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2 LIAFA, Université Paris VII, ase 7014, 2 pl. Jussieu, F-75251 Paris edex 05Abstrat. Several formalisms and tools for software development usehierarhy in system design, for instane stateharts and diagrams inUML. Message sequene harts (MSCs) are a standardized notation forasynhronously ommuniating proesses. The norm Z.120 also inludeshierarhial HMSCs. Algorithms on MSCs rarely take into aount allpossibilities overed by the norm. In partiular, hierarhy is not takeninto aount sine the models that are usually onsidered are (�at) MSC-graphs, that orrespond to the unfolding of hierarhial HMSCs. How-ever, omplexity an inrease exponentially by unfolding. The aim ofthis paper is to show that basi algorithms an be designed suh thatthey avoid the ostly unfolding of hierarhial MSCs and HMSCs. Weshow this for the membership and the pattern mathing problem. Weprove that the membership problem for hierarhial HMSCs is PSPACE-omplete. Then we desribe a polynomial time algorithm for the patternmathing problem on hierarhial MSCs.1 IntrodutionIt is ommon to use maros when writing a program or modeling a system.Maros (or hierarhial models) enable the modular design of omplex systems.They also present the advantage of suintness and better readability. Severalformalisms and tools for software development use hierarhy in system design.One of the most prominent examples is the formalism of stateharts [11℄, whih isa omponent of several objet-oriented notations, suh as the Uni�ed ModelingLanguage (UML). Besides stateharts, UML widely uses several kinds of dia-grams (ativity, interation diagrams et), all based on the ITU standard Z.120of message sequene harts (MSC for short). While stateharts extend �nitestate mahines (FSM for short) by hierarhy and ommuniation mehanisms,MSC is a visual notation for asynhronously ommuniating proesses. The usualappliation of MSCs in teleommuniation is for apturing requirements of om-muniation protools in form of senarios in early design stages. MSCs usuallyrepresent inomplete spei�ations, obtained from a preliminary view of the sys-tem that omits several details, suh as variables or message ontents. High-levelMSCs (HMSCs) ombine basi MSCs using hoie and iteration, thus desrib-ing possibly in�nite olletions of senarios. For abstrat spei�ations as with
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HMSCs, hierarhy is of primary importane. Sine a senario orresponds to aspei�ation level whih an be very abstrat, a designer should be able to mergedi�erent spei�ation ases yielding the same abstrat senario and to use thissenario as a maro. By using maros designers may identify sub-senarios whihhave to be re�ned at a later stage. Thus we fous in this paper on hierarhialMSCs (or nested MSC, nMSC for short) and hierarhial HMSCs (nested HMSC,nHMSC for short).Algorithms on MSCs rarely take into aount the whole spetrum of theHMSC standard de�nition. In partiular, hierarhy is not taken into aountsine the models usually onsidered are MSC-graphs (that orrespond to theunfolding of nHMSCs). However, omplexity an inrease exponentially by un-folding. The aim of this paper is to show that this exponential blow-up is oftenunneessary, sine the ostly unfolding an be avoided.In this paper we onsider two basi problems for the algorithmi veri�a-tion of nMSCs and nHMSCs, the membership problem and pattern mathing.We believe that the tehniques desribed here an be used to solve other prob-lems on nHMSCs as well. The membership problem ours for instane whena negative senario must be exluded from the spei�ation, or when we hekthat a positive senario is already overed by the spei�ation. Without hierar-hy, membership of an MSC against an HMSC is NP-omplete [1℄. The reasonfor this omplexity blow-up (ompared to FSM) is that MSCs are partial or-der models. We show that hierarhy yields a small inrease in omplexity, pre-isely we show that the membership problem of an nMSC against an nHMSC isPSPACE-omplete. Surprisingly, hierarhy alone is the soure of this omplex-ity. We show namely that the membership problem for hierarhial automata isalready PSPACE-omplete. This result shows a di�erene between membershipand reahability, sine reahability for ommuniating hierarhial automata isEXPSPACE-omplete [12℄.The seond problem onsidered in this paper is pattern mathing for nMSCs.Given two nMSCsM,N , we want to know whetherM ours as a pattern ofN . Apolynomial time solution for this problem is not immediate. We apply some nieombinatorial tehniques stemming from pattern mathing on ompressed textsand we obtain an algorithm of time O(|CM |2 · |M |2 · |N |2), where |M |, |N | denotethe sizes of the desription of M and N , and |CM | is the number of onnetedomponents in the ommuniation graph of M . This question subsumes the testof equality of two nMSC, and shows that equality is deidable in PTIME as well.Related work. For extended FSMs, [12℄ onsiders the reahability and traeequivalene problems for ommuniating FSMs. Model heking hierarhialFSMs against LTL and CTL properties is the topi of [4℄. The paper [3℄ om-bines hierarhy and onurreny, analyzing the omplexity of several problems(reahability, equivalene et.) for ommuniating, hierarhial FSMs.Several veri�ation problems on MSCs andMSC-graphs have been onsideredover the last years, suh as deteting raes [2, 19℄, model heking [5℄, patternmathing with gaps [20℄, inferene [1℄, realizability [18, 9, 15℄, and model hekingagainst partial order logis [17, 22℄. Hierarhial MSCs have been also onsidered2



