1 Automata over infinite words and trees
Exercise 1

The automaton below accepts with the parity condition (maximal priority
visited infinitely often is even), with the priority of a state being equal to the

state number.
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1. Which language is accepted by A?

2. Give an equivalent Biichi automaton.

Exercise 2

Let ¥ = {a,b,c,d}. For w € ¥* we write inf(w) for the set of letters
occurring infinitely often in w. Let L C ¢ consist of all words w such that
inf(w) N {a,b} # 0 implies ¢ € inf(w).

e Give a Biichi automaton recognizing L.
e Give a deterministic parity automaton recognizing L.

e Show that there is no deterministic Biichi automaton recognizing L.
Exercise 3

1. Given K C ¥+ we define K C X¥ as
K = {wow; -+ | w; ---w; € K for every i > 0}

Show that L C 3¢ is recognized by a deterministic Biichi automaton
iff it equals K, for some regular language K C >*.



2. A Muller automaton A = (Q, X, §, qo, F) has as acceptance condition a
set, of sets of states. A run of A is successful if the ste of states visited
infinitely often belongs to F.

The acceptance condition F C P(Q) is called realizable if for every
F € F there is some run p of A s.t. inf(p) = F.

(Landweber) Show that L C ¥ can be recognized by a determinis-
tic Biichi automaton iff every deterministic Muller automaton A =
(@Q,%,0,q0,F) that recognizes L and such that F is realizable, also
satisfies the following condition (upward closure):

Whenever F' € F and F' C G, also G € F.

Exercise 4

Let L be the language of {a,b}-labelled infinite binary trees ¢ such that
there is some path of ¢ with infinitely many a-labelled nodes. Let K be the
complement of L.

1. Give an MSO formula describing L.
2. Give a Biichi tree automaton that recognizes L.
3. Give a parity tree automaton that recognizes K.

4. Show that no Biichi tree automaton recognizes K.

[}

Hint: Consider a tree that contains “a” exactly at nodes from (170)",
where 1 < k£ < n and n is the size of a supposed Biichi tree automaton
recognizing K.

Exercise 5

In this exercise we show how to reduce the question whether a parity
tree automaton recognizes at least some tree (“non-emptiness problem”), to
a parity game.

1. Justify that for the the non-emptiness problem we can assume wlog. that
the alphabet X has size one.



2. Let A = (S,{a}, Sy, —2+,0:S — {0,...,d}) be a parity tree automa-
ton over alphabet {a}.

We define a parity game G4 = (VobUV, E,p: V — {0,...,d}) as

e Nodes: V=S, Vi = {(s,50,51) | (5,50,51) E—},
e Priorities: p(s) = p(s, so, s1) = £(s), for s € Vg, (s, 50, $1) € V4,

e Edges: s — (s,50,81) for every s € Vg, (s,50,81) € Vi, and
(s,50,81) — 50, (8,80, 51) — 1.

Justify that L(.A) is non-empty iff some node sy € Sy is winning for P,
in the game G 4.

2 Games on finite graphs

Exercise 6

Consider the following parity game, with priorities p(a) = p(e) = 0,
p(b) = p(f) =1, p(c) = p(g) = 2, p(d) = 3:
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Compute the winning region Wy of Fy, as well as winning strategies for both
players.

Exercise 7

Describe a polynomial algorithm for the following problem: given a finite
arena and a positional strategy og for F,, check that oq is winning for F,
(starting from any vertex).

Deduce that determining if a vertex is winning for F, in a parity game is
in the class NP N co-NP.



Exercise 8
We fix a starting vertex vy in a finite parity game G and we define a new
game G’ where all plays are finite. The game stops as soon as a vertex is
visited twice. A play is thus a finite path vy, ..., v, such that vy, ..., v, 1 are
pairwise distinct and v,, = v; for some 7 < n. Player ;) wins if the maximal
priority of the loop, max{p(v;), ..., x(v,)}, is even.

Show that the parity game G starting in vy and G’ are equivalent (i.e.,
Py wins in G from vy iff she wins in G'):

1. Show that if F, has a positional winning strategy o in G, then o is also
winning in G’.

2. Show that if Py has a winning strategy in G’, then she has also one in

G.
Exercise 9

In the following variant of parity games, called handicap-k-parity, we
allow player P; to play the k first moves of the play. Afterwards, the game
continues as usual. A positional strategy for P; is a mapping o1 : V — V
(for v ¢ Vi, 01(v) represents a move of P; among the first & moves that he is
allowed to make at the beginning).

1. Assume first that £ = 1. We build a new game G' = (V =V, UV} U
V', EUE') from G as follows: V' = {v' | v € V} is a copy of V and all
vertices of V' belong to P;. For every edge v — w of G, we add to E’
an edge v" — w' if v € V7, resp. an edge v' — w if v € V.

Take as an example the game G:

The new game G’ is:
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Every play in the handicap-1-parity game played in G from vertex v
can be simulated by a usual parity play in G’ starting in v": if v € V7,
then the move v — w played by P; is simulated by v" — w’ and the
play stays in V’; if v € Vj, then the move v — w played by P; instead
of Py is simulated by v" — w and the remaining play stays in G.

Priorities in G’ are inherited from G: every vertex v € V keeps its
priority, and v’ has the same priority as v.

Show that each player has a winning strategy from v in G iff he/she
has a winning strategy from v" in G'.

. Show that handicap-k-parity is determined and that the winning strate-
gies are positional for both players.



