
1 ω-Automata

Berndt Farwer

Fachbereich Informatik
Universität Hamburg

1.1 Introduction and Notation

Automata on infinite words have gained a great deal of importance since their
first definition some forty years ago. Apart from the interests from a theoretical
point of view they have practical importance for the specification and verification
of reactive systems that are not supposed to terminate at some point of time.
Operating systems are an example of such systems, as they should be ready to
process any user input as it is entered, without terminating after or during some
task.

The main topic covered in this chapter is the question how to define accep-
tance of infinite words by finite automata. In contrast to the case of finite words,
there are many possibilities, and it is a nontrivial problem to compare them with
respect to expressive power.

First publications referring to ω-languages date back to the 1960’s, at which
time Büchi obtained a decision procedure for a restricted second-order theory
of classical logic, the sequential calculus S1S (second order theory of one suc-
cessor), by using finite automata with infinite inputs [17]. Muller [133] defined a
similar concept in a totally different domain, namely in asynchronous switching
network theory. Starting from these studies, a theory of automaton definable
ω-languages (sets of infinite words) emerged. Connections were established with
other specification formalisms, e.g. regular expressions, grammars, and logical
systems. In this chapter, we confine ourselves to the automata theoretic view.

1.1.1 Notation

The symbol ω is used to denote the set of non-negative integers, i.e. ω :=
{0, 1, 2, 3, . . .}.

By Σ we denote a finite alphabet. Symbols from a given alphabet are denoted
by a, b, c Σ∗ is the set of finite words over Σ, while Σω denotes the set of
infinite words (or ω-words) over Σ (i.e. each word α ∈ Σω has length |α| = ω).
Letters u, v, w, . . . denote finite words, infinite words are denoted by small greek
letters α, β, γ We write α = α(0)α(1) . . . with α(i) ∈ Σ. Often we indicate
infinite runs of automata by �, σ, A set of ω-words over a given alphabet is
called an ω-language.

For words α and w, the number of occurrences of the letter a in α and w is
denoted by |α|a and |w|a, respectively. Given an ω-word α ∈ Σω, let

Occ(α) = {a ∈ Σ | ∃i α(i) = a}

E. Grädel et al. (Eds.): Automata, Logics, and Infinite Games, LNCS 2500, pp. 3-21, 2002.
 Springer-Verlag Berlin Heidelberg 2002

4 Berndt Farwer

be the (finite) set of letters occurring in α, and

Inf(α) = {a ∈ Σ | ∀i∃j > i α(j) = a}

be the (finite) set of letters occuring infinitely often in α.
The powerset of a setM is denoted by 2M and |M | denotes the cardinality of

M . The i-th projection of an ordered tuple or vector a = (a1, . . . , ak) is defined
for i ≤ k and is written πi(a) = ai.

The class of regular languages is denoted by REG.

1.2 ω-Automata

In classical formal language theory, the notion of acceptance of a word by an au-
tomaton is a well-known concept. One defines the notion of finite computation
or finite run of an automaton on a given input word, specifies the configura-
tions (by control states, or by control states and memory contents) which are
considered to be “final”, and declares an input accepted if a run exists on the
input which terminates in a final configuration.

In the present context we are interested only in the acceptance of words
by automata (and not in generation of ω-words by grammars). Also we only
consider finite automata. The definitions of acceptors and generators for context-
free languages and more general language classes have also been adapted to suit
the case of infinite words (see for example [113, 36, 37, 38]), or the survey [165].
In the remainder of this chapter we will use ω-automaton synonymously for finite
ω-automaton.

The usual definitions of deterministic and nondeterministic automata are
adapted to the case of ω-input-words by the introduction of new acceptance
conditions. For this purpose one introduces an “acceptance component” in the
specification of automata, which will arise in different formats.

Definition 1.1. An ω-automaton is a quintuple (Q,Σ, δ, qI ,Acc), where Q is
a finite set of states, Σ is a finite alphabet, δ : Q×Σ → 2Q is the state transition
function, qI ∈ Q is the initial state, and Acc is the acceptance component.
In a deterministic ω-automaton, a transition function δ : Q×Σ → Q is used.

The acceptance component can be given as a set of states, as a set of state-
sets, or as a function from the set of states to a finite set of natural numbers.
Instances of all these case will be presented below.

Definition 1.2. Let A = (Q,Σ, δ, qI ,Acc) be an ω-automaton. A run of A on
an ω-word α = a1a2 · · · ∈ Σω is an infinite state sequence � = �(0)�(1)�(2) · · · ∈
Qω, such that the following conditions hold:

(1) �(0) = qI ,
(2) �(i) ∈ δ(�(i− 1), ai) for i ≥ 1 if A is nondeterministic,

�(i) = δ(�(i− 1), ai) for i ≥ 1 if A is deterministic.

1 ω-Automata 5

With the different acceptance conditions defined in the following sections the
question arises how they are related in expressive power, i.e. whether there exist
transformations from one acceptance condition to another. If such transforma-
tions can be established another question naturally arises: what is the complexity
for the respective translations?

The size of an automaton A, denoted by |A|, is measured by the number
of its states, i.e. for A = (Q,Σ, δ, qI ,Acc) the size is |A| = |Q|. In addition to
the number of states of an automaton the size of the acceptance condition is
also of some importance for the efficiency of the transformation. This is usually
measured by the number of designated sets or pairs of such. Details are given in
the respective sections.

1.3 Nondeterministic Models

1.3.1 Büchi Acceptance

The Büchi acceptance condition has originally been introduced for nondetermin-
istic ω-automata. In this case, the acceptance component is a set of states.

