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edex 05Abstra
t. Several formalisms and tools for software development usehierar
hy in system design, for instan
e state
harts and diagrams inUML. Message sequen
e 
harts (MSCs) are a standardized notation forasyn
hronously 
ommuni
ating pro
esses. The norm Z.120 also in
ludeshierar
hi
al HMSCs. Algorithms on MSCs rarely take into a

ount allpossibilities 
overed by the norm. In parti
ular, hierar
hy is not takeninto a

ount sin
e the models that are usually 
onsidered are (�at) MSC-graphs, that 
orrespond to the unfolding of hierar
hi
al HMSCs. How-ever, 
omplexity 
an in
rease exponentially by unfolding. The aim ofthis paper is to show that basi
 algorithms 
an be designed su
h thatthey avoid the 
ostly unfolding of hierar
hi
al MSCs and HMSCs. Weshow this for the membership and the pattern mat
hing problem. Weprove that the membership problem for hierar
hi
al HMSCs is PSPACE-
omplete. Then we des
ribe a polynomial time algorithm for the patternmat
hing problem on hierar
hi
al MSCs.1 Introdu
tionIt is 
ommon to use ma
ros when writing a program or modeling a system.Ma
ros (or hierar
hi
al models) enable the modular design of 
omplex systems.They also present the advantage of su

in
tness and better readability. Severalformalisms and tools for software development use hierar
hy in system design.One of the most prominent examples is the formalism of state
harts [11℄, whi
h isa 
omponent of several obje
t-oriented notations, su
h as the Uni�ed ModelingLanguage (UML). Besides state
harts, UML widely uses several kinds of dia-grams (a
tivity, intera
tion diagrams et
), all based on the ITU standard Z.120of message sequen
e 
harts (MSC for short). While state
harts extend �nitestate ma
hines (FSM for short) by hierar
hy and 
ommuni
ation me
hanisms,MSC is a visual notation for asyn
hronously 
ommuni
ating pro
esses. The usualappli
ation of MSCs in tele
ommuni
ation is for 
apturing requirements of 
om-muni
ation proto
ols in form of s
enarios in early design stages. MSCs usuallyrepresent in
omplete spe
i�
ations, obtained from a preliminary view of the sys-tem that omits several details, su
h as variables or message 
ontents. High-levelMSCs (HMSCs) 
ombine basi
 MSCs using 
hoi
e and iteration, thus des
rib-ing possibly in�nite 
olle
tions of s
enarios. For abstra
t spe
i�
ations as with
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HMSCs, hierar
hy is of primary importan
e. Sin
e a s
enario 
orresponds to aspe
i�
ation level whi
h 
an be very abstra
t, a designer should be able to mergedi�erent spe
i�
ation 
ases yielding the same abstra
t s
enario and to use thiss
enario as a ma
ro. By using ma
ros designers may identify sub-s
enarios whi
hhave to be re�ned at a later stage. Thus we fo
us in this paper on hierar
hi
alMSCs (or nested MSC, nMSC for short) and hierar
hi
al HMSCs (nested HMSC,nHMSC for short).Algorithms on MSCs rarely take into a

ount the whole spe
trum of theHMSC standard de�nition. In parti
ular, hierar
hy is not taken into a

ountsin
e the models usually 
onsidered are MSC-graphs (that 
orrespond to theunfolding of nHMSCs). However, 
omplexity 
an in
rease exponentially by un-folding. The aim of this paper is to show that this exponential blow-up is oftenunne
essary, sin
e the 
ostly unfolding 
an be avoided.In this paper we 
onsider two basi
 problems for the algorithmi
 veri�
a-tion of nMSCs and nHMSCs, the membership problem and pattern mat
hing.We believe that the te
hniques des
ribed here 
an be used to solve other prob-lems on nHMSCs as well. The membership problem o

urs for instan
e whena negative s
enario must be exluded from the spe
i�
ation, or when we 
he
kthat a positive s
enario is already 
overed by the spe
i�
ation. Without hierar-
hy, membership of an MSC against an HMSC is NP-
omplete [1℄. The reasonfor this 
omplexity blow-up (
ompared to FSM) is that MSCs are partial or-der models. We show that hierar
hy yields a small in
rease in 
omplexity, pre-
isely we show that the membership problem of an nMSC against an nHMSC isPSPACE-
omplete. Surprisingly, hierar
hy alone is the sour
e of this 
omplex-ity. We show namely that the membership problem for hierar
hi
al automata isalready PSPACE-
omplete. This result shows a di�eren
e between membershipand rea
hability, sin
e rea
hability for 
ommuni
ating hierar
hi
al automata isEXPSPACE-
omplete [12℄.The se
ond problem 
onsidered in this paper is pattern mat
hing for nMSCs.Given two nMSCsM,N , we want to know whetherM o

urs as a pattern ofN . Apolynomial time solution for this problem is not immediate. We apply some ni
e
ombinatorial te
hniques stemming from pattern mat
hing on 
ompressed textsand we obtain an algorithm of time O(|CM |2 · |M |2 · |N |2), where |M |, |N | denotethe sizes of the des
ription of M and N , and |CM | is the number of 
onne
ted
omponents in the 
ommuni
ation graph of M . This question subsumes the testof equality of two nMSC, and shows that equality is de
idable in PTIME as well.Related work. For extended FSMs, [12℄ 
onsiders the rea
hability and tra
eequivalen
e problems for 
ommuni
ating FSMs. Model 
he
king hierar
hi
alFSMs against LTL and CTL properties is the topi
 of [4℄. The paper [3℄ 
om-bines hierar
hy and 
on
urren
y, analyzing the 
omplexity of several problems(rea
hability, equivalen
e et
.) for 
ommuni
ating, hierar
hi
al FSMs.Several veri�
ation problems on MSCs andMSC-graphs have been 
onsideredover the last years, su
h as dete
ting ra
es [2, 19℄, model 
he
king [5℄, patternmat
hing with gaps [20℄, inferen
e [1℄, realizability [18, 9, 15℄, and model 
he
kingagainst partial order logi
s [17, 22℄. Hierar
hi
al MSCs have been also 
onsidered2



in [5℄ for the model 
he
king problem. We note however that our de�nition ofnHMSCs 
aptures a larger 
lass of MSC spe
i�
ations than [5℄.An extended abstra
t of this paper was presented at LATIN'02 [8℄. As ad-ditional result here we show how to extend the polynomial time algorithm forpattern mat
hing nMSCs to the 
ase where the pattern is not 
onne
ted.2 Syntax and Semanti
s of Nested MSCsWe adopt the de�nition of (basi
) message sequen
e 
harts (MSC for short), asdes
ribed in the ITU-standard [13℄.De�nition 1. (Message Sequen
e Charts.) A message sequen
e 
hart is atuple M = 〈P,E, C, ℓ,m,<〉 where:� P is a �nite set of pro
esses,� E is a �nite set of events, ea
h lo
ated on some pro
ess from P ,� C is a �nite set of names for messages and lo
al a
tions,� ℓ : E → T = {i!j(c), i?j(c), i(c) | i 6= j ∈ P, c ∈ C} labels ea
h event withits type: on pro
ess i ∈ P , the type is either a send i!j(c) of message c topro
ess j, or a re
eive i?j(c) of message c from pro
ess j, or a lo
al event
i(c). The labeling ℓ partitions the set of events by type (send, re
eive, orlo
al), E = S ·

⋃
R ·

⋃
L, and by pro
ess, E = ·

⋃
i∈P Ei. We denote by P (e) thepro
ess of event e (i.e., P (e) = i if e ∈ Ei).� m : S → R is a bije
tion mat
hing ea
h send to the 
orresponding re
eive.If m(s) = r, then ℓ(s) = i!j(c) and ℓ(r) = j?i(c) for some pro
esses i, j ∈ Pand some message 
ontent c ∈ C. We denote the events s, r as mat
hingevents and the pair (s, r) as message.� < ⊆ E × E is an a
y
li
 relation between events 
onsisting of:

• a total order on Ei, for every pro
ess i ∈ P , and
• s < r, whenever m(s) = r.The upper left part of Figure 1 depi
ts an MSC M on three pro
esses withtwo messages and four events. Ea
h verti
al line 
orresponds to a pro
ess, withtime in
reasing from top to bottom. By P (M) we denote the set of pro
esses of

M . For the questions 
onsidered here, message names are irrelevant. Thus, sendevents will be of type i!j and re
eive events of type i?j. Moreover, whenever werefer to an MSC in this paper, we mean a
tually its isomorphism 
lass, wherean isomorphism on the set of events E is a bije
tion that is 
ompatible with thetype fun
tion ℓ and the message fun
tion m.For 
ommuni
ation proto
ols it is natural to assume that ea
h 
ommuni
ation
hannel (i, j), i 6= j, delivers messages �rst-in-�rst-out (FIFO rule). We assumethe FIFO 
ondition throughout the paper. That is, for all messages (sk, rk),
k = 1, 2, su
h that ℓ(s1) = ℓ(s2) and ℓ(r1) = ℓ(r2) we require that s1 < s2i� r1 < r2. The re�exive-transitive 
losure of the a
y
li
 relation < is a partialorder 
alled visual order and is denoted as ≤. A total order on E extending ≤3



is 
alled a linearization of M . A 
on�guration (pre�x) C of an MSC M is adownward 
losed subset of events, that is, if e ≤ f ∈ E with f ∈ C, then e ∈ C.Note that the FIFO rule implies that an MSC 
an be re
onstru
ted fromany of its linearizations. We obtain the MSC from the event sequen
e simply bymat
hing the n-th send from i to j with the n-th re
eive on j from i, for ea
hpair of distin
t pro
esses (i, j).A spe
ial 
ase of the pattern mat
hing problem 
onsidered in the paper is theequality test of two (nested) MSCs. In order to 
he
k the equality of two MSCs
M,N (i.e., up to isomorphism) one 
an 
hoose any linearization ofM and 
he
kwhether it is a linearization of N , too. An alternative approa
h, that will beused in our algorithms, is to 
he
k equality on ea
h pro
ess. Thus, for an MSC
M = 〈P,E, C, ℓ,m,<〉 and a pro
ess i ∈ P we letM |i denote the proje
tion ofMon the set Ei of events lo
ated on i. That is, M |i is the sequen
e of events of Mon pro
ess i. We then haveM = N if and only if M and N have the same set ofpro
esses, that is P (M) = P (N) = P , and if their proje
tions are equal, that is
M |i = N |i for ea
h i ∈ P (up to isomorphism). Note that both tests rely on theFIFO rule. Without this rule, a linearization (or the proje
tions) does not su�
efor re
onstru
ting the MSC. For example, the linearization s1s2r1r2 where s1, s2are sends and r1, r2 are re
eives from pro
ess 1 to pro
ess 2, 
an produ
e twoMSCs, one wherem(s1) = r1,m(s2) = r2 and one wherem(s1) = r2,m(s2) = r1.We follow the ITU norm and de�ne nested MSCs (nMSC for short) by al-lowing the reuse of an already de�ned MSC in a de�nition. The de�nition wegive below aims at preserving the visual 
hara
ter of MSCs (see also Figure 1).De�nition 2. (Nested MSC, nMSC.) A nested MSC M = (Mq)q=1,n is a�nite sequen
e of ma
ros of the form Mq = 〈Pq, Eq, Bq, ϕq, C, ℓq,mq, <q〉.Ea
h ma
ro Mq 
onsists of:� A �nite set Pq of pro
esses.� A �nite set Eq of events, ea
h event is lo
ated on some pro
ess from Pq.� A �nite set Bq of referen
es (boxes) used by Mq.� A fun
tion ϕq that asso
iates ea
h referen
e b ∈ Bq with an index q <

