
On the synthesis of strategiesin in�nite games ?Wolfgang ThomasInstitut f�ur Informatik und Praktische MathematikChristian-Albrechts-Universit�at Kiel, D-24098 Kielwt@informatik.uni-kiel.d400.deAbstract. In�nite two-person games are a natural framework for thestudy of reactive nonterminating programs. The e�ective constructionof winning strategies in such games is an approach to the synthesis ofreactive programs. We describe the automata theoretic setting of in�nitegames (given by \game graphs"), outline a new construction of winningstrategies in �nite-state games, and formulate some questions which arisefor games over e�ectively presented in�nite graphs.1 IntroductionOne of the origins of automata theory over in�nite strings was the interest inverifying and synthesizing switching circuits. These circuits were considered astransforming in�nite input sequences into output sequences, and systems of re-stricted arithmetic served as speci�cation formalisms ([Ch63]). With B�uchi'sdecision procedure for the monadic second-order theory S1S of one successor([B�u62]), it turned out that the \solution problem" (in more recent terminology:the veri�cation problem or model checking problem) for circuits with respect tospeci�cations in S1S was settled. B�uchi's proof showed that S1S speci�cationscan be turned into !-automata, whence the veri�cation problem amounts to aninclusion test for !-languages de�ned by automata. In the context of nontermi-nating reactive (�nite-state) programs, this result was re�ned and extended inmany ways during the past decade, especially for several systems of temporallogic (in place of S1S), and with the aim of obtaining more e�cient decisionprocedures for program veri�cation. See [CGL94] for a survey of the state-of-the-art.However, this approach does not fully exploit the available automata theo-retic results: B�uchi and Landweber presented in their fundamental work [BL69]an algorithm which decides the realizability of a given speci�cation and in thiscase synthesizes a circuit (or �nite-state reactive program) from the speci�ca-tion. This result is \better" than the decidability of S1S in the sense that it isbetter to automatically construct a correct reactive program than to verify anexisting one.? This work was supported by the ESPRIT Basic Research Action 6317 ASMICS(\Algebraic and Syntactic Methods in Computer Science")



One may consider a nonterminating reactive program as a player in a two-person game against the \environment" (the second player). A play of the gameis an in�nite sequence of actions performed in alternation by the two players. Thedecision who wins is provided by a set S of plays (given by the speci�cation, andcontaining plays with certain desirable properties). If for any choice of actionsby the environment the program builds up a play in S, it is \correct" withrespect to S. This approach was pursued in [ALW89], [PR89], among others(for more background and references we recommend [NYY92a]). However, thetheory of in�nite games still lacks a development regarding applications as thishas been achieved for �nite-state program veri�cation. Especially more e�cientalgorithms for the construction of winning strategies would be useful, e.g. incontrol theory and \discrete event systems" ([RW89]).We shall start with an introduction to the automata theoretic framework forstudying in�nite games. Here a game is speci�ed by a \game graph" (a transitionsystem in which the two players perform their transition steps) together with a\winning condition". We present a new proof of the B�uchi-Landweber Theorem(as a construction of �nite-state strategies in games over �nite graphs with awinning condition of Muller type) and discuss some problems which arise forgames over e�ectively presented in�nite graphs.I thank H. Lescow, S. Seibert and Th. Wilke, as well as the participants ofthe ASMICS Workshop \Transition systems with in�nite behavior" (Bordeaux,November 1994), for many helpful discussions.2 De�nitions2.1 State-based gamesAn abstract in�nite game is given by an !-language � � A! over an alphabetA (which is assumed to be �nite in this paper). A play of the game is an !-word� = a0a1a2 : : : over A, built up by two players 0 and 1 as follows: Player 0 picksa0, player 1 picks a1, player 0 picks a2, and so on in alternation. The play � iswon by 0 if � 2 � , otherwise the play is won by 1.Often in�nite games arise in a more concrete form than just by a set � ofin�nite words. A standard situation in computer science is the consideration ofa transition system over a set of states, where actions induce steps from statesto states, and plays are describable as state sequences. When !-languages arespeci�ed by automata, this view is natural. It allows to model phenomena whichare hidden in the abstract setting (assumed usually in descriptive set theory).For example, by means of states, periodicities in plays may be immediatelycaptured by state repetitions, and also di�erent potentials of performing actions(depending on the momentary state) are simply describable. In the followingwe introduce state-based games, using terminology from [B�u77], [B�u83], [GH82],[McN93], and [Ze94].A game graph is of the form G = (Q;Q0; Q1; A; �;