Definition 1.3. An ω-automaton A = (Q,Σ, δ, qI, F) with acceptance com-
ponent F ⊆ Q is called Büchi automaton if it is used with the following
acceptance condition (Büchi acceptance): A word α ∈ Σω is accepted by A
iff there exists a run � of A on α satisfying the condition:

Inf(�) ∩ F �= ∅

i.e. at least one of the states in F has to be visited infinitely often during the
run. L(A) := {α ∈ Σω | A accepts α} is the ω-language recognized by A.

Example 1.4. Consider the ω-language L over the alphabet {a, b} defined by

L := {α ∈ {a, b}ω | α ends with aω or α ends with (ab)ω}.

L is recognized by the nondeterministic Büchi automaton given by the state
transition diagram from Figure 1.1. The states from F are drawn with a double
circle.

q1 a

q0

a,b

a

a q2

b

q3

a

Fig. 1.1. A Büchi automaton accepting the words from (a + b)∗aω + (a + b)∗(ab)ω

6 Berndt Farwer

Consider a Büchi automaton A = (Q,Σ, δ, qI, F). Using this automaton with
initial state p and final state q we obtain a regular language W (p, q) of finite
words. An ω-word α is accepted by A iff some run of A on α visits some final
state q ∈ F infinitely often. This is equivalent to α ∈W (q0, q) ·W (q, q)ω . Taking
the union over these sets for q ∈ F , we obtain the following representation result
for Büchi recognizable ω-languages.

Theorem 1.5. The Büchi recognizable ω-languages are the ω-languages of the
form

L =
k⋃

i=1

UiV
ω
i with k ∈ ω and Ui, Vi ∈ REG for i = 1, . . . , k

This family of ω-languages is also called the ω-Kleene closure of the class of
regular languages.

From this remark one concludes immediately that each nonempty Büchi rec-
ognizable ω-language contains an ultimately periodic word.

Let us also note that the emptiness problem is decidable for Büchi au-
tomata, i.e. there exists an algorithm that decides whether the language rec-
ognized by an arbitrary (nondeterministic) Büchi automaton is empty. Given
a Büchi automaton A, one computes the set of reachable states, and for each
reachable state q from F checks whether q is reachable from q by a nonempty
path. Such a loop exists if and only if there exists an infinite word α and a run
of A on α such that q is a recurring state in this run.

1.3.2 Muller Acceptance

The Muller acceptance condition refers to an acceptance component which is a
set of state sets F ⊆ 2Q.

Definition 1.6. An ω-automaton A = (Q,Σ, δ, qI,F) with acceptance com-
ponent F ⊆ 2Q is called Muller automaton when used with the follwing
acceptance condition (Muller acceptance): A word α ∈ Σω is accepted by A
iff there exists a run � of A on α satisfying the condition:

Inf(�) ∈ F

i.e. the set of infinitely recurring states of � is exactly one of the sets in F .

Example 1.7. Consider again the ω-language L over {a, b} consisting of the ω-
words which end with aω or with (ab)ω. The deterministic Muller automaton
of Figure 1.2 recognizes L, where the acceptance component consists of the two
sets {qa} and {qa, qb}.

We now verify that nondeterministic Büchi automata and nondeterministic
Muller automata are equivalent in expressive power.

One direction is straightforward: for a Büchi automaton A = (Q,Σ, δ, qI , F)
define the family F of sets of states by collecting all subsets of Q which contain
a state from F .

1 ω-Automata 7

a

b
qb

b

qa

a

Fig. 1.2. A state transition diagram where the state qa is reached after reading a and
qb after reading b.

Transformation 1.8. Let A = (Q,Σ, δ, qI, F) be a Büchi automaton. Define the
Muller automaton A′ = (Q,Σ, δ, qI ,F) with F := {G ∈ 2Q | G ∩ F �= ∅}. Then
L(A) = L(A′).

For the converse, a Muller automaton A = (Q,Σ, δ, qI ,F) is given. The
desired Büchi automaton A′ simulates A and, in order to accept, it guesses the
set G ∈ F which should turn out to be Inf(�) for the run � to be pursued.
For checking that the guess is correct, A′ makes another guess during the run,
namely from which position onwards exactly the states from G will be seen
again and again. This claim can be verified by accumulating the visited states in
memory until the set G is complete, then resetting the memory to ∅ and starting
accumulating again, and so on. If this reset occurs again and again (and no state
outside G is visited), the automaton A′ should accept. By declaring the “reset
states” as accepting ones, we obtain the required Büchi automaton.

For an implementation of this idea, we work with the set Q of original states
and introduce, for each set G ∈ F , a separate copy of Q ∩ G. We indicate such
states with index G (and write qG). The automaton A′ does the two guesses
at the same moment, at which time it switches from a state p of Q to a state
from qG ∈ G and initializes the accumulation component to ∅. So the new states
for the accepting set G will be from G × 2G, where (qG, R) codes that q is the
current state of A and R is the set of accumulated states since the last reset
(where the R-value is ∅). So the set Q′ of states of A′ is

Q′ = Q ∪ ·
⋃

G∈F
(G× 2G)

and the set F ′ of final states of A′ consists of the states (qG, ∅) for G ∈ F . We
do not give a formal definition of the transitions, which should be clear from the
description above.

Transformation 1.9. Let A = (Q,Σ, δ, qI ,F) be a Muller automaton. Define
a Büchi automaton A′ = (Q′, Σ, δ′, qI , F

′) with Q′, δ′, F ′ defined as described
above. Then L(A) = L(A′).

If Q has n states and F contains m sets then |Q′| has at most n+mn2n = 2O(n)

states. Summarizing, we obtain the following result.