ϕq(b) ≤ n. Thus, referen
e b refers to the ma
ro Mϕq(b).We require that
Pϕq(b) ⊆ Pq.� The type fun
tion ℓq : Eq −→ T , that asso
iates ea
h event with a type
i!j(c), i?j(c) or i(c), with i, j ∈ Pq, i 6= j and c ∈ C. The labeling ℓ partitionsthe set of events by type (send, re
eive, or lo
al), Eq = Sq

·
⋃
Rq

·
⋃
Lq, andby pro
ess, Eq = ·

⋃
i∈P Eq,i. We denote by P (e) the pro
ess of event e (i.e.,

P (e) = i if e ∈ Eq,i).� The message fun
tion mq : Sq −→ Rq that maps ea
h (send) event of type
i!j(c) with a (re
eive) event of type j?i(c), for some i 6= j, c ∈ C.� The a
y
li
 relation <q over the set of events and referen
es Eq∪Bq, de�nedby:
• For ea
h pro
ess k ∈ Pq, the relation <q is a total order over the set Eq,kof events lo
ated on k and the set of referen
es b ∈ Bq with k ∈ Pϕq(b).
• e <q f whenever mq(e) = f in Mq.4



The nesting depth of M is the maximal d su
h that there exists some sequen
e
q1 < · · · < qd+1 with ϕqj

(b) = qj+1 for some b ∈ Bqj
, for all 1 ≤ j ≤ d.In the spirit of straight-line program notation, higher levels of hierar
hy 
or-respond to lower indi
es. Thus, the MSC M de�ned by M = (Mq)q=1,n will be

M1. We will depi
t referen
es in pi
tures (see Figure 1) as boxes that overlapthe pro
esses that o

ur in the 
orresponding ma
ro.
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Fig. 1. An nMSC P using two referen
es, S and M .Example 1. Consider the nMSC P in Figure 1. It uses three referen
es, BP =
{b1, b2, b3} that 
orrespond to ϕP (b1) = ϕP (b3) = S and ϕP (b2) = M . Thenesting depth of P is 2. The visual order <P of P requires on pro
ess 1 theorder b1 <P e <P b2 <P b3. Noti
e that the de�nition of an nMSC would notallow (f, e) to be a message, sin
e this would 
ontradi
t the a
y
li
ity of therelation <P .The semanti
s of an nMSC is the MSC de�ned by repla
ing ea
h referen
eof M by the 
orresponding MSC. Indu
tively it su�
es to de�ne the semanti
sof nMSCs of nesting depth one. Let M = (Mq)q=1,n be an nMSC of nestingdepth one, withMq = 〈Pq , Eq, Bq, ϕq, C, ℓq,mq, <q〉. For simplifying the notationbelow, we write instead of ϕ1(b) just b.5



The MSC 〈P,E, C, ℓ,m,<〉 de�ned by M = (Mq)q=1,n is given by P = P1,
E = ·

⋃
b∈B1

Eb
·
⋃
E1, ℓ = ∪q=1,nℓq and m = ∪q=1,nmq. The visual order < isde�ned by e < f if and only if either m(e) = f , or P (e) = P (f) and one of thefollowing 
onditions holds:� e, f ∈ E1 and e <1 f ,� e, f ∈ Eb and e <b f ,� e ∈ E1, f ∈ Eb and e <1 b,� e ∈ Eb, f ∈ E1 and b <1 f ,� e ∈ Eb, f ∈ Eb′ and b <1 b

′,where b, b′ ∈ B1. For simpli
ity, we denote the MSC de�ned by M = (Mq)q=1,nas M , too.Example 2. For the nMSC P in Figure 1, the lower right part of the pi
tureshows the MSC de�ned by S. Note that event g ∈ EM o

urs twi
e in S � forsimpli
ity, we denote both o

urren
es as g.Note also that the semanti
s requires that b1 <1 e, but this does not meanthat all events of S = ϕP (b1) must happen before e ∈ EP . For instan
e, the�rst o

urren
e of g in S pre
edes event e of P , but the se
ond o

urren
e is
on
urrent with e.Remark 1. Obviously, a synta
ti
ally 
orre
t nMSC M might not yield an MSCbe
ause of the FIFO order. For example, the message (e, f) of P would violatethe FIFO 
ondition if M would 
ontain a message from pro
ess 1 to pro
ess3. Fortunately, it 
an be veri�ed easily (in polynomial time) whether an nMSCsatis�es the FIFO 
ondition. For 
he
king the FIFO 
ondition, it su�
es to testthat there is no e < g < h < f and no e < b < f with b 
ontaining a send from
i to j, where (e, f), (g, h) are two messages from i to j.Size of nMSC. For 
omplexity estimations we will denote by ℘ the overallnumber of pro
esses. The size of an nMSC M is denoted as |M |. It representsthe size of the synta
ti
al des
ription of M , where an event is of size one andthe size of a referen
e is the number of its pro
esses.3 Nested High-Level MSCAn MSC 
an only des
ribe a �nite s
enario. For spe
ifying more 
omplex behav-iors, in parti
ular in�nite sets of s
enarios, the ITU norm proposes to 
omposeMSCs in form of MSC-graphs, by using 
hoi
e and iteration.De�nition 3. (MSC-graph) An MSC-graph is a tuple G = 〈V,E, s, f, ϕ〉,where:� (V,E) is a dire
ted graph with starting vertex s ∈ V and �nal vertex f ∈ V .� Ea
h vertex v is labeled by the MSC ϕ(v).6



In the same way as we de�ned nested MSCs from (�at) MSCs we 
an gen-eralize MSC-graphs to hierar
hi
al HMSCs (or nested high-level MSCs, nHMSCfor short).De�nition 4. (Nested high-level MSC.) An nHMSC is a �nite sequen
e
G = (Gq)q=1,n, where ea
h Gq is either a labeled graph or an nMSC. A labeledgraph Gq is a tuple 〈Vq , Eq, ϕq, sq, fq〉 
onsisting of:� A dire
ted graph (Vq, Eq) with starting vertex sq and �nal vertex fq.� A fun
tion ϕq that asso
iates ea
h vertex v with a referen
e q < ϕq(v) ≤ n,representing Gϕq(v).Thus, a node in an nHMSC 
an be mapped either to some graph or to annMSC. This de�nition 
ombines hierar
hi
al automata as de�ned in [4℄ with ourde�nition of nMSC. The spe
ial 
ase where there is only one pro
ess (i.e., no
on
urren
y) yields the hierar
hi
al automata used in [4℄1.We �rst need to de�ne the 
omposition of two MSCs N1N2 with Nk =
〈Pk, Ek, Ck, ℓk,mk, <k〉. The intuition behind the 
omposition is simple, we justglue together the two diagrams pro
ess by pro
ess. So letN1N2 = 〈P,E, C, ℓ,m,<
〉 with E = E1 ·

⋃
E2, P = P1 ∪ P2, C = C1 ∪ C2, ℓ = ℓ1 ∪ ℓ2, m = m1 ∪m2 and

< = <1 ∪<2 ∪
⋃

i∈P

E1,i × E2,i.The semanti
s of an nHMSC G = (Gq)q=1,n is a set of MSCs L(G) de�nedre
ursively. If Gq is an nMSC, then L(Gq) is a singleton 
onsisting of the MSCde�ned by Gq. Consider a labeled graph Gq. Then L(Gq) is the set of MSCsasso
iated with the a

epting paths of Gq, that is, paths starting in sq andending in fq. With a path v1, . . . , vn in Gq we asso
iate the set of all MSCs
M1 · · ·Mn, where Mi ∈ L(Gϕq(vi)) for all 1 ≤ i ≤ n. The set of exe
utions of Gis de�ned as L(G) = L(G1).As in [1℄ we also 
onsider a weaker semanti
s for nHMSCs, that does not usethe 
omposition of MSCs (
alled weak 
losure in [1℄). This semanti
s is basedon taking the produ
t of the sequential behaviors of single pro
esses. Severalalgorithmi
 problems 
an be solved more e�
iently for the weak 
losure of MSC-graphs. This makes it interesting to 
ompare it with the usual semanti
s also inthe setting of nHMSCs.Weak 
losure of nHMSC. Let G be an nHMSC. Then Lw(G) denotes the setof MSCsM su
h that for ea
h pro
ess i there is some MSC N ∈ L(G) su
h that
M |i is equal to N |i. Note that L(G) ⊆ Lw(G) and that the in
lusion is stri
t, ingeneral (see [1℄).1 A
tually, [4℄ allows several �nal nodes in ea
h automaton, whi
h 
ounts for the
omplexity of their algorithms. 7



a b

G
i

G
iFig. 2. An nHMSC Gi+1 generating (a + b)2

i
−1 with G1 = ǫ.4 Membership ProblemChe
king the membership of an MSCM in an MSC-graph G is used typi
ally for
he
king that no bad s
enario 
an o

ur in a given spe
i�
ation. Another appli
a-tion is 
he
king whether a good s
enario is already 
overed by the spe
i�
ation.Che
king membership is not an easy task already be
ause of the 
on
urren
yimplied by the MSC 
omposition, all the more in the presen
e of hierar
hy. TheMSC membership problem M

?
∈ L(G) with M an MSC and G an MSC-graphwas 
onsidered in [1℄, together with the weak membership problemM

?
∈ Lw(G).The results of [1℄ 
an be summarized as follows:� The MSC membership problem is NP-
omplete. A deterministi
 algorithmof time O(|G| · |M |℘) solves it2, where ℘ is the number of pro
esses.� The weak MSC membership problem is solvable in time O(|G| · |M |).So the MSC membership problem is solvable in polynomial time if we �x thenumber of pro
esses.4.1 Hierar
hi
al Membership ProblemThe membership problem seems a priori more di�
ult for an nMSC M againstan nHMSC G, sin
e the naive approa
h of guessing a path of G and 
he
kingequality with M is too expensive (both the path of G and the MSC de�nedby M 
an be of exponential size). However, it is easy to show that we 
an testmembership in polynomial spa
e:Theorem 1 (Hierar
hi
al MSC Membership Problem) Given an nMSC

M and an nHMSC G, we 
an de
ide whether M ?
∈ L(G) in polynomial spa
e.2 This is a slightly improved runtime 
ompared to the result stated in [1℄.8