) where Q is a �niteor countable set of \states", Q0; Q1 de�ne a partition of Q (Qi containing the



states where it is the turn of player i to perform an action), A is a �nite set (of\actions"), and � : Q� A * Q is a partial transition function. We require thatthe underlying graph is bipartite with respect to these transitions; formally, wehave �(Qi � A) � Q1�i for i = 0; 1. Also for any q 2 Q some a 2 A is requiredwhere �(q; a) is de�ned. Sometimes we designate a state q as \start state" andindicate the game graph by Gq.The item 
 is an \acceptance component". In the sequel, we shall considerthe cases where 
 is a state-set F � Q, a �nite collection F = fF1; : : : ; Fmgof state-sets, or a sequence (E1; F1; : : : ; Em; Fm) of sets of states from Q. Wemay view the states of the game graph \colored" correspondingly: a state q iscolored by the 0-1-vector c(q) of length 1, resp. m, resp. 2m, where a 1 in the i-thcomponent indicates that q belongs to the i-th set given in 
. For a sequence 2 Q! let c() be the sequence c((0))c((1)) : : : of associated colors.For a game graph G over Q, the decision who wins a play is �xed by a subsetC of Q!, which we call winning predicate. We write \C()" if  belongs to C. Ifthe acceptance component of G determines a coloring in f0; 1gm, we require thatmembership of  in C is already �xed by the color sequence c() 2 (f0; 1gm)!.The pair (G; C) (or (Gq; C)) is a state-based game. A play in this game is asequence  2 Q! such that for any two succeeding states (i); (i + 1) there isan action a with �((i); a) = (i + 1) (and such that (0) = q if we deal withGq). Player 0 wins the play  if  2 C, otherwise player 1 wins.A game (Gq; C) may be considered as a (possibly in�nite) !-automaton,de�ning the !-language which consists of all sequences � 2 A! which induce aplay won by player 0.A useful representation of a game (Gq; C) is the unravelling of Gq in tree form,as game tree t(Gq), which is again a game graph: Its states are the sequencesq0 : : : qr which are possible initial segments of plays in Gq, and its transitionfunction �0 is de�ned by �0(q0 : : : qr; a) = q0 : : : qr�(qr; a). The winning set C isadapted accordingly (referencing only qr from a state q0 : : : qr, but indicatedagain by C). We call the game (t(Gq); C) the tree representation of (Gq; C).2.2 Winning conditionsA winning condition is a formula (involving atomic formulas c((i)) = cl forcolors cl) which de�nes a winning predicate C. The most basic conditions referto acceptance components of the form 
 = F (inducing a coloring in f0; 1g):{ C() :� 9i (i) 2 F (formally: 9i c((i)) = 1) (�01 -condition),{ C() :� 8i (i) 2 F (�01-condition),{ C() :� 9j8i � j (i) 2 F (short: 8!i (i) 2 F ) (�02-condition),{ C() :� 8j9i > j (i) 2 F (short: 9!i (i) 2 F ) (�02-condition).For k = 1; 2, a game speci�ed with a �0k-condition (�0k-condition) is called a�0k-game (�0k-game). More general winning conditions are �rst-order formulaswith atomic formulas R(i1; : : : ; in) for any numerical relations R besides theatomic formulas c((i)) = cl; they de�ne the �nite-Borel games (where the



winning predicate occurs on a �nite level of the Borel hierarchy). The pre�xof unbounded quanti�ers in the prenex normal form of such a formula gives abound for the level of the de�ned winning predicate in the Borel hierarchy.An important class of games consists of the B(�02 )-games, where the winningsets are de�ned by Boolean combinations of �02 -conditions. We use here twoforms, namely, for acceptance components F = fF1; : : : ; FmgC() :� ff j 9!i (i) = fg 2 F (Muller condition),and for acceptance components (E1; F1; : : : ; Em; Fm)C() :� Wmk=1(9<! (i) 2 Ek ^ 9!i (i) 2 Fk) (Rabin condition).These B(�02 )-conditions are of special interest because they allow the speci�ca-tion of many properties which are relevant in concurrent systems (e.g. fairnessproperties, cf. [MP92]). Moreover, if games are considered as !-automata, andgames de�ning the same !