Theorem 1.10. A nondeterministic Büchi automaton with n states can be con-
verted into an equivalent Muller automaton of equal size, and a nondeterministic
Muller automaton with n states and m accepting sets can be transformed into
an equivalent Büchi automaton with ≤ n+mn2n states.

8 Berndt Farwer

a

b
qb

b

qa

a

b ac c
qc

c

Fig. 1.3. A state diagram where qx is reached after reading x.

The transformation sketched above transforms nondeterministic Büchi au-
tomata into nondeterministic Muller automata and conversely. For a given de-
terministic Büchi automaton the translation yields a deterministic Muller au-
tomaton. On the other hand, a deterministic Muller automaton is converted into
a nondeterminsitic Büchi automaton. As we shall see later, this nondeterminism
cannot in general be avoided.

1.3.3 Rabin and Streett Acceptance

The acceptance condition for Büchi automata is a positive condition on recur-
ring states for the acceptance of ω-words. In Muller automata the specification
by a set F is sharpened, because an accepting set F should contain precisely
the recurring states (and not more). There are also formalisms specifying accep-
tance and rejection criteria separately. The Rabin condition – also called pairs
condition – is such a condition.

The acceptance component is given by a finite family Ω of pairs (Ei, Fi) of
designated state sets with the understanding that the sets Ei should be excluded
from an accepting run after a finite initial segment, while at least one state in
Fi has to be visited infinitely often.

Definition 1.11. An ω-automaton A = (Q,Σ, δ, qI , Ω) with acceptrance com-
ponent Ω = {(E1, F1), . . . , (Ek, Fk)} with Ei, Fi ⊆ Q is called Rabin automa-
ton if it used with the following acceptance condition (Rabin acceptance): A
word α is accepted by A if there exists a run � of A on α such that

∃(E,F) ∈ Ω(In(�) ∩ E = ∅) ∧ (Inf(�) ∩ F �= ∅).

Example 1.12. The Rabin automaton with state transition diagram from Fig-
ure 1.2 and Rabin condition Ω = {({qb}, {qa})} accepts all words that consist
of infinitely many a’s but only finitely many b’s.

To specify the language consisting of all words that contain infinitely many
b’s only if they also contain infinitely many a’s with a Rabin automaton based
on the state graph from Figure 1.2 we have to use Ω = {(∅, {qa}), ({qa, qb}, ∅)}.
This condition can be paraphrased by saying that each word in the accepted
language has either infinitely many a’s or it has neither infinitely many a’s nor
infinitely many b’s. It is clear that in the latter case no ω-word can be accepted

1 ω-Automata 9

and the condition could be simplified to Ω = {(∅, {qa})}. But in the presence of
a third symbol and a third state as depicted in Figure 1.3 two pairs are needed,
as the ω-word cω must be recognized: Ω = {(∅, {qa}), ({qa, qb}, {qc})}.

The Streett condition is dual to the Rabin condition. It is therefore some-
times called complemented pair condition. It can be viewed as a fairness
condition meaning that for each pair (E,F) ∈ Ω, if some state from F is visited
infinitely often, there has to be a state from E that is also visited infinitely often
during an accepting run.

Definition 1.13. An ω-automaton A = (Q,Σ, δ, qI, Ω) with acceptance com-
ponent Ω = {(E1, F1), . . . , (Ek, Fk)} with Ei, Fi ⊆ Q is called Streett automa-
ton if it is used with the following acceptance condition (Streett acceptance):
A word α is accepted by A if there exists a run � of A on α such that

∀(E,F) ∈ Ω . (Inf(�) ∩E �= ∅) ∨ (Inf(�) ∩ F = ∅)

(equivalently: if Inf(�) ∩ F �= ∅ then Inf(�) ∩ E �= ∅).

Example 1.14. Let Σ = {a, b}. The language consisting of all words that contain
infinitely many a’s if they contain infinitely many b’s can be recognized by a
Streett automaton with the state graph from Figure 1.2. The condition can be
paraphrased as |α|b �= ω ∨ |α|a = ω, i.e. |α|b = ω ⇒ |α|a = ω. In the automaton
of Figure 1.2 the two states qa and qb indicate that respectively symbol a or b has
been read in the previous step. The appropriate Streett automaton is obtained
by taking as acceptance component the set Ω = {({qa}, {qb})}.

Rabin automata and Streett automata are transformed into Muller automata
by simply gathering all state sets that satisfy the Rabin condition, respectively
Streett condition, into a Muller acceptance set.

Transformation 1.15. Let A = (Q,Σ, δ, qI , Ω) be a Rabin automaton, respec-
tively Streett automaton. Define a Muller automaton A′ = (Q,Σ, δ, qI ,F) with
F := {G ∈ 2Q | ∃(E,F) ∈ Ω .G ∩ E = ∅ ∧ G ∩ F �= ∅}, respectively with
F := {G ∈ 2Q | ∀(E,F) ∈ Ω .G ∩ E �= ∅ ∨G ∩ F = ∅}. Then L(A) = L(A′).

For the converse it suffices to invoke the transformation of Muller automata
into Büchi automata, as in the preceding subsection, and to observe that Büchi
acceptance can be viewed as a special case of Rabin acceptance (for the set F
of final states take Ω = {(∅, F)}), as well as a special case of Streett condition
(for the set F of final states take Ω = {(F,Q)}).

1.3.4 The Parity Condition

The parity condition amounts to the Rabin condition for the special case where
the accepting pairs (E1, F1), . . . , (Em, Fm) form a chain with respect to set inclu-
sion. We consider the case of an increasing chain E1 ⊂ F1 ⊂ E2 ⊂ . . . Em ⊂ Fm.