Proof. The idea of the algorithm is quite straightforward. We guess an MSCin L(G) and we mat
h it against the nMSC M , however expanding neither Mnor G. Re
all that for testing equality of two MSCs M,N , it su�
es to 
hooseone linearization of N and 
he
k whether it is a linearization of M . Hen
e, we
an 
hoose the linearization of the MSC in G. We 
onsider only linearizations inLin0(G), where Lin0(G) is de�ned re
ursively. If Gq is an nMSC, then Lin0(Gq)is the set of linearizations of Gq. With a path v1, . . . , vn in Gq we asso
iate theset of all linearizations u1 · · ·un, where ui ∈ Lin0(Gϕq(vi)) for all 1 ≤ i ≤ n.Let us 
onsider a labeled graph Gq. Then Lin0(Gq) is the set of linearizationsasso
iated with a

epting paths of Gq, that is, paths starting in sq and endingin fq. We de�ne Lin0(G) = Lin0(G1).We need also to store a 
on�guration of M in polynomial spa
e, 
orrespond-ing to the events already mat
hed with the events from G. Sin
e a 
on�gurationin an MSC is a downward 
losed set of events, it 
an be stored as a tuple of ℘events (re
all that ℘ is the number of pro
esses), representing the last event ofthe 
on�guration on ea
h pro
ess. Su
h a tuple is of linear size w.r.t. the size of
M . Ea
h event e of the (unfolded) M = (Mq)q=1,n is represented by a sequen
e
b1 < · · · < bm of referen
es 
orresponding to the unfolding of referen
es yielding
e. That is, we indu
tively store bm, where event e belongs to Mϕ(bm) (and bmis a referen
e used by Mϕ(bm−1)), plus the position of e in Mϕ(bm). Thus, ea
hevent 
an be stored in linear spa
e. In Figure 1, the �rst o

urren
e of g in P
orresponds to (b1, b4, g), the se
ond o

urren
e to (b1, b5, g), and so on.Similarly, we 
an store the 
urrent 
on�guration of the linearization in Lin0(G)in polynomial spa
e (an event of G is represented by a sequen
e of nodes andreferen
es). Sin
e a new node is started only after the linearization of the previ-ous node is 
ompleted, the last events on ea
h pro
ess belong to the same node.The nondeterministi
 algorithm 
onsists in guessing a su

essor 
on�gurationof G, obtained by extending the 
urrent 
on�guration by an event e su
h thatthe new 
on�guration is still a pre�x of some linearization in Lin0(G). Then we
he
k that e 
an extend the 
urrent linearization of M as well. The algorithmstops when the 
on�guration that 
orresponds to the path being guessed in Gis equal to M and the path of G is a

epting.

2Theorem 2 below shows that PSPACE is the best 
omplexity for the hier-ar
hi
al membership problem. The lower bound holds even if there is only onepro
ess (Theorem 2), or if the graph G is not hierar
hi
al (Theorem 3), but notboth (Theorem 4). This shows also that �xing the number of pro
esses does notlower the 
omplexity of the problem, unlike the nonhierar
hi
al 
ase.We show the PSPACE lower bound for the following problem: given a straight-line program W (see below) and a hierar
hi
al automaton A, test whether
W ∈ L(A). This question 
orresponds to the hierar
hi
al membership problemwith a single pro
ess. Noti
e also that the weak membership problemM

?
∈ Lw(G)[1℄ 
an be redu
ed to this question. 9



Straight-line programs. A straight-line program (SLP for short) over thealphabet Σ is a 
ontext-free grammar with variables V = {X1, . . . , Xk}, initialvariable X1 and rules from V × (V ∪ Σ)+. The rules are su
h that there isexa
tly one rule for ea
h left-hand side variable and if Xi −→ α, then ea
h Xjin α satis�es j > i.The 
onstraints on the rules make that any variable Xi generates a uniqueword. For 
onvenien
e, we denote the word generated by the variable Xi alsoas Xi. The length of a variable Xi represents the length of the word generatedby Xi and is denoted as ||Xi||. Clearly, ||Xi|| 
an be at most exponential in thenumber of rules. The size of an SLP Xi is the sum of the sizes of the rules andis denoted by |Xi|. Without loss of generality, we 
an assume that rules are ofsize 2, that is of the form X −→ Y Z with Y, Z ∈ V ∪Σ.Sin
e any MSC M is determined by its proje
tions (M |i)i∈P , an nMSC M
an be identi�ed with ℘ SLPs Li, i ∈ P . The SLP Li generates the proje
tion
M |i of M on the set of events of pro
ess i ∈ P . We denote the variables usedby Li as X |i, where the variables X are related one-to-one to the ma
ros Mqfrom the de�nition of the nMSC M . The initial variable of ea
h Li is thus M1|i.These SLPs 
an be translated in polynomial time into Chomsky normal form.Example 3. For the nMSC P in Figure 1 we have the following SLP generatingthe proje
tion on pro
ess 1: P |1 → S|1eM |1S|1, S|1 →M |1hM |1 and M |1 → k.By adding new variables we 
an transform these 3 rules into equivalent rules inChomsky normal form.A hierar
hi
al automaton (hNFA for short) 
orresponds roughly to an nHMSCover a single pro
ess. For 
larity we give the de�nition formally. An hNFA is a se-quen
e of edge-labeled graphs A = (Aq)q=1,n, where Aq = 〈Vq, Rq, δq, ϕq, sq, fq〉,with Vq the �nite set of states, Rq the �nite set of referen
es, sq, fq ∈ Vq theinitial and �nal state. The transition relation δq is a subset of (Vq ∪Rq) × (Σ ∪
{ǫ})×(Vq ∪Rq). The mapping ϕq asso
iates a referen
e R with a subautomaton,
q < ϕq(R) ≤ n. A transition of the form (R, a, v) with R ∈ Rq, v ∈ Vq meansan a-labeled transition from the �nal state of the subautomaton Aϕq(R) to thestate v of Aq. The meaning of transitions (v, a,R) and (R′, a, R), is similar, withthe transition ending in the initial state of Aϕq(R).Theorem 2 It is PSPACE-
omplete to 
he
k whether W ∈ L(A) for an SLP
W and an hNFA A. If the alphabet is unary, then the membership problem isNP-
omplete.Remark 1 The NP-hardness result in the unary 
ase also follows from [24℄.Proof. We �rst redu
e (1-in-3) SAT to the unary membership problem, sin
ewe use this redu
tion in the general 
ase, too. This variant of SAT is still NP-
omplete, see [25, 6℄.Let ϕ = ∧m

j=1C(αj , βj , γj) be an instan
e of (1-in-3) SAT over n variables
(xi)i=1,n. Here, (1-in-3) means that a 
lause C(αj , βj, γj) is true if exa
tly one of10



the literals αj , βj , γj is true. We use the unary alphabet {a}. Clearly, any word
x ∈ a∗ is uniquely de�ned by its length.For ea
h integer j, it is easy to de�ne an SLP (or an hNFA) L(j) of sizepolynomial in j that generates the word a4j . We asso
iate with ea
h 
lause
Cj = C(αj , βj , γj) the word wj = L(j). Thus, let W = w1 · · ·wm ∈ a∗ be theword of length ∑m

j=1 4j. The hNFA A 
onsists of a sequen
e of 
hoi
es withtransitions labeled by ti and fi, for i varying from 1 to n, where ti ∈ a∗ is theword of length ∑
j∈Ri

4j and Ri = {j | xi ∈ {αj, βj , γj}}. In the same way,
fi ∈ a∗ is the word of length ∑

j∈Si
4j and Si = {j | (¬xi) ∈ {αj, βj , γj}}.Formally, a transition labeled by ti 
orresponds to sequen
ing the automataa

epting L(j), for j ∈ Ri (similarly for fi).

t

f

A t

f

1

1

n

nA maximal path ρ of A 
orresponds to a valuation σ where ea
h variable xiis true if the path 
hooses ti, and false if it 
hooses fi. Let nj be the numberof literals of Cj that are set true by σ. Re
all that σ satis�es the formula ϕ i�
nj = 1 for all j. It is easy to see that ρ is labeled by the word L ∈ a∗ of length∑m

j=1 nj4
j . Noti
e that sin
e ea
h 
lause has three literals, nj ∈ {0, 1, 2, 3} forall j. The length of L in base 4 is thus (nmnm−1 . . . n10)4. We have W = L i�

(11 . . . 10)4 = (nmnm−1 . . . n10)4, thus i� nj = 1 for all j. That is, there is a pathin A labeled by W if and only if there is a valuation satisfying ϕ. This impliesthat the membership problem for hierar
hi
al automata with a unary alphabetis NP-hard.We now show the �rst statement of Theorem 2. We redu
e the problem (1-in-3) QBF (one-in-three quanti�ed boolean formula) to the hierar
hi
al membershipproblem. Let ϕ be an instan
e of (1-in-3) QBF of the form ϕ = Qnxn · · ·Q1x1ψ,where Qi ∈ {∃, ∀} and the formula ψ is of the form ∧m
j=1C(αj , βj , γj). As before,a 
lause Cj = C(αj , βj , γj) is true i� exa
tly one literal is true. The PSPACE-hardness of this problem is shown in [25, 6℄.The idea is to make the valuations of the variables 
orrespond to paths inthe hierar
hi
al automaton (Ai)i=0,n and to validate the valuations using theSLPs (Wi)i=0,n. We de�ne the automata Ai and the SLPs Wi by indu
tion on

i = 0, . . . , n. We use now the binary alphabet {a, b}. The letter a will have thesame meaning as in the NP 
ase, and the letter b will be used as a delimitingsymbol.We de�ne the words wj , ti, fi ∈ a∗ with respe
t to ψ as before. That is, ea
h
wj = L(j) is asso
iated with the 
lause Cj and ti, fi are asso
iated with thevariable xi. Moreover, we asso
iate with ea
h variable xi the word wi+m ∈ a∗ oflength 4i+m. Let W0 = w1 · · ·wn+m be the word of a∗ of length ∑n+m

j=1 4j , andlet A0 be an automaton 
onsisting of one ǫ-transition from its initial state to its11



�nal state. Let also S0 be an automaton 
onsisting of one transition labeled by
b. The SLP-
ompressed words (Wi)i=1,n, are de�ned by:� Wi −→Wi−1, if Qi = ∃,� Wi −→Wi−1 bWi−1, if Qi = ∀.The re
ursive de�nition of the hNFA (Ai)i=1,n and (Si)i=0,n−1 is illustratedin the �gure below. Transitions are either labeled by ǫ, or by xti = tiwi+m orxfi = fiwi+m. The automaton on the left de�nesAi whenQi = ∀, the automatonin the middle de�nes Ai when Qi = ∃, and the automaton on the right de�nes
Si. Note that the symbol b is only generated by S0.