-language are regarded as equivalent, it is possible for�nite-state games to reduce arbitrary S1S de�nable winning conditions to theRabin condition and to the Muller condition (see, for example, [Th90]).2.3 Strategies and DeterminacyA strategy for player 0, resp. 1, in the game (Gq; C) as given above is a function �which associates with any node q0 : : : qr of the game tree t(Gq) (where qr 2 Q0,resp. qr 2 Q1) one of its successors in the game tree. A strategy � thus determinesa fragment of the game tree, obtained from the game tree by deleting all nodesending inQ1, resp. Q0, which are not values of �, together with their descendants.Let us denote this strategy tree by t�(Gq). The function � is called winningstrategy for 0, resp. 1 in (Gq; C) if for all paths  through t�(Gq) we have  2 C.(In this paper we do not consider nondeterministic strategies, as done in [GH82],[YY90], [Ze94].)The existence of winning strategies is a central subject in descriptive settheory (see e.g. [Mos80]). The predominant question there is that of determinacy:For which games is it possible to guarantee that one of the two players has awinning strategy? If this holds the game is called determined. Determinacy isa powerful principle of complementation and hence important in mathematicallogic: Nonexistence of a winning strategy for one player implies existence of awinning strategy for the other player. By a deep result of Martin [Ma75], a gameis determined if its winning predicate is Borel. The games considered in thispaper are all given with Borel winning predicates and hence determined.In the questions of determinacy and complementation, the two players arehandled symmetrically. For most applications in distributed systems, however,one identi�es the players with two parties which are handled asymmetrically: oneof them represents the program (or \control", here identi�ed with player 0), theother represents the environment (or \disturbance", here identi�ed with player1). Then it is more interesting that player 0 has a winning strategy than just oneof the two players. For example, an operating system (player 0) should function



in an arbitrary or even hostile environment (player 1). Determinacy is helpful ornecessary, however, in proofs that a strategy construction is complete, or whenan induction refers to \smaller" games where a strategy can be guaranteed justfor one of the players (and not for a �xed one).We are mainly interested in the e�ective presentation and the easy execu-tion of strategies for a given player, assuming that the games are presented as�nite objects. For instance, we consider recursive games. (Such a game would bespeci�ed by an algorithm which allows to compute predecessors and successorsof the nodes in the game tree, their colors, and their association with players 0and 1.) For e�ectively presented games (of a given type), the following questionsarise:1. Does player 0 have a winning strategy?2. Is there an e�ective (or e�cient) construction of winning strategies for player0 from game presentations?3. How to construct winning strategies of low computational complexity?The second question is concerned with the construction of winning strategies,the third one with the execution of strategies. In the former case an e�ectiveor e�cient transformation from representations of games to representations ofstrategies is required, while in the latter case e�cient algorithms to computevalues of strategies (i.e., values of word functions � over the state space) areasked for.In the simplest case, where a value �(q0 : : : qr) of a strategy only depends onthe last state qr, we speak of a no-memory strategy. Such strategies are repre-sentable as fragments of the game graphs: For example, a no-memory strategyfor player 0 is speci�ed by keeping only a single edge from any state of Q0 in agame graph over Q. If a strategy � is computable by a �nite automaton (say bya Moore automaton), it is called a �nite-memory strategy or �nite-state strategy.Another important type of strategy is that of recursive (e�ectively executable)strategies.3 Finite-state gamesIn this section we outline an \incremental" proof of the B�uchi-Landweber The-orem of [BL69]: Given a �nite-state game with Muller winning condition, thepartition of the state space into the sets of states from which player 0, resp.player 1, wins is computable, and corresponding winning strategies are e�ec-tively constructible as �nite-state strategies. We proceed in four steps, coveringwinning conditions of inceasing di�culty (�01 - and �02 -condition, a special typeof Rabin condition, and the Muller condition).3.1 �01- and �02 -gamesThe �rst step deals with �01 -games. For a game graph G = (Q;Q0; Q1; A; �; F ),we have to determine the set of those states from which player 0 can force a



