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Abstract. This extended abstract surveys some analysis techniques for
distributed, asynchronous systems with two kinds of synchronization,
shared variables and fifo channels.

1 Introduction

Modeling distributed, asynchronous systems so that computer-assisted analysis
becomes feasible, is an on-going challenge in both theory and practice. Several
automata-based models for such systems have been proposed and studied over
the past twenty years, capturing various aspects of distributed behavior. De-
pending on the motivation, such models fall into two large categories. In the
first one we find rather simple models, capturing basic synchronization mech-
anisms: Petri nets, communicating automata, . . . . They were studied for algo-
rithmic properties and/or their expressive power. In the second category we see
more sophisticated models, that were conceived for supporting practical system
design, like Harel’s statecharts, or Lynch’s I/O automata. It is clear that being
able to develop automated verification techniques requires a good understanding
of the simpler models, in particular since more complex ones are often built as
a combination of basic models.

In this survey we address the issue of analyzing networks of (mostly finite-
state) processes with two kinds of communication mechanisms, unbounded fifo
channels and shared variables. We also go one step beyond verification, or model-
checking, by addressing the synthesis problem in the shared-variable case. Syn-
thesis, and in particular controller synthesis, is a challenging problem even for
such simple models as the ones considered in this survey, since it essentially
amounts to solve distributed games. This topic is still rather poorly understood
and open for future research, in spite of considerable efforts and partial results
obtained during the past decade.

2 Models of distributed computation

The architecture of a distributed asynchronous system consists of a set of pro-
cesses P related by links, and we will consider it as fixed. Such links may cor-
respond for instance to communication channels or to shared variables. We do
not discuss here other synchronization mechanisms that appear in the literature,
like e.g. state observation or signals.
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Zielonka’s asynchronous automata is an asynchronous model based on shared
variables. It has its roots in the theory of Mazurkiewicz traces [28], which came
up in the late seventies in connection with the semantics of 1-safe Petri nets
(the reader may find in [11] a wealth of results about traces). Asynchronous au-
tomata provide one of the first highly non-trivial examples of distributed (closed)
synthesis, as expressed in Theorem 1 below.

Given a finite set P of processes, we consider an alphabet of actions Σ and
a location function dom : Σ → (2P \ ∅), associating with each action a non-
empty set of processes. The location mapping dom defines in a natural way
an independence relation I: two actions a, b ∈ Σ are independent (denoted as
(a, b) ∈ I) if they synchronize disjoint sets of processes, i.e., if dom(a)∩dom(b) =
∅. One can define the relation ∼I on Σ∗ as the equivalence generated by all pairs
(uabv, ubav), for (a, b) ∈ I and u, v ∈ Σ∗. A trace is then a ∼I -equivalence class,
and a trace language is a word language closed under ∼I .

Alternatively, traces can be viewed as labeled pomsets (see an example in
Figure 1), and the set of (labeled) linearizations of such a pomset corresponds
to the ∼I -equivalence class [u] of any of these linearizations u ∈ Σ∗.

A (deterministic) asynchronous automaton is a tuple

A = 〈{Sp}p∈P , s0, {δa}a∈Σ , F 〉 ,

where

– Sp is a finite set of (local) states of process p,
– s0 ∈

∏
p∈P Sp is a (global) initial state,

– δa :
∏
p∈dom(a) Sp →

∏
p∈dom(a) Sp is a transition relation; so on a letter

a ∈ Σ it is a partial function on tuples of states of processes in dom(a),
– F ⊆

∏
p∈P Sp is a set of final (accepting) states.

An asynchronous automaton can be seen as a sequential automaton with the
state set S =

∏
p∈P Sp and transitions s a−→ s′ if ((sp)p∈dom(a), (s′p)p∈dom(a)) ∈

δa, and sq = s′q for all q /∈ dom(a). By L(A) we denote the set of words labeling
accepting runs. This definition has an important consequence. If (a, b) ∈ I then
the same state is reached on the words ab and ba. More generally, whenever
u ∼I v and u ∈ L(A) then v ∈ L(A), too. This means that L(A) is a trace
language.

Example 1. Let us consider the asynchronous automaton A defined by Sp =
{0}, Sq = Sr = {0, 1}, and transition function δa(sp, sq) = (sp,¬sq) if sq = 1
(undefined otherwise), δd(sr) = ¬sr if sr = 1 (undefined otherwise), δb(sq, sr) =
(1, 1) if sq ∧ sr = 0 (undefined otherwise) and δc(sp) = sp. Starting with s0 =
(0, 0, 0), an accepting run of A checks that between any two successive b-events,
there is either an a or a d (or both), and there is a b-event before all a and d.

One of the deepest results of trace theory is Zielonka’s construction of a
deterministic asynchronous automaton from a finite-state one. One can see it as
an example of distributed closed synthesis, i.e., without any environment.
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Fig. 1. The pomset associated with the trace t = [c b a d c b a d b], with dom(a) = {p, q},
dom(b) = {q, r}, dom(c) = {p}, dom(d) = {r}.