Ai

A i-1

xt i

xfi

Ai xt i

Ai-1

xf i

Sn-i

n-i-1S n-i-1S

xt i+1

xf i+1

b b

i-1A

b Sn-i

The overall idea is as follows. The values of xi+1, . . . , xn are already 
hosenwhen an automaton 
alls Ai (from a higher hierar
hy level). The automaton Aion the left sets xi true, then uses Sn−i to re
over the �xed values of xi+1, . . . xn,and �nally it sets xi false. The automaton Ai in the middle guesses whether xi istrue (by taking the transition labeled by xti) or false (by 
hoosing the transitionlabeled by xfi). If it 
hooses both transitions labeled by xti, xfi (or none of them),then the word labeling this path will not be equal to Wn be
ause Wn 
ontainsexa
tly one o

urren
e of wi+m between any two 
onse
utive b's. We illustratehow Ai works in Figure 3, that shows the unfolding of the automaton A2 for
ϕ = ∀x2∀x1ψ on the left and for ϕ = ∃x2∀x1ψ on the right.To illustrate how Sn−i re
overs the values of xi+1, . . . , xn, we show Sn−i for
n = 9, i = 7 in the �gure below.
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Fig. 3. Unfolding of A2 for Q2x2Q1x1 = ∀x2∀x1 on the left, and on the right, unfoldingof A2 for Q2x2Q1x1 = ∃x2∀x1
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The hNFA Ai and Si are designed so that any path of Ai is labeled by atmost one xti and at most one xfi between any two 
onse
utive b's, for ea
h i (for
onvenien
e, we suppose that ea
h automaton starts and ends with a �
tive btransition). That is, a path 
an be labeled by xti and xfi, but not by two xti ortwo xfi. By 
ontradi
tion, assume that there are two 
onse
utive b's in Ai su
hthat there is a path from one b to the other one labeled by two xtj (the 
ase xfjis symmetri
). We take the minimal i whi
h ensures this. By the minimality of i,this 
an only happen either be
ause of the �rst xti transition of Ai, or between
Sn−i and one of the two Ai−1. Sin
e in Sn−i all xtj o

ur after the (unique) b,there is no xti in Ai−1 before its �rst b (if any). This already settles the 
asewhere Qi = ∃. Consider now the 
ase Qi = ∀. For the same reason as before,there 
an be at most one xtj between the last b of Ai−1 and the b in Sn−i, forall j < i. Finally, between the b of Sn−i and the �rst b of the se
ond Ai−1 there
an be at most one xtj with j > i (from Sn−i) and at most one xtj with j < i(from Ai−1). Thus, in all 
ases we 
ontradi
t the assumption on Ai.Using the property we just showed, we 
an note that between any two 
on-se
utive b's of any path of An, there are at most three wj and two wi+m for any
1 ≤ j ≤ m, 1 ≤ i ≤ n. Thus our 
oding in base 4 for determining whether a
lause is true, is still appli
able. Hen
e, a path ρ of An is labeled by Wn i� forall 1 ≤ k ≤ n+m there is exa
tly one wk between any two 
onse
utive b's.Let us show now that Wn ∈ L(An) i� there exists a satisfying valuation treeVT for ϕ. A valuation tree VT is a binary tree of height n+ 1 su
h that its root(level n) is labeled by xn and all nodes on level l are labeled by xl. The leavesare on level 0, labeled by true or false. A node v labeled by xl 
orresponds toa valuation σ(v) of the variables xl+1, . . . , xn. Moreover, a node on level l hastwo 
hildren if xl is universally quanti�ed (one 
hild evaluates xl to true and theother one to false), and one 
hild if xl is existentially quanti�ed. We say that avaluation tree satis�es a QBF formula ϕ = Qnxn · · ·Q1x1ψ if for every leaf, theasso
iated valuation makes ψ true.Assume �rst that VT is a valuation tree showing that ϕ is true. A valuation
σ(v) de�nes two words T (v), F (v) as follows: the word T (v) is the 
on
atenationof all xtj where j > i and xj is true in σ(v). The word F (v) is the 
on
atenationof all xfj where j > i and xj is false in σ(v). Let v be a node of VT labeledby xi. We de�ne the word ρ(v) = T−1(v)WiF

−1(v). We re
all that T (v), F (v)are words over a∗, hen
e T−1(v)WiF
−1(v) is the word that results from Wi bydeleting |T (v)| many a's in the pre�x and by deleting |F (v)| many a's in thesu�x.Let us show by indu
tion on level i that ρ(v) is in L(Ai) for any node v ofVT on level i.If v is a leaf of VT, then it de�nes an a

epting valuation for ψ, hen
e

T (v)F (v) = W0 due to the (1-in-3) restri
tion. Hen
e ρ(v) = W0W
−1
0 = ǫ ∈

L(A0).Consider �rst an internal node v labeled by xi with Qi = ∀. Let v1, v2 be the
hildren of v, with v1 
orresponding to xi true, and v2 to xi false. By indu
tionlet us suppose that ρ(v1), ρ(v2) are in L(Ai−1). Then,14



ρ(v) = T−1(v)WiF
−1(v) = T−1(v)Wi−1bWi−1F

−1(v)

= T−1(v)T (v1)ρ(v1)F (v1)bT (v2)ρ(v2)F (v2)F
−1(v)

= xtiρ(v1)F (v1)bT (v2)ρ(v2)xfiWe used in the equations above T−1(v)T (v1) = xti for the positive 
hild v1 of
v and F−1(v)F (v2) = xfi for the negative 
hild v2 of v. Moreover, F (v1)bT (v2) =
F (v)bT (v) ∈ L(Sn−i) sin
e v1 
orresponds to xi true, and v2 
orresponds to xifalse. This shows that ρ(v) ∈ L(Ai).Consider now an internal node v that is labeled by xi with Qi = ∃. Assumeby symmetry that v1 is the 
hild of v in VT (thus, xi is true). By indu
tion weassume that ρ(v1) is in L(Ai−1). It is easy to show now that ρ(v) ∈ L(Ai) using:

ρ(v) = T−1(v)WiF
−1(v) = T−1(v)Wi−1F

−1(v)

= T−1(v)T (v1)ρ(v1)F (v1)F
−1(v)

= xtiρ(v1)For the reverse dire
tion the arguments are similar. From a word W = Wna

epted by A = An, we obtain subwords ρ(v) in L(Ai) as above, labeled by
T−1(v)WiF

−1(v). This means that for ea
h leaf node v, the valuation σ(v) sat-is�es exa
tly one literal per 
lause.
2Theorem 2 shows immediately that the hierar
hi
al membership problem isPSPACE-hard even with one pro
ess, by en
oding the alphabet {a, b} by lo
ala
tions on a single pro
ess. Similar arguments 
an be used for the 
ase where Gis an MSC-graph (with no hierar
hy) as shown in the following theorem.Theorem 3 The hierar
hi
al MSC membership problemM

?
∈ L(G) is PSPACE-
omplete. The lower bound holds even if G is an MSC-graph, or if there is onlyone pro
ess.Proof. The problem we redu
e from is again (1-in-3)QBF. Let ϕ be an in-stan
e of (1-in-3)QBF of the form ϕ = (Qnxn) . . . (Q1x1)ψ, where Qi ∈ {∃, ∀}and the formula ψ is of the form ∧j=1...mC(αj,1, αj,2, αj,3), with αj,k literals.The idea is to let valuations of the variables to 
orrespond to paths of G andto validate the valuations using the nMSC M . We de�ne the graph G and thenMSC M by indu
tion on ϕ = ϕn. Let ϕi = (Qixi)ϕi−1, with ϕ0 = ψ. Ea
h ϕiwill determine Gi,Mi.The pro
esses used in the 
onstru
tion are SC1, . . . , SCm and RC1, . . . ,RCm,plus VY1, . . . ,VNn and VN1, . . . ,VNn. Here V means a variable and C a 
lause,

S stands for �send�, R for �re
eive�, Y for �yes� and N for �no�.For all i, let MYi be the MSC 
onsisting of a message from VYi to VNi,then ba
k from VNi to VYi, and a message from SCj to RCj for all j su
h15



that xi ∈ {αj,1, αj,2, αj,3}. Symmetri
ally, let MNi be the MSC 
onsisting of amessage from VNi to VYi, then ba
k from VYi to VNi, and a message from SCjto RCj for all j su
h that ¬xi ∈ {αj,1, αj,2, αj,3}.
M0 is an MSC 
onsisting of one message from SCj to RCj , for all j. TheMSC-graph G0 
onsists of 3n+ 1 nodes, labeled by MYi, MNi, or ∅. The graph
hooses between MYi and MNi for all i, as depi
ted on �gure 4.Note that all messages de�ned above 
ommute, ex
ept for the ones betweenVYi and VNi. Let ai be the message from VYi to VNi, and bi the messagefrom VNi to VYi. We use the order between ai, bi as follows: The sequen
eMYi = aibi means that xi is true, while MNi = biai means that xi is false.Assume now that Gi−1,Mi−1 are already de�ned, and that there are f uni-versal quanti�ers in ϕi−1. For simpli
ity, we denote a = ai and b = bi. Note thatin a valuation tree for ϕ showing that ϕ is true, ea
h value 0 or 1 assigned tothe variable xi is used by 2f leaves. A valuation tree is de�ned as in Theorem 2.If ϕi = ∀xiϕi−1, then letMi = (ab)2

f

Mi−1Si(ba)
2f

Mi−1. The MSC Si is usedfor syn
hronizing pro
esses o

urring in Mi. It 
ontains a message between ea
h(ordered) pair of pro
esses of Mi (in some arbitrary order). Note that using thehierar
hy we 
an des
ribe (ab)2
f , and thus Mi, by an expression of polynomialsize. Note also that ea
h Gi is de�ned as a (�at) MSC-graph.LetGi = (Vi, Ei), where Vi = Vi−1∪{e0} and Ei = Ei−1∪{(Fin, e0), (e0, In)}.The initial node In (the �nal node Fin, respe
tively) of Gi is the same as for

Gi−1. The vertex e0 is labeled by the syn
hronization MSC Si.
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Fig. 4. The MSC-graph on top is G0. The MSC-graph lower on the left indu
tively de-�nes Gi from Gi−1 in the universal 
ase. The MSC-graph lower on the right indu
tivelyde�nes Gi from Gi−1 in the existential 
ase.The de�nition of Mi, Gi 
an be explained intuitively as follows. Let ρ be apath of Gi labeled by Mi. Note that the MSC Si o

urring in Mi has to mat
h16



the MSC Si of e0. Thus ρ = ρ1e0ρ2, with ρ1 an a

epting path of Gi−1 labeledby (ab)2
f

Mi−1 and ρ2 an a

epting path of Gi−1 labeled by (ba)2
f

Mi−1. Ea
htime ρj goes through G0 (whi
h happens 2f times), ρj 
onsumes either ab ofMYi or ba of MNi. In parti
ular, all 2f o

urren
es 
onsumed by ρ1 are of theform ab, whi
h ensures that the valuation of xi asso
iated with ρ1 is 
onsistent(xi is true). The same holds for the path ρ2, where the value of xi is ensured tobe false.Suppose now that ϕi = ∃xiϕi−1. LetMi = (ab)2
f

(a)Mi−1, and Gi = (Vi, Ei),where Vi = Vi−1 ∪ {e0, e1, e2, e3}. Let Ei = Ei−1 ∪ {(e0, In), (Fin, e3), (e0, e1),
(e1, In), (Fin, e2), (e2, e3)}, where as above In is the initial vertex and Fin is the�nal vertex of Gi−1. The initial and �nal verti
es of Gi are e0 et e3. We label e1and e2 by a, and e0 et e3 by the empty MSC.The underlying idea in this 
ase is that the additional o

urren
e of a in
Mi must be mat
hed by e1 or e2 (nowhere else there is an a). If it is e1, everytime the path ρ goes through G0, it must 
hoose ba, hen
e it goes through VNi.The 
orresponding value for xi is then for
ed to be false. If it is e2, then ρ must
hoose ab, hen
e it goes through VYi. The rest of the proof is similar to theproof of Theorem 2.