visit of some state in F . This is done by computing, for i � 0, the sets Wi ofstates from which a visit in F can be forced in at most i steps. Clearly we haveW0 = F andWi+1 = Wi [ fp 2 Q0 j 9a 2 A �(p; a) 2Wig[ fp 2 Q1 j 8a 2 A �(p; a) 2Wi if de�nedg:Since the sequence (Wi) is increasing and Q is �nite, there is some k where thissequence becomes constant and is the union of the Wi. Let Reach(F ) be Wk forthe �rst such k. It is easy to see this set contains the states from which 0 winsthe game. The winning strategy is best described by the ranking of states asdetermined by the sets Wi (the rank of p 2 Reach(F ) being the smallest i suchthat p 2 Wi). Now the strategy just has to ensure that the rank decreases witheach step, which can be done by deleting all edges violating this condition. Weobtain a no-memory strategy. A no-memory strategy for the opposite player 1applies to any state in Q1 n Reach(F ), specifying a transition to a target stateagain outside Reach(F ) (which exists by de�nition of Reach(F )).In the second step we treat �02 -games, again given by game graphs of theform G = (Q;Q0; Q1; A; �; F ). We determine the states from which in�nitelymany visits of F can be forced by player 0 (and skip here the proof that player1 wins from the remaining states). For this, we �rst compute the states from F(forming a set Recur(F )) which allow player 0 to force in�nitely many revisitsof F . In an auxiliary step we de�ne, for any given state set V , the set of statesfrom which a single revisit in V can be forced in � 1 steps. For this purpose,one modi�es the de�nition of the sets Wi above. LetW 01 = fp 2 Q0 j 9a 2 A �(p; a) 2 V g[ fp 2 Q1 j 8a 2 A �(p; a) 2 V if de�nedgand obtain W 0i+1 fromW 0i as Wi+1 fromWi above. Let us denote by Reach+(V )the �rst set W 0k such that Wk = W 0k+1; precisely from its states a visit of V canbe forced by player 0 in � 1 steps. Now let Vi be the set of states from whichplayer 0 can force at least i visits to F . We haveV1 = F; Vi+1 = Vi \Reach+(Vi)The sequence (Vi) is decreasing. Let Recur(F ) be their intersection, i.e., Vl forthe smallest l with Vl = Vl+1. In the considered �02 -game, player 0 has nowa winning strategy from those states which are in Reach(Recur(F )). Again itis a no-memory strategy by the inductive de�nition of the sets W 0i (where oneimposes to stay within Vl when it is entered).3.2 B(�02)-gamesWe discuss B(�02 )-games in two stages. The �rst refers to the so-called Rabinchain condition ([Mst84]), the second to the Muller condition. A Rabin chaincondition over a state set Q is given by a sequence (E1; F1; : : : ; Em; Fm) withthe extra property that E1 � F1 � : : :� Em � Fm (� Q). As in Section 2.2, the



winning condition requires for a play  2 Q! that for some k, in�nitely visits inFk occur but only �nitely many visits in Ek (�nally excluding Ek).The construction of no-memory strategies for games with such winning condi-tions works by induction on the size of the state space. We follow a constructionof McNaughton ([McN93, Thm. 6.2]), given there for winning conditions of arelated form (Muller conditions \without splits"). The claim is that any gamegraph with Rabin chain winning condition allows a partition into two setsW0;W1such that player i has a no-memory winning strategy from the states in Wi.Consider the game graph G = (Q;Q0; Q1; A; �;
) with acceptance compo-nent 
 = (E1; F1; : : : ; Em; Fm). If jQj � 2 the claim is trivial. In the inductionstep, assume that E1 = ;, i.e., F1 is the �rst nonempty entry in 
 (otherwiseswitch players 0 and 1). Pick q 2 F1. Then in�nitely many visits of q su�ce toensure a win of player 0. (Note that, by the chain condition and minimality ofF1, there is no way to extend fqg to a set of in�nitely often visited states thatcauses a win of player 1.) One veri�es that QnReach(fqg) is again a game graphG0; thus the induction hypothesis yields a partition of this game graph into setsV0; V1 such that player i has a no-memory winning strategy in G0 playing fromstates in Vi.We now distinguish the following two (complementary!) cases: Either player0 can force a direct transition from q to Q n V1, or player 1 can force a directtransition to V1. We claim that in the �rst case, the states from which 0 winsare those in Q n V1 (which is the set Reach(fqg)[ V0): Player 0 works from anystate in Reach(fqg) towards