ F .

Exercise 4

Let L be the language of {a, b}-labelled infinite binary trees t such that
there is some path of t with infinitely many a-labelled nodes. Let K be the
complement of L.

1. Give an MSO formula describing L.

2. Give a Büchi tree automaton that recognizes L.

3. Give a parity tree automaton that recognizes K.

4. Show that no Büchi tree automaton recognizes K.

Hint: Consider a tree that contains “a” exactly at nodes from (1+0)k,
where 1 ≤ k ≤ n and n is the size of a supposed Büchi tree automaton
recognizing K.

Exercise 5

In this exercise we show how to reduce the question whether a parity
tree automaton recognizes at least some tree (“non-emptiness problem”), to
a parity game.

1. Justify that for the the non-emptiness problem we can assume wlog. that
the alphabet Σ has size one.
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2. Let A = 〈S, {a}, S0,
a−→, ` : S → {0, . . . , d}〉 be a parity tree automa-

ton over alphabet {a}.
We define a parity game GA = (V0 ∪ V1, E, p : V → {0, . . . , d}) as

• Nodes: V0 = S, V1 = {(s, s0, s1) | (s, s0, s1) ∈
a−→},

• Priorities: p(s) = p(s, s0, s1) = `(s), for s ∈ V0, (s, s0, s1) ∈ V1,
• Edges: s −→ (s, s0, s1) for every s ∈ V0, (s, s0, s1) ∈ V1, and

(s, s0, s1) −→ s0, (s, s0, s1) −→ s1.

Justify that L(A) is non-empty iff some node s0 ∈ S0 is winning for P0

in the game GA.

2 Games on finite graphs

Exercise 6

Consider the following parity game, with priorities p(a) = p(e) = 0,
p(b) = p(f) = 1, p(c) = p(g) = 2, p(d) = 3:

a b c d

e f g

Compute the winning region W0 of P0, as well as winning strategies for both
players.

Exercise 7

Describe a polynomial algorithm for the following problem: given a finite
arena and a positional strategy σ0 for P0, check that σ0 is winning for P0

(starting from any vertex).
Deduce that determining if a vertex is winning for P0 in a parity game is

in the class NP ∩ co-NP.
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Exercise 8
We fix a starting vertex v0 in a finite parity game G and we define a new
game G′ where all plays are finite. The game stops as soon as a vertex is
visited twice. A play is thus a finite path v0, . . . , vn such that v0, . . . , vn−1 are
pairwise distinct and vn = vj for some j < n. Player P0 wins if the maximal
priority of the loop, max{p(vj), . . . , χ(vn)}, is even.

Show that the parity game G starting in v0 and G′ are equivalent (i.e.,
P0 wins in G from v0 iff she wins in G′):

1. Show that if P0 has a positional winning strategy σ in G, then σ is also
winning in G′.

2. Show that if P0 has a winning strategy in G′, then she has also one in
G.

Exercise 9

In the following variant of parity games, called handicap-k-parity, we
allow player P1 to play the k first moves of the play. Afterwards, the game
continues as usual. A positional strategy for P1 is a mapping σ1 : V −→ V
(for v /∈ V1, σ1(v) represents a move of P1 among the first k moves that he is
allowed to make at the beginning).

1. Assume first that k = 1. We build a new game G′ = (V = V0 ∪ V1 ∪
V ′, E ∪E ′) from G as follows: V ′ = {v′ | v ∈ V } is a copy of V and all
vertices of V ′ belong to P1. For every edge v → w of G, we add to E ′

an edge v′ → w′ if v ∈ V1, resp. an edge v′ → w if v ∈ V0.
Take as an example the game G:

a b c

The new game G′ is:

a′ b′ c′

a b c
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Every play in the handicap-1-parity game played in G from vertex v
can be simulated by a usual parity play in G′ starting in v′: if v ∈ V1,
then the move v → w played by P1 is simulated by v′ → w′ and the
play stays in V ′; if v ∈ V0, then the move v → w played by P1 instead
of P0 is simulated by v′ → w and the remaining play stays in G.

Priorities in G′ are inherited from G: every vertex v ∈ V keeps its
priority, and v′ has the same priority as v.

Show that each player has a winning strategy from v in G iff he/she
has a winning strategy from v′ in G′.

2. Show that handicap-k-parity is determined and that the winning strate-
gies are positional for both players.
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