2However, if there is only one pro
ess and hierar
hy is not allowed for thegraph G (or the MSC/word M), then our lower bound proof does not workanymore. Indeed, we show below that in the 
ase where the word W or theautomaton A are �at, the membership problem is solvable in polynomial time.Theorem 4 1. De
iding for an SLP W and an NFA A whether W ∈ L(A)
an be done in time O(|W | · |A|3).2. De
iding for a word W and a hNFA A whether W ∈ L(A) 
an be done intime O(|W |3 · |A|3).For the �rst statement in the theorem above a similar result (for Lempel-Ziv
ompressed words and regular expressions) has been shown in [24℄.The polynomial time algorithms for Theorem 4 are stated below. The �rstalgorithm 
omputes by dynami
 programming the set TX of pairs (a, b) of statesof a NFA A between whi
h a path labeled by X exists, for ea
h variable X ofthe SLP. A variable X is said to belong to the lowest level, if the rule asso
iatedwith X is terminal.Membership ((Xi)i=1,n SLP, A=(V,E,a0,af) NFA)For ea
h variable Xi on the lowest level:TXi
= { (a,b) ∈ V × V | a Xi−→ b };For i = 1 · · · n:Let TXi

= ∅;Let Y,Z s.t. Xi → Y Z;For all verti
es a,b,
 ∈ V:If (a,b) ∈ TY and (b,
) ∈ TZ:TXi
= TXi

∪ {(a,
)};17



Return (a0,af) ∈ TX1
;The se
ond algorithm 
omputes for ea
h sub-automaton B of a hNFA A theset TB of fa
tors of a word W that it a

epts. We denote as W [i . . . j] the fa
torof W from position i to position j, i ≤ j. The algorithm a
tually 
omputes forea
h i ≤ j the set Ti,j of pairs (a, b) of states of B between whi
h a W [i . . . j]-labeled path exists. For 
onvenien
e, we assume without loss of generality that alltransitions (ex
ept for the lowest hierar
hy level) 
orrespond to sub-automata.We use the fa
t that (a, b) ∈ Ti,j if either there is a transition from a to b labeledby a sub-automaton C a

epting W [i . . . j], or else the path labeled by W [i . . . j]
an be de
omposed as a, c and c, b, and then there exists 0 < e < j − i su
hthat (a, c) ∈ Ti,i+e and (c, b) ∈ Ti+e,j . We thus 
ompute �rst the lower levelsof hierar
hy, and we 
ompute then for ea
h sub-automaton the sets Di,i+d, forin
reasing d.Membership (W word, A=(V,E,a0,af) hNFA)For ea
h sub-automaton B of A on the lowest level of hierar
hy:TB = {(i,j) | W[ i . . . j℄ is a

epted by B};For ea
h sub-automaton B of A, by in
reasing hierar
hi
al level:For d = 0, . . . , |W |, for i = 1, . . . , |W | − d,Di,i+d = { (a, b) | a, b verti
es of B s.t. a

C
−→ bfor some C with (i, i+ d) ∈ TC};For ea
h e < d and every a, b, c verti
es of B,If (a,b) ∈ Di,i+e and (b,
) ∈ Di+e+1,i+d:Di,i+d = Di,i+d ∪ {(a,
)};TB = {(i,j) | (a0,af) ∈ Di,j};Return (1, |W |) ∈ TAThe �gure below summarizes the 
omplexities of the di�erent variants forthe hierar
hi
al MSC membership problem, as 
onsidered in this se
tion. Thelast two 
olumns 
orrespond to the 
ase of a single pro
ess (word 
ase) and tothe general MSC 
ase, respe
tively. The fa
t that the membership problem isNP-
omplete for an MSCM and an nHMSC G is easy to show. The lower boundholds already for MSC-graphs G [1℄, and for the upper bound it su�
es to guessa path of G of the size ofM , whi
h is polynomial, and 
he
k whether it is labeledby M .

M G words MSCFlat Nested P NP-
ompleteNested Flat P PSPACE-
ompleteNested Nested PSPACE-
omplete PSPACE-
ompleteFig. 5. Complexity of the membership problem.
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5 Pattern Mat
hing of nMSCsThe aim of this se
tion is to show that the pattern mat
hing problem for nM-SCs 
an be solved in polynomial time, without unfolding the nMSCs. We �rst
onsider a spe
ial 
ase of pattern mat
hing, namely testing the equality of twonMSCs. Then we des
ribe �rst a pattern mat
hing algorithm when the patternnMSC is 
onne
ted, and se
ond the additional work for non-
onne
ted patterns.5.1 Equality of nMSCsRe
all �rst that the FIFO rule allows to test the equality of two MSCs M and
N pro
ess-wise, whi
h amounts to test the equality of ℘ pairs of words (over thetype alphabet T ). In the hierar
hi
al 
ase we already used in Se
tion 4.1 therepresentation of an nMSC M by ℘ straight-line programs Li, where SLP Ligenerates the proje
tion M |i of M on pro
ess i.In order to test the equality of two nMSCs in polynomial time, we 
an usedire
tly the following result:Theorem 5 ([23℄) Let P be an SLP, and A,B be two variables of P . We 
andetermine whether A and B generate the same word in time O(|P |5 log(|P |)).The theorem above provides an algorithm for testingM = N of timeO((|M |+
|N |)5 log(|M | + |N |)). We 
an improve the running time by using the patternmat
hing algorithm des
ribed in the next se
tion.5.2 Pattern Mat
hing nMSCsDe�nition 5. The pattern mat
hing problem for two MSCsM and N = 〈P,E, C,
ℓ,m,<〉 
onsists in knowing whether there exists some subset F ⊆ E of eventsof N su
h that the restri
tion of the mappings ℓ,m to F equals M . Moreover,we require that F is 
onvex, that is if e, f ∈ F and e < g < f , then g ∈ F . We
all su
h an event set F an o

urren
e of M in N .If M,N are nMSCs, then M o

urs as a pattern in N if the MSC de�ned by
M is a pattern in the MSC de�ned by N , and we write M ⊆ N in this 
ase.It is easy to see that for an MSC M to be a pattern of an MSC N it doesnot su�
e to have ea
h M |i a pattern of N |i. But of 
ourse, this 
ondition isne
essary. Before we 
onsider the nested 
ase, we show a simple algorithm forthe �at 
ase:Theorem 6 Let M,N be two MSCs. We 
an 
he
k whether M is a pattern of
N in linear time.Proof. The main idea 
omes from pattern mat
hing in tra
e monoids, [16℄. Weuse the linear time algorithm of Knuth-Morris-Pratt for determining o

urren
esofM |i in N |i, for all i ∈ P . We sear
h for tuples of o

urren
es of (M |i)i∈P thatform a fa
tor of N . That is, we look for a 
on�guration of N su
h that on ea
h19



pro
ess i, we have M |i as a su�x. This is done by progressing one event at atime from a 
on�guration C of N to the next 
on�guration C′ as follows. For apro
ess j, let next(C, j) be C ∪{e}, where e is the next event on j and if C ∪{e}is a 
on�guration (otherwise, next(C, j) is unde�ned).For the 
urrent 
on�guration C of N we will re
ord the set J of pro
esses isu
h that M |i is a su�x of C on pro
ess i. From C we look for a pro
ess j /∈ Jsu
h that next(C, j) holds. If su
h a j exists, then we set C′ = next(C, j) andupdate J by possibly adding j. Otherwise, the next event on every j /∈ J is are
eive from some i ∈ J , where the 
orresponding send does not belong to C. Let
J0 be the set of all su
h pro
esses i. Note that the o

urren
e found on any ofthe pro
esses from J0 
annot form an o

urren
e ofM in N . So we 
an progresson any of the pro
esses in J0 (if possible). We �rst try to �nd some i ∈ J0 su
hthat next(C, i) is de�ned. If su
h an i exists, then we set C′ = next(C, i) andupdate J by possibly removing i. If not, then we surely �nd some i ∈ J \J0 su
hthat next(C, i) is de�ned (otherwise C 
annot be extended at all, whi
h meansthat N is not an MSC). Then we apply the same reasoning to this i.The overall 
omplexity of the algorithm is linear, by taking 
are that ea
hevent in N is 
onsidered at most a 
onstant number of times. We need for thisto re
ord in addition the set X of pro
esses i su
h that next(C, i) is unde�ned,although there is some next event e on i. This is the 
ase where e is a re
eive on
i, and the mat
hing send f does not belong to C. Together with i ∈ X we storethe pro
ess j of f . Altogether we re
ord the four sets J \X , J ∩X , J̄ \X and
J̄ ∩ X . Whenever we add an event e on pro
ess i, we update the membershipof i in one of these sets by looking at the next event e on i. Moreover, if e is asend with mat
hing re
eive f on j, then the membership of j is also updated.Thus, we 
an 
hoose the pro
ess where we progress in 
onstant time, and everyupdate 
an be done in 
onstant time, too. 2De�nition 6. Let N = (Ni)i=1,n be an nMSC (or an SLP), and let i, j ≤ n.1. We write Ni < Nj whenever Ni is used in the de�nition of Nj or in thede�nition of Z with Z < Nj . We write Ni ≤ Nj when i = j or Ni < Nj.The variable Ni is then 
alled lower than the variable Nj .2. We say that Ni o

urs literally in Nj when Ni is used as a referen
e (variableresp.) in the de�nition of Nj , and we write Ni ∈ Nj if this is the 
ase.The strategy we will use for nMSC pattern mat
hing is to 
ompute an impli
itrepresentation of all positions whereM |i o

urs as a pattern in N |i. In a se
ondstep we 
ompute all positions where the proje
tions M |i form an MSC fa
tor.The basis of our algorithm is a pattern mat
hing algorithm for SLP-
ompressedwords, that was proposed in [21℄ (based on ideas from [23℄)3:Theorem 7 ([21℄) Let P be an SLP and let A,B be two variables of P . Animpli
it representation of all o

urren
es of the word de�ned by A in the wordde�ned by B 
an be 
omputed in time O(|A|2|B|2).3 Very re
ently, an improved algorithm of 
omplexity O(|A||B|2) was des
ribed in [14℄.20