q and (by case 1) repeats this or proceeds to V0where the existing winning strategy is applied as long as player 1 allows to stayin V0. If 1 chooses to leave V0, then necessarily by a transition into Reach(fqg)which means 0 can force a visit to q again. (Transitions from V0 to V1 by player1 are impossible by the induction hypothesis on G0.) Thus, player 1 only hasthe options to remain in V0 from some moment onwards or to pass through qagain and again. In either option, player 0 wins (using an extension of the givenno-memory strategy on V0 to a no-memory strategy also on Reach(fqg)). Therequired winning strategy for 1 is the one given by the induction hypothesis.It remains to treat the case that player 1 can force a direct transition from qinto V1. Consider all states (including q, of course) from which player 1 can forcea visit in V1 over the game graph G. Call this set V ; on V there is a no-memorywinning strategy for 1. The complement of V in G turns out to be a game graphto which (by absence of q) again the induction hypothesis can be applied. Itsdecomposition into two sets U0; U1 yields the desired partition of G, namely U0as the set of states from which 0 wins, and V [U1 as the set of states from which1 wins, both by a no-memory strategy.Finally, we consider B(�02 )-games presented with the Muller winning condi-tion. Here a collection F = fF1; : : : ; Fmg of state sets is given, and the winningcondition for player 0 requires that the states visited in�nitely often in a playform one of the sets Fk. (Thus, only loops, i.e. strongly connected state sets,are reasonable candidates of such sets Fk.) Let us verify that winning strategieswithout memory do not su�ce, by considering the example game graph dis-



played in the �gure. The even-numbered circles represent the states in Q0, theodd-numbered boxes those of Q1. We suppress the labels on edges (actions).n�- -1 2 3n- -5 76�� ��n��3QQs@@@R���	6? 4Since all possible loops are uniquely determined by their odd-numberedstates, we name the �nal state sets just by their odd-numbered elements. Sup-pose the loops f1; 3g and f1; 3; 5; 7g are those in which player 0 wins (de�ningthe set F). Then a no-memory strategy would have to select one edge at state 4,but any of the two possible choices would enable player 1 to win (obviously forthe choice of 5, and for the choice of state 1 by passing from 3 to 6 when state3 is reached).A little contemplation will show that at state 4 it should be known how itwas reached: If 4 was reached directly from 3, then a good choice is to go to state1 and from 2 always to 3, which means that upon repetition of this process theloop f1; 3g is assumed forever and player 0 wins. If, however, state 4 is reachedfrom 3 via 6 and 7, then it is advisable to force a visit of all odd-numberedstates: �rst 5 and again 7, then 1 and 3. This can be executed, for example,by a memory which always records the last two visits to odd-numbered states.(Assuming that player 0 moves from 2 always to 3, there are three possibilitiesof last visits at state 4: (1; 3), (5; 7), and (3; 7). The �rst two cases require atransition to state 1, the last case a transition to 5.) Altogether the strategy isimplementable by a Moore automaton and hence �nite-state.The record on last visits of states is a basic tool for building strategies: it isfound under the name later appearance record LAR in [GH82], order-vector in[B�u83], and latest visitation record in [McN93]. For a general construction, weshall use the LAR here in an extended form following [B�u83]: Over the state-set Q = f1; : : : ; ng, an LAR with hit position is a permutation (i1; : : : ; in) of(1; : : : ; n) together with a number h from f1; : : : ; ng (the \hit"). We write thisas an n-tuple where position h is underlined and identify the set of all theseextended vectors with Perm(Q)�Q. Formally, we introduce the extended LAR ofa �nite state-sequence inductively: For the empty sequence " overQ = f1; : : : ; ng,LAR(") is (1; : : : ; n). For a state sequence s:q, LAR(s:q) is obtained by takingq from its position j in LAR(s) towards the end, and setting the hit to bej. So the hit records from which place onwards in an LAR a change has justoccurred. In our example above (disregarding again all even-numbered states),a repeated tour through the loop f1; 3g will lead to LAR-values (5; 7; 1; 3) and(5; 7; 3; 1), whereas the repeated tour through all states will set the hit to the�rst position again and again. Using the hit position, a set F can be �xedas containing precisely the states visited in�nitely often, in the following way