10 Berndt Farwer

Let us associate indices (called colours) with states as follows: states of E1 re-
ceive colour 1, states of F1 \ E1 receive colour 2, and so on with the rule that
states of Ei \Fi−1 have colour 2i− 1 and states of Fi \Ei have colour 2i. An ω-
word α is then accepted by the Rabin automaton iff the least colour occurring
infinitely often in a run on α is even (hence the term “parity condition”).

Definition 1.16. An ω-automaton A = (Q,Σ, δ, qI, c) with acceptance com-
ponent c : Q → {1, . . . , k} (where k ∈ ω) is called parity automaton if it is
used with the following acceptance condition (parity condition): An ω-word
α ∈ Σω is accepted by A iff there exists a run � of A on α with

min{c(q) | q ∈ Inf(�)} is even

Sometimes it is more convenient to work with the condition that the maximal
colour occurring infinitely often in the run under consideration is even. This
applies to some constructions in later chapters of this book.

Example 1.17. Consider the parity automaton from Figure 1.4 with colouring
function c defined by c(qi) = i.

q0 q3q2q1a b

a

c

b

c

Fig. 1.4. Another ω-automaton

It accepts the ω-words with start with ab, continue by a finite sequence
of segments in a∗cb∗c, and end with aω; so L(A) = ab(a∗cb∗c)∗aω. For the
parity automaton A′ with the same transition graph but colouring c′ defined by
c′(qi) = i+ 1 we obtain L(A′) = ab(a∗cb∗c)∗bω ∨ ab(a∗cb∗c)ω.

It is obvious how a parity condition is cast into the form of a Rabin condition.

Transformation 1.18. Let A = (Q,Σ, δ, qI , c) be an ω-automaton be a parity
automaton with c : Q → {0, . . . , k}. An equivalent Rabin automaton A′ =
(Q,Σ, δ, qI , Ω) has the acceptance component Ω := {(E0, F0), . . . , (Er , Fr)} with
r := �k

2 �, Ei := {q ∈ Q | c(q) < 2i} and Fi := {q ∈ Q | c(q) ≤ 2i}.

1.3.5 Discussion

The equivalence results obtained above can be summarized as follows:

Theorem 1.19. (1) Nondeterministic Büchi automata, Muller automata, Ra-
bin automata, Streett automata, and parity automata are all equivalent in
expressive power, i.e. they recognize the same ω-languages.

1 ω-Automata 11

(2) The ω-languages recognized by these ω-automata form the class ω-KC(REG),
i.e. the ω-Kleene closure of the class of regular languages.

The ω-languages in this class are commonly referred to as the regular ω-
languages, denoted by ω-REG.

At this point two fundamental questions arise.

• Are there types of deterministic ω-automata which recognize precisely the
ω-languages in ω-REG?

• Is the class ω-REG closed under complementation?

Both questions can be answered affirmatively; and both involve tedious work.
The complementation problem can be attacked via several approaches (see

Chapter 4 below). One possibility is to work with deterministic ω-automata and
thus use a reduction to the determinization problem.

1.4 Deterministic Models

In Chapter 3 below, it will be shown that deterministic Muller automata rec-
ognize precisely the regular ω-languages. In the present section, we discuss
the relation between deterministic Muller automata and other deterministic ω-
automata, and also give some remarks on the complementation problem.We shall
see that deterministic Muller automata, Rabin automata, Streett automata, and
parity automata are all equivalent in expressive power. Note that the equivalence
proof given above for the nondeterministic case cannot be copied: We proceeded
via nondeterministic Büchi automata and thus, even from deterministic Muller
automata, would obtain nondeterministic Rabin, Streett, and parity automata.
As we now verify, we cannot in general sharpen the construction of a Büchi
automaton to obtain a deterministic one.

1.4.1 The Büchi Condition for Deterministic ω-Automata

Let us see that Büchi automata are too weak to recognize even very simple
ω-languages from ω-REG. The Büchi automaton depicted in Figure 1.5 with
F = {q1} accepts those ω-words over the alphabet {a, b} that have only finitely
many b’s.

q0

a,b

a q1 a

Fig. 1.5. An automaton recognizing (a + b)aω

It is easy to provide an equivalent deterministic Muller automaton, using
two states qa, qb which are visited after reading a, b, respectively, and declaring

12 Berndt Farwer

F = {{qa}} as acceptance component (see Figure 1.2). Then a run is accepting
iff it ends by a sequence consisting of state qa only, which means that the input
word ends with aω.

If one would work with the Büchi acceptance condition, using a set F of
accepting states, then one has a specification of states which should be visited
infinitely often, but it is not directly possible to specify which states should be
seen only finitely often.

The argument which shows that deterministic Büchi automata are too weak
for recognizing L = (a + b)∗bω works by contradiction: Assuming that the
deterministic Büchi automaton A with final state set F recognizes L, it will
on input bω visit an F -state after a finite prefix, say after the n0-th letter. It
will also accept bn0abω, visiting F -states infinitely often and hence after the a,
say when finishing the prefix bn0abn1 . Continuing this construction the ω-word
bn0abn1abn2a . . . is generated which causes A to pass through an F -state before
each letter a but which should of course be rejected.

1.4.2 Transforming Muller Automata to Rabin Automata

Let us now show that deterministic Muller automata, Rabin automata, Streett
automata, and parity automata all have the same expressive power. We show first
the crucial step, namely that deterministic Muller automata can be transformed
into deterministic Rabin automata.

We use a technique called latest appearance record (LAR). The idea is
to use permutations of the states of the given Muller automaton as new states,
extended by a hit position. So the memory of the new automaton stores lists
of states from the original automaton; this is in contrast to the construction
of Theorem 1.10 which produced a nondeterministic Büchi automaton from a
Muller automaton; in that case we stored sets of states of the original automaton
in the memory of the constructed one.