V
Y u u u

X X

i V i+1arithmeti
 progression O

(X,Y, V i)The idea of the algorithm in [21℄ is based on word 
ombinatori
s, as wedes
ribe next. First, we suppose that the right-hand sides of the rules of theSLPs are either terminal (
onsisting only of terminal symbols, here types from
T ), or 
onsist of variables only. For a variable Y we denote by |Y | the length ofits right-hand side.Let X be a variable of the SLP A and suppose that X o

urs in B, i.e. theword de�ned by X is a fa
tor of the word de�ned by B. Suppose that X doesnot appear as a fa
tor inside any variable Y of B with terminal rule Y → α.Then X o

urs in a variable Y with Y −→ V 1 · · ·V k. Let i be su
h that V iis the �rst symbol that this o

urren
e of X overlaps, and the o

urren
e endsbeyond V i (see also the �gure above). In parti
ular, Y is the lowest variable that
ontains this o

urren
e of X . We let O

(X,Y, V i) denote the set of positionsof Y at whi
h an o

urren
e of X starts within V i and ends beyond V i. LetO

(X,Y ) =

⋃k
i=1 O

(X,Y, V i) if the rule for Y is nonterminal, otherwise itdenotes the set of positions of Y where X o

urs.Using a 
ombinatorial argument (lemma of Fine and Wilf, [7℄), it is shownin [21℄ that O

(X,Y, V i) is an arithmeti
 progression that 
an be 
omputedby dynami
 programming in polynomial time. Therefore, O

(X,Y ) 
onsists ofat most |Y | arithmeti
 progressions, if the rule of Y is nonterminal (otherwise,O

(X,Y ) is of size at most |Y |). We represent ea
h set O

(X,Y, V i) by atriple of numbers (n, s, k) where n and p + s are the positions in Y of thetwo �rst o

urren
es of X in O

(X,Y, V i), and k = #O

(X,Y, V i) is thenumber of o

urren
es of X in O

(X,Y, V i). That is, we have Y = Y1XY2with ||Y1|| = n + si, for all 0 ≤ i < k. As an example, 
onsider the words Y =

aaabababababb and X = ababab. The arithmeti
 progression whi
h 
orrespondsto the o

urren
es of X in Y is (2, 2, 3) (the �rst position in a word being 0).Remark 2 By the algorithm of [21℄ we note that the equality of two SLPsM,N
an be 
he
ked in time O(|M |2|N |2), whi
h improves the 
omplexity providedby the algorithm proposed in [23℄.Throughout the se
tion we denote o

urren
es of proje
tions M |i using su-pers
ripts. That is, M |1i will 
orrespond to a given starting position of M |i aspattern of N |i. Suppose that for ea
h i ∈ P , M i o

urs in N |i as a fa
tor, andlet Ei be the 
orresponding set of events (positions). We say that (M i)i∈P formsa fa
tor of N if the set of events F = ∪i∈PEi satis�es De�nition 5 (fa
tor MSC).5.3 Pattern Mat
hing for Conne
ted PatternsWe turn now to the pattern mat
hing problem for nMSCs M , N where thepattern M is 
onne
ted. That is, we suppose throughout this se
tion that M21




annot be written asM1M2, whereM1,M2 are nonempty MSCs with no 
ommonpro
ess.Following the de�nitions of the previous se
tion we will denote by O

(M,Y )the set of o

urren
es M0 of the nMSC M in the nMSC Y , su
h that M0 doesnot o

ur in any referen
e Z < Y . We denote by O

(M,Y, V ) ⊆ O

(M,Y )those o

urren
es that start within V and end beyond V , where V ∈ Y is areferen
e o

urring literally in Y . This means that 1) all events of M0 musto

ur within or after V , 2) for at least one pro
ess i, the o

urren
eM0|i startswithin V and ends after V . Noti
e that for a pro
ess i as in point 2), we have
M |0i ∈ O

(M |i, Y, V ).De�nition 7. Let M |1i and M |2j be o

urren
es of M |i in N |i, resp. of M |j in
N |j . We say that M |1i and M |2j are 
ompatible, if the �rst send (resp. re
eive)between the pro
esses i and j onM |1i mat
hes the �rst re
eive (resp. send) onM |2j(if i, j 
ommuni
ate in M). More generally, we 
all the indi
es 
orresponding to
M |1i , M |2j in a given arithmeti
 progression 
ompatible.Lemma 1. Let (M |0i )i∈P be o

urren
es of M |i in N |i. Then (M |0i )i∈P formsa fa
tor of N i� (M |0i )i∈P are pairwise 
ompatible.Our sear
h for 
ompatible o

urren
es uses the following properties, that areeasily shown using the fa
t that M is 
onne
ted:Fa
t 1 1. Let Y be a variable of N and h 6= j two pro
esses. Then for ea
h

M |0h ∈ O

(M |h, Y ) there 
an be at most one o

urren
e M |0j in Y that is
ompatible with M |0h.2. For ea
h o

urren
e M0 in O

(M,Y, V ) there exists some pro
ess h su
hthat M0|h ∈ O

(M |h, Y, V ). We 
all su
h a pro
ess h a leading pro
ess for
M0. Thus, any pairwise 
ompatible tuple (M0|k)k 6=h ⊆ Y is determined bythe o

urren
e M0|h, be
ause of 1).Example 4. For the nMSC P in Figure 1 and the pattern N in Figure 6 we haveO

(N,P ) = ∅ and O

(N,S) is a singleton, 
orresponding to the unique o

ur-ren
e ofN in S. The leading pro
esses are 1 and 3, sin
e e.g. O

(N |3, S|3) = {0}.Note that O

(N |2, S|2) = ∅ and O

(N |2,M |2) = {0} is the arithmeti
 progres-sion (0, 0, 0).An index i = n + js, j < k, of an arithmeti
 progression (n, s, k) in Y is
alled external , if it is either the �rst or the last index of the progression, thatis either i = n or i = n+ (k − 1)s. Any nonexternal index is 
alled an internalindex.The next proposition provides the main argument that the sear
h for a pair-wise 
ompatible tuple of o

urren
es (M |i)i∈P 
an be done in polynomial time.Intuitively, we show that the o

urren
es of (M |i)i∈P 
an be lo
ated in the samevariable Y of N , up to polynomially many ex
eptions. Without this property wewould have to 
onsider di�erent variables Y i for di�erent pro
esses i ∈ P . Were
all that for every message (e, f) in an nMSC N = (Nq)q=1,n the events e and

f appear literally in the same ma
ro Nq.22



N

1 2 3

Fig. 6. Pattern MSC NProposition 1 Assume thatM0 ∈ O

(M,Y, V ) and thatM0|i ∈ O

(M |i, Y
i, V i)for i ∈ P , where Y, Y i, V i are variables of N . Then we have one of the followingtwo 
ases:1. Y i = Y and V i = V for all i ∈ P .2. For some leading pro
ess h for M0 (in parti
ular, V h = V and Y h = Y ),the o

urren
e M0|h is an external index of O

(M |h, Y h, V h).Proof. Suppose that for every leading pro
ess h, the o

urren
e M0|h is aninternal index of O

(M |h, Y

h, V h). We want to infer that Y i = Y and V i = Vfor all i ∈ P . Assume also that there is a message from pro
ess i to pro
ess j in
M . We de
ompose M |i = Ai,jB

s
i,jCi,j su
h that the word Bs

i,j begins with the�rst send from i to j, and ends with the last one. Similarly, we de
omposeM |j =
Aj,iB

r
j,iCj,i su
h that the word Br

j,i begins with the �rst re
eive on j from i, andends with the last one. We need the next lemma to infer that if an o

urren
e
M0 is su
h thatM0|i ∈ O

(M |i, Y i, V i) andM0|j ∈ O

(M |j , Y j , V j) are bothinternal indi
es, then we have Y i = Y j and V i = V j . This will allow �nishingthe proof of the proposition, using the fa
t that M is 
onne
ted.Lemma 2. Assume that the arithmeti
 progression π = O

(M |i, Y, V ) 
onsistsof at least three indi
es. Then ea
h o

uren
e of Bs

i,j that 
orresponds to someinternal index of π, belongs to O

(Bs
i,j , Y, V ).Proof of lemma: Sin
eM |i belongs to an arithmeti
 progression 
onsistingof at least three indi
es, M |i is of the form (a1 · · · an)d(a1 · · · am), where d ≥ 3and m < n.By assumption, there is a message from i to j in M |i, hen
e ak = i!j forsome k. Sin
e Ai,j and Ci,j have no i!j, we obtain Ai,j = a1 · · ·ak−1 and Ci,j =

al+1 · · · ana1 · · · am, with l > m.In parti
ular, we have |Ai,j | < n and |Ci,j | < n. Sin
e ea
h M |i 
ontainsthe last position of the word generated by V , the subword Bs
i,j also 
ontainsthis position, ex
ept possibly for the �rst and the last Bs

i,j . Hen
e, every Bs
i,jasso
iated with an internal index of π is in O

(Bs

i,j , Y, V ).23
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n

Y

M|
1

V

2Let now h be a leading pro
ess, thus Y h = Y and V h = V . Let also
j 6= h su
h that j, h 
ommuni
ate in M . Sin
e M0|h is an internal index ofO

(M |h, Y, V ) we 
an apply Lemma 2 and we obtain for the 
orrespondingo

urren
e Bs,0

h,j ∈ O

(Bs
h,j , Y, V ). Hen
e, we also have Br,0

j,h ∈ O

(Br
j,h, Y, V ),sin
e mat
hing sends and re
eives always appear literally in the same variable.Re
all thatM0|j ∈ O

(M |j , Y

j , V j) with Y j ≤ Y . Using Br,0
j,h ∈ O

(Br

j,h, Y, V )we obtain that Y ≤ Y j , hen
e Y j = Y . Applying the lemma again to M0|j weobtain also V j = V , that is, j is a leading pro
ess, too. The result follows for allpro
esses i, due to M being 
onne
ted. 2Theorem 8 LetM,N be two nMSCs, with M 
onne
ted. We 
an 
he
k whether
M o

urs in N in time O(|M |2|N |2).The algorithm below returns o

urren
es of M in N , in form of pairs (Y, π),where Y ≤ N and π is an arithmeti
 progression designating a set of positionswithin Y that 
orrespond to o

urren
es of M . We denote below the number ofpro
esses by p.Pattern-Mat
hing (nMSC M, N)For ea
h variable X on the lowest level of hierar
hy:If M ⊆ X at position pos then return (X, pos);For all variables Y , V of N with V ∈ Y :Compute O

(M |1, Y , V ), . . ., O

(M |p, Y , V );For every variable Y of N:For every pro
ess h:For every pos(h) at the beginning or end of anarithmeti
 progression of O