Theorem 1. [40] Given a finite automaton A accepting the trace language L(A),
a deterministic asynchronous automaton B can be effectively constructed with
L(A) = L(B).

The above construction has received a lot of interest, and a series of papers
aimed at improving it algorithmically (see e.g. [10, 30, 19, 17]). Currently the best
construction starting with a DFA A is polynomial in the size of A and simply
exponential in the number of processes. Surprisingly, it is rather difficult to come
up with a matching lower bound (see [17] for partial results). As explained in
Section 3, this construction plays a fundamental role in other settings of dis-
tributed synthesis, as for instance for communicating automata, that we present
next.

A communicating automaton (CA for short) is parametrized by a set P of
processes, a set of point-to-point fifo channels Ch ⊆ P2\idP , and a set of message
contents Msg. It is a tuple A = 〈(Ap)p∈P , Σ, F 〉 where

– each Ap = (Sp,→p, s
0
p) is a finite labeled transition system with state space

Sp, transition relation →p ⊆ Sp × Σp × Sp, and initial state s0p ∈ Sp; the
local action alphabet Σp consists of send actions (denoted as p!q(m), with
(p, q) ∈ Ch, m ∈ Msg), receive actions (denoted as p?r(m), with (r, p) ∈ Ch,
m ∈ Msg), and local actions.

– F ⊆
∏
p∈P Sp is a set of global final states.

We denote the product S :=
∏
p∈P Sp as set of global states.

The behavior of a CA is defined as the behavior of an infinite labeled tran-
sition system, by considering the possible (local) transitions on the set of con-
figurations of the CA. A configuration of the CA A consists of a global state,
together with a word from Msg∗ for each channel (p, q) ∈ Ch. Transitions are
defined in the usual way: the effect of an action a ∈ Σp is to change the Sp state
component according to Ap, and to perform the obvious modification on one
channel of p, according to a being a send of message m from p to q (written as
a = p!q(m)) or a receive of m on p from r (written as a = p?r(m)).
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Example 2. The CA in the figure below describes the communication between
two (finite-state) processes C and S, connected through one channel in each
direction. The set of message contents is Msg = {0, 1, $}. From the initial config-
uration 〈(c0, s0), (ε, ε)〉 (say, (C, S) is the first channel) one can reach e.g. the con-
figurations 〈(c1, s0), (010, ε)〉 and 〈(c0, s0), (101, $)〉, but not 〈(c0, s0), (0101, $)〉.
For instance, 〈(c0, s0), (ε, ε)〉 C!S(0)−→ 〈(c1, s0), (0, ε)〉 C!S(1)−→ 〈(c0, s0), (01, ε)〉 C!S(0)−→
〈(c1, s0), (010, ε)〉.

c0start

c1

C!S(0)

C!S(1), C?S($)

s0start

s1

S?C(0)

S?C(1), S!C($)

Like traces being partially ordered representations of runs of asynchronous
automata, runs of CA have a natural interpretation in terms of labeled pomsets,
too. The pomsets associated with such runs are called message sequence charts,
and represent in a diagrammatic way messages exchanged between processes.

3 Analyzing communicating automata

In spite of their simplicity, communicating automata are Turing-powerful, as it
can be easily seen (by simulating e.g. Post tag systems). From the verification
viewpoint this immediately implies that one needs to accept approximated or
semi-algorithmic solutions.

Simple approximated solutions, like ignoring the order of messages in the
channels or imposing a limit on their size, are of course too coarse. Accelera-
tion methods using some finitary representation of possibly infinite sets of con-
figurations (called symbolic representations), are a more powerful example of
under-approximation. In the case of communicating automata, such symbolic
representations are based on finite automata or some extended automata mod-
els with good algorithmic properties [4, 5, 7]. The general idea is to speed-up the
naive enumeration of reachable configurations, by computing the result of loop
iteration.

A nice example for over-approximating methods are lossy channel systems. Of
course, such a model may be interesting in its own right, since it allows to model
imperfect channels. Lossy channels are a particular instance of well-structured
transition systems [13, 2]. In particular, questions like control-state reachability
and termination are decidable [2, 14], albeit of non-primitive recursive complex-
ity [36]. On the other hand, liveness properties or boundedness of lossy channels
are undecidable [1, 27].
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Whereas the above mentioned approaches emphasize symbolic representa-
tions of sets of (reachable) configurations, there is a complementary, language-
oriented approach based on partial orders. The language-theoretical viewpoint
emphasizes the (partially-ordered) executions, instead of the channel contents.
This kind of event-based reasoning arises very naturally when communicating
automata are viewed as sequential automata synchronizing over communication
events. The main advantage it offers is that the synthesis problem can be stated
in a natural way.