In a list of (distinct) states, we use the last entry for the current state in the
run on the given Muller automaton. The hit position (the position of the marker
() indicates where the last change occurred in the record. For every transition
from one state p to q in the original automaton, the state q is moved to the last
position of the record while the symbols which were to the right of q are shifted
one position to the left (so the previous place of q is filled again). The marker is
inserted in front of the position where q was taken from. So the positions before
the marker are untouched by the transition under consideration.

Transformation 1.20. LetA = (Σ,Q, δ, qI ,F) be a deterministic Muller automa-
ton. Assume w.l.o.g. that Q = {1, . . . , k} and qI = 1. Let (be a new symbol, i.e.
(�∈ Q.

An equivalent Rabin automaton A′ is given by the following definition:

• Q̃ is the set of all order vector words with hit position over Q, i.e.

Q̃ := {w ∈ (Q ∪ {(})∗ | ∀q ∈ Q ∪ {(} . |w|q = 1}

1 ω-Automata 13

• The initial state is q′I := (k . . . 1.
• The transition function δ′ is constructed as follows: Assume i, i′ ∈ Q, a ∈ Σ,
and δ(i, a) = i′. Then δ′ is defined for any word m1 . . .mr(mr+1 . . .mk ∈ Q̃
with mk = i. Supposing that i′ = ms, define

δ′(m1 . . .mr(mr+1 . . .mk, a) := (m1 . . .ms−1(ms+1 . . .mki
′).

• The acceptance component is given by Ω = {(E1, F1), . . . , (Ek, Fk)}, defined
as follows:
– Ej := {u(v | |u| < j}
– Fj := {u(v | |u| < j} ∪ {u(v | |u| = j ∧ {m ∈ Q | m � v} ∈ F}.

Here the infix relation m � v should be read as “m occurs in v”, since m is
a single letter.

Consider a run of the Muller automaton A, where the set of infinitely often
visited states is, say, J = {m1, . . . ,mj} This means that in the corresponding
run of the Rabin automaton A′, the states of Q \ J will eventually reach the
first positions and then stay indefinitely in front of the marker. So finally the A′-
states will be of the form u(v where the (Q \J)-elements occur at the beginning
of u (or constitute the whole word u). Hence, eventually we will constantly have
|u| ≥ |Q \ J |, in other words |v| ≤ |J | = j. Clearly infinitely often we have
|v| = |J | = j, since otherwise, from some point onwards we would have |v| < j
and thus less than j states would be visited infinitely often.

So infinitely often a state u(v with |v| = j is seen but only finitely often a
state with v > j. Moreover, the states which constitute the word v in the first
case |v| = j form precisely the set J .

We can summarize this as follows:

Lemma 1.21. Let � be an infinite run of the deterministic Muller automaton
A with state set Q = {1, . . . , k} and let u0(v0, u1(v1, u2(v2, . . . be the correspond-
ing sequence of order vectors with hit, according to Transformation 1.20. Then
Inf(�) = J with |J | = j iff the following conditions hold:

• for only finitely many i we have |vi| > j (and hence |ui| ≤ k − j)
• for infinitely many i we have |vi| = j (and hence |ui| = k − j) and
J = {m ∈ Q | m � vi}.

The Muller automaton A accepts by the run � if the set J considered in the
Lemma belongs to F . This means that the run will infinitely often visit a state
in the defined set Fk−j but only finitely often visit states u(v with |u| < k − j,
i.e. states from Ek−j . So the Rabin condition of A′ is satisfied and A′ accepts in
this case. The converse implication (“if A′ accepts an input word, then A does”)
is shown analogously.

From the definition of the sets Ej , Fj we see that they are arranged in a chain:
E1 ⊆ F1 ⊆ E2 . . . ⊆ Ek ⊆ Fk. We can shorten the chain by admitting only pairs
where Ej �= Fj , without altering the set of accepting runs. Then we are left with
a strictly increasing chain of sets, and thus have defined an ω-automaton which
is presentable as a parity automaton.

14 Berndt Farwer

Altogether we obtain the following result:

Theorem 1.22. By Transformation 1.20, a deterministic Muller automaton
with n states is transformed into a deterministic Rabin automaton with n · n!
states and n accepting pairs, and also into a deterministic parity automaton
with n · n! states and 2n colours.

Transformation 1.20 is given here for deterministic automata, but it works
analogously for nondeterministic automata.

In order to cover also Streett automata it is useful to look at the complemen-
tation of ω-languages. Note that the negation of the Rabin acceptance condition

(∗) ∃(E,F) ∈ Ω (Inf(�) ∩ E = ∅) ∧ (Inf(�) ∩ F �= ∅).

is equivalent to the Streett condition:

(∗∗) ∀(E,F) ∈ Ω (Inf(�) ∩ E �= ∅) ∨ (Inf(�) ∩ F = ∅)

Hence, when we transform a deterministic Rabin automaton recognizing L
into a Streett automaton by keeping all its components, including the acceptance
component, but using it in the form (∗∗) instead of (∗), then the resulting Streett
automaton recognizes the complement of L.

We can transform a deterministic Rabin automaton into an equivalent Streett
automaton by a detour through Muller automata. Namely, the complement of
an ω-language recognized by a deterministic Muller automaton is accepted by
the same automaton up to the set of designated state sets; this set F has to be
replaced by its complement w.r.t. the set of states Q of the automaton.

Transformation 1.23. Let A = (Q,Σ, δ, qI,F) be a deterministic Muller aur-
tomaton. Then the Muller automaton A′ := (Q,Σ, δ, qI , 2Q \ F) recognizes the
complement of L(A).