(M |h, Y ):Let (M |h)pos(h) be the 
orresponding o

urren
e of M |h:If there exist ((M |k)pos(k))k 6=h 
ompatible with (M |h)pos(h)where for all k, pos(k) ∈ O

(M |k, Zk) with Zk ≤ Y :return (Y , (pos(k))k ∈ P ;For every V ∈ Y s.t. for all i: πi = O

(M |i, Y , V ) 6= ∅:For ea
h i, let πi = (ni, si, ki);Let (t1, . . . , tp, e1, . . . , ep) = Periods(Redu
e(π1, . . . , πp));Let π′

i = (ni + tisi, siei, (ki − ti)/ei)If (π′
i)i 6= ∅ then return (Y , (π′

i)i)Noti
e that we have to restri
t pos(k) to be inside Y for every k to ensure that
h is leading, whi
h ensures the uniqueness of pos(k) for every k. For simplifyingthe presentation of the algorithm we will assume below that every pro
ess i in24



M sends at least one message to every pro
ess j > i. This is just a te
hni
alassumption, whi
h makes the presentation ni
er. The algorithm �rst 
omputesthe o

urren
es M |i pro
ess-wise. Then, in the third for-loop, it �rst 
onsidersexternal indi
es, 
orresponding to the se
ond 
ase of Proposition 1. If no patternis found, the algorithm looks for an o

urren
e 
orresponding to the �rst 
ase ofProposition 1, where M0|i ∈ O

(M |i, Y, V ) for every pro
ess i. The arithmeti
progression O

(M |i, Y, V ) is denoted by πi = (ni, si, ki) above. We denote by
ui the word 
onsisting of the si �rst symbols of M |i. By assumption, ea
h ui
ontains both symbols i!j and i?j, for all j > i. For ea
h i < j we denote by
mi,j the number of sends from i to j in ui, and by mj,i the number of re
eivesfrom i to j in uj .We des
ribe now the subroutines Redu
e and Periods and show that ouralgorithm returns only o

urren
es of M whi
h are indeed fa
tors of N . Thesubroutine Redu
e restri
ts the arithmeti
 progressions (π1, . . . , πp) by addingan o�set to ea
h ni of an arithmeti
 progression πi = (ni, si, ki), and redu
ing
ki. This is done su
h that for all pairs of distin
t pro
esses i, j there existsa send to pro
ess j and a re
eive from j in every o

urren
e from πi, su
hthat the mat
hing event belongs to πj . For instan
e, in the example below thearithmeti
 progression π1 will start after a 
all of Redu
e with u0

1, sin
e the two
opies of u1 before have no send to pro
ess 2 su
h that the mat
hing re
eivebelongs to π2. Thus, the �rst two o

urren
es of u1 in π1 will not be used forlooking for 
ompatible o

urren
es. It also redu
es the number of o

urren
esof arithmeti
 progressions. Redu
e takes quadrati
 time by 
omputing for everypair of pro
esses i, j the �rst and the last event on i that sends or re
eives amessage from an o

urren
e from πj . We then 
ompute the events whi
h ful�llevery 
onstraint.
1

z

u
1
0

u 2
0

π

2π

r
e
d
u
c
e

u 1
1

0

Let (πi)i=1,p be arithmeti
 progressions of o

urren
es of
M |1, . . . ,M |p, su
h that for ea
h pair i < j there is a messagefrom ea
h ui in πi to some uj in πj . That is, (πi)i∈P is theresult of a 
all of Redu
e. Let u0

i be the �rst index of ea
harithmeti
 progression πi. The only problem that remains forde
iding whether there exist 
ompatible o

urren
esM |i,M |jis that the existen
e of messages from ui in πi to uj in πj doesnot mean that the events mat
h 
orre
tly w.r.t. M . We willlook for tuples of o

urren
es of the M |i that are pairwise
ompatible by 
onsidering sub-progressions of the πi.From now on we want to determine all tuples (ui)i∈P 
or-responding to the starting positions of pairwise 
ompatibletuples ((M |1)0, . . . , (M |p)0). As we show later, su
h tupleso

ur periodi
ally, hen
e we just need to determine some pe-riods (µ1, . . . , µp) ∈ N
p and the �rst positions (u1

1, . . . , u
1
p)from whi
h we 
an apply these periods.For all i < j let zi,j < mi,j be the number of events of type

i!j in u0
i before the �rst event that has a mat
hing event in πj . Let also zj,i < mj,ibe the number of events of type j?i in u0

j before the �rst one that has a mat
hing25



send in πi. In the �gure above we have i = 1, j = 2,m1,2 = 2 (there are two sendsin ea
h u1), m2,1 = 3 (there are three re
eives in ea
h u2), z1,2 = 1 (the �rstsend of u0
1 has no mat
hing re
eive in π2) and z2,1 = 0. Let z0

i,j be su
h that afterreading the �rst z0
i,j + zi,j sends from πi to πj we arrive at a message 
onsistingof the �rst i!j of some ui and the �rst j?i of some uj . In the example, we markedas z0 = z0

1,2 the earliest message 
onsisting of the �rst 1!2 of some u1 and the�rst 2?1 of some u2, and z0
1,2 = 3. So z0

i,j +zi,j ≡ 0 (mod mi,j) and z0
i,j +zj,i ≡ 0

(mod mj,i). Using the Chinese Remainder Theorem the subroutine Periods �rst
omputes the least solutions z0
i,j modulo l
m(mi,j ,mj,i) to the above equationsin time O(min(|M |i|, |M |j|)3). We perform this 
omputation for ea
h pair ofpro
esses in overall time O(|M |3) for obtaining the new period µi and the newo�set u1

i . Noti
e that µi = l
m{mi,j | i < j}. The restri
tion of the arithmeti
progression πi a

ording to µi, u
1
i is denoted π′

i.By de�nition, the �rst i!j of ea
h ui in the restri
ted arithmeti
 progression
π′

i mat
hes the �rst j?i of some uj of the unrestri
ted arithmeti
 progression
πj . The �nal step of Periods is to 
ompute o

urren
es of M from (π′

i)i=1,p.Let xi,j denote the number of uj between the o

urren
e u1
j and the o

urren
e
ontaining the re
eive of the �rst message from u1

i . We want to 
ompute alltuples (ui)i=1,p su
h that the �rst i!j of ui mat
hes the �rst j?i of uj . That is,we need a solution (ti)i=1,p of the following system of p(p− 1) linear equations:
µimi,jti = xi,jmj,i + µjmj,itj .Thus, the value of t1 determines ea
h ti, modulo some value ei depending onthe 
onstants (mi,j)i,j . We 
an 
ombine the equation for (1, i) with the equationfor (i, j) to obtain a system of p(p− 1) equations:

δi,jt1 = yi,j + νi,jtj .Let j ∈ P . Noti
e that several of these equations (for di�erent i) involve thesame pair of variables t1 and tj . Either all these equations are equivalent, or theyyield a unique solution, or no solution at all. If there is a unique solution, thenwe stop the pro
edure and test this solution in ea
h equation. If this is indeed asolution of the system, we return its value. If there is no solution, we do not �ndan o

urren
e of M at this level. Hen
e, we 
an assume for the following thatthe equations for j are all equivalent. Then it su�
es to 
onsider a system of pequations of the above form (i.e., we �x some i for ea
h j).If gcd(δi,j , νi,j) does not divide yi,j , there is no solution to our system. Else,we 
an divide δi,j , yi,j , νi,j by gcd(δi,j , νi,j), and thus 
onsider only the 
ase where
gcd(δi,j , νi,j) = 1.Let γi,j be the inverse of δi,j modulo νi,j . Hen
e the equations are redu
ed to
p simple equations of the form t1 ≡ yi,jγi,j (mod νi,j). The subroutine Periods�nally 
omputes a solution (t1, . . . , tp) using again the Chinese Remainder The-orem and returns (ti + u1

i − u0
i , ei)i.Sin
e the interse
tion of an arithmeti
 progression with the periodi
 set isstill an arithmeti
 progression, in the end we have arithmeti
 progressions of26



periods in
reased by a fa
tor of ei, that 
ontains only 
ompatible o

urren
es.A 
all of Periods 
osts time O(|M |3).Remark 3 We 
an slightly adapt the algorithm for 
omputing all o

urren
esof M in N . Note that the number of o

urren
es might be exponential (as inthe word 
ase), thus the representation of all o

urren
es will be impli
it.5.4 Pattern Mat
hing for Non-Conne
ted PatternsWe turn now to the general 
ase where the nMSC patternM is not 
onne
ted. Weshow that the 
omplexity of the algorithm in
reases just by a fa
tor O(|CM |2) ≤
O(℘2), namely the square of the number of weakly 
onne
ted 
omponents ofM .It will be helpful in the following to have all pro
esses of N appear in M .This 
an be enfor
ed by a simple modi�
ation of M,N , as depi
ted below. Forea
h referen
e Y of N and ea
h pro
ess i ∈ PN \ PM we add a lo
al a
tion lo
ion pro
ess i in Y before ea
h message or referen
e on i, and before the end of
Y . Let M ′ = M ·

∏
i∈PN\PM

lo
i. Obviously,M ′ o

urs in N ′ i� M o

urs in N .
Occ(M      )

1 5 5

loc5Occ(M      ){1,2} {3,4}

2 3 4 1 2 3 4

Let M,N be nMSCs. For ea
h referen
e X of M or N , let CX ⊆ 2PM be theset of maximal 
onne
ted 
omponents of the 
ommuni
ation graph of X (this isthe graph with verti
es 
orresponding to pro
esses and edges between 
ommuni-
ating pro
esses). We will denote by X |C the proje
tion of X over the pro
essesin C ∈ CX . In other words, X = (X |C)C∈CX
represents the de
omposition ofthe MSC asso
iated with X into 
onne
ted nMSCs. It follows from the previousse
tion that we 
an 
ompute in time O(|M |2|N |2) a 
ompa
t representation ofall o

urren
es ofM |C in N , for ea
h C ∈ CM . The next de�nition states when atuple of o

urren
es (M |C)C∈CM

of the 
onne
ted 
omponents ofM 
orrespondsto an o

urren
e of M in N .De�nition 8. Let a ∈ O

(M |C , Y ), b ∈ O

(M |D, Y ) be two o

urren
es of
onne
ted 
omponents of M , where C,D ∈ CM and C 6= D. Then a, b are 
alled
ompatible if there is no message in Y from some pro
ess in C to some pro
essin D that is sent after a and re
eived before b (or vi
e versa).Lemma 3. Let aC ∈ O

(M |C , Y ), for all C ∈ CM . Then (aC)C∈CM
is ano

urren
e of M in Y i� aC , aD are 
ompatible for all C,D ∈ CM , C 6= D.27



Proof. The impli
ation from left to right follows dire
tly from the de�nitionof patterns. For the 
onverse assume that (aC)C∈CM
is not an o

urren
e ofM in

Y . This means that there is some 
hain of messages (sk, rk)m
k=1 with P (s1) ∈ C,