(assuming jF j = k): From some moment onwards, the hit stays � (n � k) + 1,and in�nitely often the hit is (n� k)+ 1 with the elements of F (in some order)on the LAR positions (n�k)+1; : : : ; n. Thus, the hit induces a scale for the �nalsets by size (which supplies the connection with the Rabin chain condition).Given a game graph G = (Q;Q0; Q1; A; �;F), we shall extract the desired�nite-state winning strategies for players 0 and 1 from a new game graph G0 =(Q0; Q00; Q01; A; �0; 
), which is equipped with a winning condition in Rabin chainform. We set Q0 = Q� Perm(Q) � Q, and let a state of Q0 be in Q00 (resp. Q01)i� its �rst component is in Q0 (resp. in Q1). The transition function �0 copies� regarding the �rst component, while for the remaining components �0 realizesthe update of the LAR as explained above. A play  over G thus correspondsto a play 0 over G0, using the initial LAR for the �rst state 0(0). We shallde�ne the acceptance component 
 in Rabin chain form such that the followingequivalence holds:A play  over G is won by player 0 (resp. player 1) i� the correspondingplay 0 over G0 is won by player 0 (resp. player 1).Using this, we can apply the previous strategy construction to G0 (since over G0the winning condition is in Rabin chain form) and obtain a no-memory strategyfor any q0 2 Q0 where there is a winning strategy for player 0 (resp. player 1) inG0q0 at all. The strategy is obtained by deleting certain transitions in G0, whichin turn de�nes the desired �nite-state strategy over G (since the storage andupdates of the extended LAR can be realized by a �nite automaton).It remains to establish the above equivalence. For this, we assume jQj = nand de�ne a chain 
 = (E1; F1; : : : ; En; Fn) of subsets of Q0. Let Ej contain allstates from Q0 where the LAR part has a hit value smaller than j, and let Fj bethe union of Ej with the set of states from Q0 where this hit value is precisely jand the LAR-entries from the hit position onwards form a set in F . (We obtaina proper inclusion chain by merging Ej and Ej+1 if Fj n Ej = ;, resp. Fj andFj+1 if Ej+1 n Fj = ;.) It is now easy to verify the claimed equivalence, whichcompletes the strategy construction for �nite-state B(�02 )-games.In our example above, we could work just with the set of odd-numbered statesin place of Q. In [McN93], such a set W of \relevant states" is introduced ingeneral: It contains just enough states for the distinction between �nal and non-�nal loops. We see from the proof above that in a game over Q with a Mullercondition over a set W of relevant states, the winner has a winning strategyrequiring a memory of size jW j! � jW j. A recent (and quite di�erent) proof of S.Seibert ([Se94]) gives a proper exponential upper bound of 4jW j for the memory.Examples of H. Lescow and S. Seibert show that for some constant c, cjW j is alower bound for the memory size of the winner. It would be interesting to knowclasses of games (or winning conditions) where the winner has a polynomial size(however non-zero memory) winning strategy.The proof above shows that the Rabin chain condition is a useful intermediatestep in handling games (or automata) with the Muller condition. We see how thegame presentations are related to the memory-size in winning strategies: Whengame graphs are considered as !-automata, the transformation of automata with



Muller acceptance to those with Rabin chain acceptance involves a blow-up inthe state space which supplies exactly the memory suitable to win games withMuller winning condition as compared to the (zero) memory for games withRabin chain condition.The Rabin chain condition was introduced by Mostowski in [Mst84] but re-mained rather unnoticed. It was applied independently for obtaining no-memorystrategies in [Mst91a] and [EJ91] (where it is called \parity condition"). Thesimulation of Muller acceptance using B�uchi's version of the LAR, as presentedhere, yields smaller transition graphs with Rabin chain condition than previousconstructions in [Mst91b] and [Ca94].Gurevich and Harrington showed the much more general result that strategieswith an LAR memory su�ce for B(�02 )-games even over in�nite graphs (\Forget-ful Determinacy Theorem" [GH82], [YY90], [Ze94]). By lack of space we cannotenter this interesting subject here. For example, �xed point constructions (asabove in Section 3.1 for the �nite-state case) require now ordinal-indexed sets.Games of this form can be applied to obtain the complementation of Rabin treeautomata (as proposed by B�uchi [B�u77], [B�u83]). Several approaches have