Now we can transform a deterministic Rabin automaton A into a deter-
ministic Streett automaton as follows: From A construct an equivalent Muller
automaton, by copying Transformation 1.15 for the deterministic case. Com-
plement the Muller automaton, and then apply Transformation 1.20 to obatain
a Rabin automaton A′ recognizing the compelement of L. Used as a Streett
automaton, A′ recognizes L, as desired.

The converse transformation from Streett to Rabin automata works analo-
gously.

As a consequence of the previous constructions we note the following:

Theorem 1.24. Deterministic Muller automata, Rabin automata, Streett au-
tomata, and parity automata recognize the same ω-languages, and the class of
ω-languages recognized by any of these types of ω-automata is closed under com-
plementation.

1 ω-Automata 15

In this result, the complementation of parity automata would work as follows:
Write the parity condition as a Rabin condition, define the complement by read-
ing it as a Streett condition, pass to an equivalent Muller automaton, and obtain
from it an equivalent Rabin automaton by Transformation 1.20. This is simpli-
fied considerably by the direct approach, which applies the idea of exchanging
even and odd colours.

For showing that the complement of a language accepted by an ω-automa-
ton with parity condition is also acceptable by a parity automaton, the colour
function has to be modified such that henceforth every word previously not
accepted has even parity in its minimal colour value and uneven parity for all
previously accepted words.

Transformation 1.25. Let A = (Q,Σ, δ, qI, c) be a deterministic ω-automaton
with parity condition. Then the complement of L(A) is recognized by the parity
automaton A′ := (Q,Σ, δ, qI , c′) where c′(q) = c(q) + 1.

So the complementation process is easy (and does not affect the number of
states of the automata) if we deal with deterministic Muller or parity automata.
For Rabin and Streett automata, the constructions above involve a blow-up
of 2O(n log n) (the growth-rate of n · n! as it appears in the LAR construction
of Transformation 1.20). The same applies to the transformation of Rabin into
Streett automata and conversely. In the next section we will see that this blow-up
is not avoidable.

Before turning to these lower bound results, we note a fact about accepting
runs of Rabin and Streett automata which will be used there.

Lemma 1.26. Let A = (Q,Σ, δ, qI , Ω) be an ω-automaton with Rabin con-
dition, and assume �1, �2 are two nonaccepting runs. Then any run � with
Inf(�) = Inf(�1) ∪ Inf(�2) is also non-accepting.

For the proof assume that �1, �2 are non-accepting but � with Inf(�) =
Inf(�1) ∪ Inf(�2) is accepting. Then for some accepting pair (E,F) we have
Inf(�) ∩ E = ∅ and Inf(�) ∩ F �= ∅. By Inf(�) = Inf(�1) ∪ In(�2) we must have
Inf(�1) ∩ E = Inf(�2) ∩ E = ∅, and also Inf(�1) ∩ F �= ∅ or Inf(�2) ∩ F �= ∅. So
one of the two runs �i would be accepting, contradicting the assumption.

By duality, we obtain the following:

Lemma 1.27. Let A = (Q,Σ, δ, qI , Ω) be a Streett automaton, and assume
�1, �2 are two accepting runs. Then any run � with Inf(�) = Inf(�1) ∪ Inf(�2) is
also accepting.

1.5 Two Lower Bounds

In this section we establish two lower bounds of rate 2O(n log n) for the transfor-
mation of ω-automata:

(1) from nondeterministic Büchi automata to deterministic Rabin automata,
(2) from deterministic Streett to deterministic Rabin automata.

16 Berndt Farwer

q0 qnq2q11

1,…,n,#

n
2

1,…,n,#1,…,n,#

…

…

Fig. 1.6. Nondeterministic Büchi automaton An

The first lower bound will useful in Chapter 3, where a transformation from
Büchi automata to deterministic Rabin automata is presented, using the con-
struction of Safra [158]. The lower bound will show that Safra’s construction is
optimal.

The second lower bound is of interest in connection with the conversion of
Streett automata into Rabin automata (or conversely) presented above. The
lower bound result will be taken up again in Chapter 5, where Streett automata
are studied in more depth.

1.5.1 From Büchi Acceptance to Rabin Acceptance

The proof idea of the present section is due to Michel [128]. We follow the
presentation as given by Löding in [114].

In order to keep the representation of nondeterministic automata small, a
set of initial states is used in the examples that follow. It is obvious that the
automata can be presented in the usual format by adding just one state and
adding arcs from this new state for each arc leaving an initial state of the given
automaton.

Example 1.28. Consider the family of Büchi automata from Figure 1.6. This
family of automata (An)n≥2 is defined over the alphabets {1, . . . , n,#} respec-
tively. (The constraint n ≥ 2 is introduced for the proof of Lemma 1.29 where
two different permutations of symbols from {1, . . . , n} are assumed to exist.)

The languages Ln accepted by these automata can be characterised by the
condition: A word α is accepted byAn iff there exists k and i1, . . . , ik ∈ {1, . . . , n}
such that each pair ijij+1 for j < k and iki1 appears infinitely often in α.

We encode the symbols 1, . . . , n by words over {0, 1}∗ such that

i is encoded by

{
0i1 if i < n,
0i0∗1 if i = n

furthermore we keep # unaltered. Now we can specify the same family of lan-
guages w.r.t. the encoding by the family of automata (A′

n)n≥2 over the fixed
alphabet {0, 1,#}. The size of An (in either of the two versions) is O(n).

The family of automata from the previous example can be used to prove the
following lemma.

1 ω-Automata 17

u

v

w

q pq0

R

S

Fig. 1.7. An accepting run of A′

Lemma 1.29. There exists a family of languages (Ln)n≥2 over the alphabet
{0, 1,#} recognizable by nondeterministic Büchi automata of size O(n) such
that any nondeterministic Streett automaton accepting the complement language
of Ln has at least n! states.