P (rm) ∈ D, P (rk) = P (sk+1) for all k, and su
h that aC pre
edes s1, ri pre
edes
si+1, and rm pre
edes aD. Sin
e all pro
esses appear in M , there exist some kand C′, D′ ∈ CM su
h that P (sk) ∈ C′, P (rk) ∈ D′, aC′ pre
edes sk and rkpre
edes aD′ . But this means that aC′ , aD′ are not 
ompatible, 
ontradi
tion. 2Let C ∈ CM . Note that the o

urren
es of the 
onne
ted 
omponentsM |C in
Y are totally ordered by the visual order of Y . This justi�es the use of min and
max on o

urren
es of the same 
onne
ted 
omponent in the proposition below.Proposition 2 Let a = (aC)C∈CM

, b = (bC)C∈CM
∈ (O

(M |C , Y ))C∈CM

be twoo

urren
es of M in Y . Then (min(aC , bC))C∈CM
and (max(aC , bC))C∈CM

arealso o

urren
es of M in Y .Proof. By Lemma 3 it su�
es to 
he
k that min(aC , bC), min(aD, bD) are
ompatible, for all C,D ∈ CM , C 6= D. The only 
ase to verify is when min(aC , bC)
= aC < bC and min(aD, bD) = bD < aD. Assume by 
ontradi
tion that there isa message from C to D that is sent after aC and re
eived before bD. Then aCand aD > bD are not 
ompatible, a 
ontradi
tion. The 
ase where a message issent after bD and re
eived before aC is symmetri
al. 2We des
ribe the pattern mat
hing algorithm in a simpler 
ase where thefollowing two 
onditions hold. First, we assume that every message is on thelowest hierar
hi
al level. This means that ma
ros either 
onsist of referen
es (andlo
al a
tions) only, or they are MSCs. In other words, we forbid messages 
rossingreferen
es in N . Se
ond, for all referen
es Y, Z with Z ∈ Y and ea
h o

urren
eof M |C in Y either M |C is in
luded in Z, or it has an empty interse
tion with
Z. That is, we assume that no o

urren
e of M |C in Y is split between severalreferen
es Z ∈ Y . If N satis�es these 
onditions w.r.t. M , then we 
all thepair (M,N) ni
e. The general 
ase is te
hni
ally more involved, but it does notrequire new ideas.If M o

urs as a pattern of N , then Proposition 2 ensures that there is aunique minimal o

urren
e of M in N (minimal with respe
t to the 
omponentwise ordering of tuples from (O

(M |C , N))C∈CM

. In order to �nd the mini-mal o

urren
e of M in a referen
e X of N , we look for 
ompatible minimalo

urren
es in ea
h referen
e Y ∈ X . If Y does not 
ontain the 
omplete M ,then we need more information about possible 
omponents M |C that are out-side Y and that are 
ompatible with the 
omponents within Y . Sin
e there maybe several referen
es X with Y ∈ X we en
ode this additional information byimaginary o

urren
es denoted ↓C and ↑C , for ea
h 
omponent C ∈ CM . Theo

urren
e ↓C for 
omponent C means an o

urren
e of M |C after Y , while
↑C for C means an o

urren
e of M |C before Y . Thus, we let ↑C< aC <↓Cfor all aC ∈ O

(M |C , Y ). For C 6= D, we say that ↑C , aD ∈ O

(M |C , Y ) are
ompatible if there is no message from C to D that is re
eived before aD in Y(symmetri
ally for ↓). The pre
ise de�nition follows:28



De�nition 9. Let Y be a referen
e of N . Let E ⊆ {6=↑C,=↓C | C ∈ CM} be aset of 
onstraints. We de�ne MinY
E = (aC)C∈CM

as the minimal tuple satisfyingthe following 
onditions:1. For ea
h C ∈ CM , aC ∈ O

(M |C , Y ) ∪ {↑C , ↓C}.2. The o

urren
es (aC)C∈CM
are pairwise 
ompatible.3. (aC)C∈CM

satis�es the 
onstraint E. That is, (6=↑D) ∈ E implies that aD 6=↑D,and (=↓D) ∈ E implies that aD =↓D.
1 5

Occ(M )
i

2 3 4

Y

a

b

c

d

e
f

h

0g

Note that the minimal o

urren
e in the previous de�nition is well de�ned,sin
e there exists at least one tuple (aC)C∈CM
satisfying the three 
onditionsabove, namely aC =↓C for all C. In other words, there may always be an o

ur-ren
e of M after Y .Example 5. The two extreme 
onstraints 
orrespond toMin∅ = (↑C)C∈CM

and Min(=↓C)C∈CM
= (↓C)C∈CM

.In the �gure to the right we also have:� Min{6=↑1} = (a, ↑2, e, ↑4, ↑5) = Min{6=↑1, 6=↑3}.� Min{=↓2} = (b, ↓2, e, ↑4, ↑5).� Min{6=↑4,=↓5} = (↑1, ↑2, ↑3, g, ↓5).The next lemma shows that it su�
es to 
ompute (re
ursively) the tuplesMinY
E , for suitable 
onstraints E and referen
es Y of N .Lemma 4. Let (bC)C∈CM

= MinN
( 6=↑C)C∈CM

. Then M is a pattern of N i�
bC 6=↓C, for all C ∈ CM .The problem is that we might need the tuples MinY

E for arbitrary sets E of
onstraints (and there are exponentially many). Fortunately, we 
an avoid theexponential blow-up by 
omputing MinY
E only for singletons E = {6=↑C} and

E = {↓C}, C ∈ CM . We �rst show that these tuples su�
e for 
omputing inpolynomial time MinY
E for arbitrary E. In a se
ond step, we show that we willneed only a polynomial number of 
onstraints E in the re
ursive step.Lemma 5. Let E,F ⊆ {6=↑C,=↓C | C ∈ CM} be two sets of 
onstraints. ThenMinY

E∪F = max(MinY
E ,MinY

F ).Proof. Let b = (bC)C = max(MinY
E ,MinY

F ). We have of 
ourse MinY
E∪F ≥MinY

E and MinY
E∪F ≥ MinY

F , hen
e MinY
E∪F ≥ b. But MinY

E∪F is the minimaltuple that satis�es the three properties whi
h b satis�es, too: the tuple b haspairwise 
ompatible 
omponents bC and it satis�es the 
onstraints in E ∪ F .Therefore, b = MinY
E∪F . 229



1 5

Occ(M )
i

2 3 4

Y
a

c
d

1

b

Y2

MinY 1Y 2

{6=↑5} = (a, b, c, ↑4, d).MinY 1

{6=↑5} = (a, ↓2, c, ↑4, d) = MinY 1

{=↓2, 6=↑5}.MinY 2

{6=↑2} = (↑1, b, ↑3, ↑4, ↑5).Proposition 3 Assume that the pair (M,N) is ni
e and 
onsider some refer-en
e Y of N and a 
omponent D ∈ CM . Then MinY
{6=↑D} and MinY

{=↓D} 
an be
omputed in time O(|Y |℘2) from the tuples (MinZ
{6=↑C})C∈CM

and (MinZ
{=↓C})C∈CM

,where Z ∈ Y .Proof. We 
an assume without restri
tion that any referen
e Y of N thatis not on the lowest hierar
hy level has exa
tly two subreferen
es, that is Y =
Y 1Y 2.We will 
ompute the set of 
omponents E↓ ⊆ CM that 
onsists of all C su
hthatM |C has no o

urren
e in Y 1 whi
h is 
ompatible with the 
onstraints, thus
M |C must o

ur either in Y 2 or after Y . In order to do this, we start with E↓ = ∅and we augment E↓ as long as there exist a, b with the following properties:� (aC)C is an o

urren
e in Y 1 with aC =↓C i� C ∈ E↓,� (bC)C is an o

urren
e in Y 2 with bC =↑C i� C /∈ E↓.The algorithm for 
omputing MinY

{6=↑D} is des
ribed below (for MinY
{=↓D} thereasoning is similar):(1) Let E↓ = ∅(2) Compute (aC)C = MinY 1

E , with E = {6=↑D} ∪ {=↓C | C ∈ E↓}(3) Let E↓ = { C | aC = ↓C}// For all C ∈ E↓, M |C must be in Y 2 or after Y .30



(4) Compute (bC)C = MinY 2

( 6=↑C)C∈ E↓(5) Let E↓ = { C | bC 6= ↑C}. If E↓ 
hanges, then goto (2).(6) Let dC = bC if C ∈ E↓, and dC = aC, otherwise.(7) Return (dC)C.Note that ea
h time the set E↓ 
hanges at step (3), it in
reases by at leastone 
omponent. Hen
e, we return to step (2) at most O(℘) times.For the running time let us denote by Et
↓ the value of E↓ after t iterations.The t-th iteration needs time ℘(|Et

↓| − |Et−1
↓ |), thus the overall running time isat most O(℘2).If an nMSC has more than two referen
es, then we de�ne several sets Ei

↓ toexplain the minimal referen
e Y i where the o

urren
e of the proje
tion shouldbe. Considering that for ea
h step, one set Ei
↓ has to 
hange, the running timeis ℘2|Y |. 2Theorem 9 We 
an test whether M o

urs as pattern of N in time O(C2

M (|M |2

|N |2)).Proof. We show the theorem only for the 
ase where (M,N) is a ni
e pair.The general 
ase is te
hni
ally more involved, but does not require new ideas.Theorem 8 is used for 
omputing �rst the impli
it representation of all o
-
urren
es of M |C in Y , for all 
omponents C ∈ CM of M and all referen
es Y of
N . For ea
h Y we need then only the position of the minimal o

urren
e of ea
h
M |C in Y (if any). We 
ompute then MinY

6=↑C
and MinY

=↓C
for all 
omponents

C ∈ CM and referen
es Y of N . We apply Proposition 3 to 
ompute MinY
6=↑Cand MinY

=↓C
. The time 
osts are O(|M |2|N |2) for the 
onne
ted 
omponents and

O(℘3|N |) ≤ O(|M |2|N |2) for the additional algorithms looking for 
ompatible
omponents. The overall running time is thus O(|M |2|N |2). In the general 
asewe get an additional fa
tor C2
M , where CM is the number of 
onne
ted 
om-ponents of M , expressing additional 
onstraints due to 
omponents M |C thatmight be split over several referen
es of N . 26 Con
lusionIn developing new te
hniques for algorithms on hierar
hi
al MSCs, we pro-vided arguments that algorithms 
an bene�t from the hierar
hi
al stru
ture. Weshowed that pattern mat
hing and membership algorithms 
an e�
iently use thehierar
hy, together with te
hniques stemming from 
ombinatori
s, arithmeti
sand dynami
 programming. We believe that similar te
hniques 
an be usefulfor other problems on hierar
hi
al MSCs, for instan
e veri�
ation of propertiesexpressed by template MSCs [10℄.A
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