Undecidability of various questions about communicating automata has ac-
tually two sources: the first, obvious one, is the unboundedness of channels. The
second, more subtle, comes up when the specification formalism (e.g. regular
ones like LTL) is incompatible with the partially-ordered model. As a conse-
quence, getting solutions for model-checking or synthesis requires both channel
restrictions and partial order specifications.

A universally channel-bounded automaton is one where there is a uniform
bound on the size of channels, over all reachable configurations. So a universally
bounded automaton is just a finite state system. A much less restrictive notion
is an existential channel-bound. Such a bound roughly means that any execution
can be rescheduled in such a way that it can be executed with bounded chan-
nels. In particular, existential bounds admit channels of arbitrary size. A simple
example illustrating the idea is a pair of processes, a producer and a consumer,
where the producer keeps sending messages to the consumer, who is supposed
to accept every message. Since there is no control on the relative speed of these
two processes, there is no bound on the number of messages in transit. But for
verifying many properties, like e.g. control-state reachability, it suffices to rea-
son about schedulings where messages are consumed without delay, i.e. where
executions can be scheduled with a channel of size one.

The main result obtained in this setting is a solution for closed synthesis,
that can be stated as a Kleene-Büchi theorem about communicating automata
with channel bounds [21, 18]. A main ingredient of these constructions is the link
between automata with channel bounds and trace languages and in particular,
Zielonka’s construction of asynchronous (trace) automata. Model-checking ex-
istentially bounded automata w.r.t. partial order specifications like MSO [24],
closed regular specifications [20] or PDL [6], is also decidable.

Several promising, recent research directions can be mentioned. One of them
is motivated by the need of analyzing distributed recursive programs, and aims
at identifying reasonable, tractable subclasses of communicating automata ex-
tended by additional capabilities for the single processes, like for instance push-
down storage [3, 39, 22]. A second, quite challenging perspective for future work
is the general synthesis problem for communicating systems. This problem can
be stated in many different ways, depending on the degree of completeness of
the specification (specifications may e.g. talk only about external messages).
However, one probably needs first a solution for the problem described in the
next section, before working out a general solution for synthesizing or controlling
communicating automata.
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4 Distributed control for asynchronous automata

In the simplest case, the synthesis problem asks to find a model for a given spec-
ification, so it is just a satisfiability problem, where one is given some formalism
for the specification (e.g. logics) and one for the model (e.g. finite automata). In
a more refined version one is also given a system (or plant, usually an automa-
ton) and is asked to find a controller such that the controlled system satisfies
the given specification. The control consists in forbidding some actions of the
plant, but not every action can be forbidden, and the control has also to ensure
that the system does not block completely.

Synthesis was first considered in a synchronous (hardware) setting by Church [9].
In his model, the specification is a relation between input variables, which are
controlled by the environment, and output variables, controlled by the (cen-
tralized) system. Church’s problem stimulated a fruitful research direction on
2-person, zero-sum infinitary games, starting with the fundamental results of [8,
34, 35] (see also [37, 38] for recent surveys).

Distributed controller synthesis is a more recent research topic, that was initi-
ated by Pnueli and Rosner [33], who show that only very restricted architectures
admit a decidable synthesis problem. Undecidability of distributed synthesis fol-
lows already from the work of Peterson and Reif on “multiple-person alternating
machines” [32].

Various versions of distributed synthesis appear in the literature. One impor-
tant distinction is to be made between synchronous and asynchronous systems,
respectively. In the synchronous case, processes execute a step at each (global)
clock tick, whereas in the asynchronous case they are decoupled. Another distinc-
tion is how much information is allowed to be exchanged between processes. At
least two different classes of models were studied here. In the model considered
by [33, 23, 12, 16], a distributed system is given by an architecture describing
(synchronous) channels between processes, and the information conveyed via
the channels between processes, is finite. In the model studied in [15, 26, 31],
the distributed system is an asynchronous automaton (and the controller is also
required to be such an automaton). Here, the information exchanged between
processes corresponds to the causal past of events, therefore it is unbounded.

Decidability for synchronous synthesis basically requires a pipeline architec-
ture where information flows in a single direction (see [33, 23, 25, 29, 12, 16] for
various refinements). To state it informally, the reasons for undecidability are
either global specifications or “information forks”, like the case where two inde-
pendent processes can be “observed” by a third one.

Compared with the synchronous case, our understanding of asynchronous
controller synthesis is still unsatisfactory. For instance, it is open whether this
problem is decidable! Two decidability results are known in this setting. The
first one [15] was obtained by restricting the (in)dependencies between letters
of the input alphabet. The second paper [26] shows decidability by restricting
the plant: roughly speaking, the restriction requires that if two processes do not
synchronize during a long amount of time, then they won’t synchronize ever
again. The proof of [26] goes beyond the controller synthesis problem, by coding
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it into monadic second-order theory of event structures and showing that this
theory is decidable when the criterion on the asynchronous automaton holds.
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Théorique et Applications, 21:99–135, 1987.