Proof ([114]). Let n ∈ ω and (i1, . . . , in), (j1, . . . , jn) be different permutations
of {1, . . . , n}. It is clear from the definition of the Büchi automaton An from
the previous example that the words α := (i1 . . . in#)ω and β := (j1 . . . jn#)ω

are not accepted by An. Hence, α and β belong to the complement language
L′ := {1, . . . , n,#}ω \ L(An).

This means that for any Streett automaton A′ accepting L(A′) = L′ there
have to exist accepting runs �α and �β with R := Inf�α and S := Inf�β. Due to
the Streett condition of A′ it is sufficient to show that R ∩ S = ∅, as there are
n! permutations of {1, . . . , n}, thus, leading to an automaton with no less than
n! states.

Now, assume on the contrary that there is some state q ∈ R∩ S. Then there
has to exist an accepting run �γ of A′ on a word γ = u(vw)ω such that u is a
subword read on some path from the initial state of A′ to the state q and v and
w are words read on paths from q to q cycling only through states from R and
S respectively. Suppose the infix v of α is given by i0, . . . , ik ∈ {1, . . . , n} and
similarly w = j0, . . . , jl ∈ {1, . . . , n}. This situation is depicted in Figure 1.7.

Since α �= β there has to exist an index in which the two words differ. Let
m be the least of such indices, i.e. ∀x . x < m → ix = jx and im �= jm. But
now there have to exist indices k′, l′ > m such that jm = ik′ and im = jl′ . This
leads to a sequence im, . . . , im+1, . . . , im′−1, im′jm, jm+1, . . . , jl′−1, jl′ satisfying
the characterisation of the words in L(An). So γ ∈ L(An).

We now show that A′ also accepts γ, which contradicts the assumption
L(A′) = {1, . . . , n,#}ω \L(An). Namely, for the run ργ we know that Inf(ργ) =
Inf(ρα) ∪ Inf(ρβ). Hence, by Lemma 1.27, the A′-run ργ is accepting.

By the duality of Rabin and Streett conditions it is obvious that if there
exists an ω-automaton of size less than n! with Rabin condition that accepts
Ln then there also exists a deterministic Streett automaton that accepts the
complement language Σω

n \ Ln with less than n! states. Thus from Lemma 1.29
we conclude the following theorem.

18 Berndt Farwer

n n'n

1 1'1

n

1 1

n

……

Fig. 1.8. Deterministic Streett automaton An

Theorem 1.30. There exists a family of languages (Ln)n≥2 over the alphabet
{0, 1,#} recognizable by nondeterministic Büchi automata of size O(n) such that
any equivalent deterministic Rabin automaton must be of size n! or larger.

1.5.2 A Lower Bound for the Transformation of Deterministic
Streett Automata to Deterministic Rabin Automata

The technique of latest appearance records is used for the transformation of var-
ious automata into parity automata. Two variants are studied in the literature:
state appearance records and index appearance records.

State appearance records have been introduced in Section 1.4.2 for the trans-
formation of Muller automata into Rabin automata. Löding [114] shows that any
transformation of a deterministic Streett automaton of size n with r pairs of des-
ignated sets into a deterministic Rabin automaton will result in an automaton
where the number of states is a factorial in min(n, r), and by the fact that par-
ity automata are special cases of Rabin automata, a transformation to a parity
condition will result in an automaton with at least min(n, r)! states and O(r)
colours. Since the automata used in the proof consist of n states and n pairs,
this also proves the optimality of the best known transformation from Muller
automata to automata with parity condition.

Due to the duality of Rabin and Streett conditions the result is transferrable
to the case with Rabin condition and Streett condition interchanged.

Index appearance records (IAR) are used for example by Safra [159] for the
transformation of nondeterministic Streett automata into deterministic Rabin
automata. The transformation, to be presented in full detail in Chapter 5 below,
takes a deterministic Streett automaton of size n with an acceptance condition
consisting of r pairs of designated sets to an equivalent deterministic Rabin
automaton of size nO(r)! that uses O(r) accepting pairs.

By Theorem 1.32 we obtain the optimality of the IAR construction. The
following example gives the family of automata on which the proof is based.

Example 1.31. Consider the family of deterministic Streett automata (An)n≥2

from Figure 1.8 with pairs of designated state sets Ωn = {(E1, F1), . . . , (En, Fn)}
and Ei = {i}, Fi = {i′}.

The language accepted by the automaton An can be characterised by the
symbols occurring in odd and even positions of the accepted words. Each word

1 ω-Automata 19

α in L(An) satisfies the condition that each symbol occurring infinitely often in
an odd position must also occur infinitely often in an even position of α.

This family of automata (An)n≥2 is defined over the alphabets {1, . . . , n},
respectively. By encoding the symbols 1, . . . , n by words over {0, 1}∗ such that

i is encoded by

{
0i1 if i < n,
0i0∗1 if i = n

we can specify the same family of languages w.r.t. the encoding by the family of
automata (A′

n)n≥2 over the fixed alphabet {0, 1}. The construction is similar to
that in Section 1.5.1.

Theorem 1.32 ([114]). There exists a family of languages (Ln)n≥2 over the al-
phabet {0, 1} recognizable by deterministic Streett automata with O(n) states and
O(n) pairs of designated state sets such that any deterministic Rabin automaton
accepting Ln requires at least n! states.

Proof. The idea for proving Theorem 1.32 is motivated by the observation that
for any finite word u ∈ {1, . . . , n}∗ of even length, the word uα is accepted
by An iff α is accepted by An. It can be shown by induction over n that any
deterministic Rabin automaton accepting L(An) must have at least n! states.