beendeveloped to obtain transparent proofs; as recent references, besides the paperslisted above, we mention [EJ91], [Mu92], [Kl94], [MS94].4 Games over pushdown transition graphs and recursivegraphsThe subject of this section is still in its beginnings: e�ective winning strategies(and their construction) for games on e�ectively presented in�nite graphs.A natural �rst step after �nite-state games is to consider games over tran-sition graphs of deterministic pushdown automata. Here each node correspondsto a global state of a pushdown automaton, given by the content of the push-down store and the state of the �nite control. These are context-free graphs inthe sense of Muller and Schupp ([MS85]), also called \context-free processes" insemantics of concurrency, and their unravellings in tree form are the algebraictrees in the sense of [Co83]. As Courcelle has shown in [Co94], the monadicsecond-order theory of an algebraic tree is decidable. This result can be appliedto games over algebraic trees where the winning conditions are expressible inmonadic second-order logic. In this case, the existence of a winning strategyis expressed by a monadic second-order sentence about the game tree, saying\there is a fragment of the game tree de�ning a strategy, such that for eachpath through the fragment, the winning condition is satis�ed". (Analogously,the B�uchi-Landweber-Theorem can be shown using �nite tree automata overin�nite trees and the e�ective solution of their emptiness problem, cf. [Ra72].)One should expect that from the decidability proof of [Co94] also an e�ectiveconstruction of a winning strategy can be extracted (if such a strategy exists);however, this sharpened claim and a complexity analysis are presently open.In contrast to the �nite-state case, there are now natural winning conditionswhich are no more monadic second-order de�nable and occur at higher Borel



levels than B(�02 ). An example is the winning condition on paths through apushdown transition graph which requires that some pushdown content (possiblywith an extra property) occurs in�nitely often. The condition is in �03-form, andit seems interesting to decide the existence of winning strategies for a givenplayer, to analyze if and when these strategies are recursive, and to constructthe strategies e�ectively. So far, only B�uchi's work [B�u83] on (�03 \�03 )-gamesseems to be available on this subject. (In such games, it can also be appropriateto admit in�nitely many colors, e.g. representing the in�nitely many pushdowncontents, in order to reformulate the winning condition.)In recursive games, the construction of e�ective strategies may fail even for�02-winning conditions. To verify this, consider the following game tree t:
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. . .The tree is de�ned using the halting problem for Turing machines in the followingway: Below the node named i in the �gure, we have a switch of colors (asindicated) on the k-th level of the two branches i� the i-th Turing machine Mihalts on the empty tape after k steps. Clearly the tree t is recursive. Considerthe game (t; C) with winning condition \C() :� 9!n (n) is colored black". Itis obvious that a winning strategy for 0 in this game is recursive i� the haltingproblem for Turing machines is recursive (because at node i a strategy has to�x a decision which is equivalent to the decision whether Mi eventually halts).A more drastic statement can be obtained from the following recursion theo-retic result: There is a nonempty�02 -!-languageL � f0; 1g! such that no !-word 2 L is hyperarithmetical, i.e., for any  2 L the numbers i with (i) = 1 forma set of natural numbers outside �11. (See e.g. [Mos80, 4.D.10], using that in theCantor space f0; 1g!, �11-sets are projections of �02 -sets.) Such an !-languageL contains the !-words � 2 f0; 1g! such that 9!i �(0) : : :�(i) 2 R for a cer-tain recursive set R; L induces a full binary recursive game tree tL where theroot is associated with player 0 and a node a1a2 : : :a2ia2i+1 2 f0; 1g+ is colored\black" i� a1a3 : : : a2i+1 2 R. A strategy for 0 de�nes a path  through tL andis of the same recursion theoretic degree as . Using again the winning condition\C() :� 9!n (n) is black", there is a winning strategy for 0 (because L 6= ;),but none which is hyperarithmetical.As above for context-free games, special but natural classes of recursive gamesshould be found such that there are recursive winning strategies, which moreovershould be obtained e�ectively from the game presentations.
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