The base case for the induction is obvious: Any (Rabin) automaton accepting
a proper subset of the infinite words over a 2-letter alphabet with some word
having occurrences of both letters needs at least two states.

The induction step relies on the fact that any given deterministic Rabin
automaton A accepting L(An) can be modified to a deterministic automaton
over {1, . . . , n} \ {i} for any i ∈ {1, . . . , n} by simply removing all arcs labelled
by i. Setting the initial state of the modified automaton to any q that is reachable
in An by an even number of state transitions we obtain a deterministic Rabin
automaton Aq

i .
Because of the characterisation of L(An) given above, it is clear that Aq

i

accepts a language isomorphic up to the renaming of symbols to L(An−1). The
induction hypothesis requires the automaton Aq

i to have at least (n− 1)! states.
For a complete proof the reader is referred to [114].

1.6 Weak Acceptance Conditions

In the previous sections we have defined acceptance by a reference to those states
in a run whcich occur infinitely often. For some purposes a “weak acceptance
condition” is appropriate. This is a condition on the set of states that occur at
least once (but maybe only finitely often) in a run.

Recall that
Occ(�) := {q ∈ Q | |�−1(q)| ≥ 1}

is the set of states that occur at least once in the run �. Let A = (Q,Σ, δ, qI,Acc)
be an ω-automaton.

20 Berndt Farwer

There are different possibilities to use the set Occ(�) for acceptance. The
analogue to the Muller condition, introduced by Staiger and Wagner [166], uses
a family F of state sets and declares the run � accepting if

Occ(�) ∈ F .

Other acceptance modes refer to a set F of designated states and require

Occ(�) ∩ F �= ∅,

(also called 1-acceptance, following [110]), and

Occ(�) ⊆ F,

also called 1′-acceptance.
These acceptance modes are special cases of Staiger-Wagner acceptance. In

the first case one collects in F all sets X with X ∩F �= ∅, in the second case the
sets X with X ⊆ F .

Example 1.33. To accept the ω-words over the alphabet {a, b} that have at least
one symbol a, we take an automaton A = ({qa, qb}, {a, b}, δ, qb, F), where F =
{qa}, δ is defined according to the state transition graph of Figure 1.2, and
1-acceptance is used.

The requirement that only the word bω should be accepted can be specified
with the same transition graph, now with 1′-acceptance using the set F = {qb}.
i.e. the only state that may be visited in any successful run is qb.

In later chapters of the book also the parity condition will be used in the
weak sense. The requirement for acceptance is that the minimal (or maximal)
colour occurring in a run is even.

We show that acceptance by an occurrence set can be simulated by Büchi
acceptance. The idea is to simulate A and to accumulate the visited states in a
separate component of the state, signalling acceptance whenever this component
is a set from F .

Transformation 1.34. Let A = (Q,Σ, δ, qI ,F). The language L(A) recognized
by A with the Staiger-Wagner acceptance condition is recognized by a Büchi
automaton A′ = (Q × 2Q, Σ, δ′, (qI , {qI}), F ′) where δ′((p, P), a) contains all
states (p′, P ′) with p′ ∈ δ(p) and P ′ = P ∪{p′}, and where F ′ contains all states
(p, P) with P ∈ F .

The exponential blow-up can be avoided if only 1-acceptance or 1′-acceptance
are involved. In order to capture 1-acceptance via a set F by Büchi acceptance,
one introduces a transition from each F -state to a new state qf , with a tran-
sition back to qf , which serves as only final state in the Büchi automaton. For
1′-acceptance, it suffices to take the given automaton and use it as a Büchi
automaton (with the same set of designated states).

The reverse transformations are not possible; it should be obvious that an in-
finity condition in the definition of an ω-language cannot in general be simulated

1 ω-Automata 21

by an occurrence condition. For example, the set L of ω-words over {a, b} with
infinitely many b is not recognizable by an ω-automaton with Staiger-Wagner
acceptance. Assuming such an automaton which recognizes L, say with n states,
one would consider an accepting run on the input word (an+1b)ω. After some
finite prefix, say after (an+1b)k, the run would have visited the states which
are visited at all. In the succeeding block an+1 the automaton assumes a loop,
which can be repeated if the input is changed to (an+1b)kaω. So over this input
the same states would be visited as in the considered run over (an+1b)ω. Hence
(an+1b)kaω would be accepted, a contradiction.

1.7 Conclusion

We have shown the expressive equivalence of

• nondeterministic Büchi, Muller, Rabin, Streett, and parity automata
• deterministic Muller, Rabin, Streett, and parity automata

The missing link will be provided in Chapter 3 below: Nondeterministic Büchi
automata accept the same ω-languages as deterministic Muller automata.

Figure 1.9 gives an overview; it shows the dependencies and known bounds
for transformations between different models (including results that are shown
in Part II of the book).

NB

2O(n log n),n2O(n log n)

DM

n+kn·2n

2O(n log n),n

DR DS
n·2O(k log k),O(k)

DP

Fig. 1.9. An overview of transformation bounds for ω-automata.

We indicate by D and N the deterministic, respectively, nondeterministic
versions and write B, M, R, S for Büchi, Muller, Rabin, Streett, respectively. The
noted complexity bounds are given as pairs (n′, k′) where n′ is the size of the
constructed automaton and k′ the size of the acceptance component, relative to
the original sizes (n is the original number of states and k the size of the original
acceptance component). Dotted arrows are used for trivial transformations.

	1.1 Introduction and Notation
	1.2 ω -Automata
	1.3 Nondeterministic Models
	1.4 Deterministic Models
	1.5 Two Lower Bounds
	1.6 Weak Acceptance Conditions
	1.7 Conclusion