in [5℄ for the model heking problem. We note however that our de�nition ofnHMSCs aptures a larger lass of MSC spei�ations than [5℄.An extended abstrat of this paper was presented at LATIN'02 [8℄. As ad-ditional result here we show how to extend the polynomial time algorithm forpattern mathing nMSCs to the ase where the pattern is not onneted.2 Syntax and Semantis of Nested MSCsWe adopt the de�nition of (basi) message sequene harts (MSC for short), asdesribed in the ITU-standard [13℄.De�nition 1. (Message Sequene Charts.) A message sequene hart is atuple M = 〈P,E, C, ℓ,m,<〉 where:� P is a �nite set of proesses,� E is a �nite set of events, eah loated on some proess from P ,� C is a �nite set of names for messages and loal ations,� ℓ : E → T = {i!j(c), i?j(c), i(c) | i 6= j ∈ P, c ∈ C} labels eah event withits type: on proess i ∈ P , the type is either a send i!j(c) of message c toproess j, or a reeive i?j(c) of message c from proess j, or a loal event
i(c). The labeling ℓ partitions the set of events by type (send, reeive, orloal), E = S ·

⋃
R ·

⋃
L, and by proess, E = ·

⋃
i∈P Ei. We denote by P (e) theproess of event e (i.e., P (e) = i if e ∈ Ei).� m : S → R is a bijetion mathing eah send to the orresponding reeive.If m(s) = r, then ℓ(s) = i!j(c) and ℓ(r) = j?i(c) for some proesses i, j ∈ Pand some message ontent c ∈ C. We denote the events s, r as mathingevents and the pair (s, r) as message.� < ⊆ E × E is an ayli relation between events onsisting of:

• a total order on Ei, for every proess i ∈ P , and
• s < r, whenever m(s) = r.The upper left part of Figure 1 depits an MSC M on three proesses withtwo messages and four events. Eah vertial line orresponds to a proess, withtime inreasing from top to bottom. By P (M) we denote the set of proesses of

M . For the questions onsidered here, message names are irrelevant. Thus, sendevents will be of type i!j and reeive events of type i?j. Moreover, whenever werefer to an MSC in this paper, we mean atually its isomorphism lass, wherean isomorphism on the set of events E is a bijetion that is ompatible with thetype funtion ℓ and the message funtion m.For ommuniation protools it is natural to assume that eah ommuniationhannel (i, j), i 6= j, delivers messages �rst-in-�rst-out (FIFO rule). We assumethe FIFO ondition throughout the paper. That is, for all messages (sk, rk),
k = 1, 2, suh that ℓ(s1) = ℓ(s2) and ℓ(r1) = ℓ(r2) we require that s1 < s2i� r1 < r2. The re�exive-transitive losure of the ayli relation < is a partialorder alled visual order and is denoted as ≤. A total order on E extending ≤3



is alled a linearization of M . A on�guration (pre�x) C of an MSC M is adownward losed subset of events, that is, if e ≤ f ∈ E with f ∈ C, then e ∈ C.Note that the FIFO rule implies that an MSC an be reonstruted fromany of its linearizations. We obtain the MSC from the event sequene simply bymathing the n-th send from i to j with the n-th reeive on j from i, for eahpair of distint proesses (i, j).A speial ase of the pattern mathing problem onsidered in the paper is theequality test of two (nested) MSCs. In order to hek the equality of two MSCs
M,N (i.e., up to isomorphism) one an hoose any linearization ofM and hekwhether it is a linearization of N , too. An alternative approah, that will beused in our algorithms, is to hek equality on eah proess. Thus, for an MSC
M = 〈P,E, C, ℓ,m,<〉 and a proess i ∈ P we letM |i denote the projetion ofMon the set Ei of events loated on i. That is, M |i is the sequene of events of Mon proess i. We then haveM = N if and only if M and N have the same set ofproesses, that is P (M) = P (N) = P , and if their projetions are equal, that is
M |i = N |i for eah i ∈ P (up to isomorphism). Note that both tests rely on theFIFO rule. Without this rule, a linearization (or the projetions) does not su�efor reonstruting the MSC. For example, the linearization s1s2r1r2 where s1, s2are sends and r1, r2 are reeives from proess 1 to proess 2, an produe twoMSCs, one wherem(s1) = r1,m(s2) = r2 and one wherem(s1) = r2,m(s2) = r1.We follow the ITU norm and de�ne nested MSCs (nMSC for short) by al-lowing the reuse of an already de�ned MSC in a de�nition. The de�nition wegive below aims at preserving the visual harater of MSCs (see also Figure 1).De�nition 2. (Nested MSC, nMSC.) A nested MSC M = (Mq)q=1,n is a�nite sequene of maros of the form Mq = 〈Pq, Eq, Bq, ϕq, C, ℓq,mq, <q〉.Eah maro Mq onsists of:� A �nite set Pq of proesses.� A �nite set Eq of events, eah event is loated on some proess from Pq.� A �nite set Bq of referenes (boxes) used by Mq.� A funtion ϕq that assoiates eah referene b ∈ Bq with an index q <

ϕq(b) ≤ n. Thus, referene b refers to the maro Mϕq(b).We require that
Pϕq(b) ⊆ Pq.� The type funtion ℓq : Eq −→ T , that assoiates eah event with a type
i!j(c), i?j(c) or i(c), with i, j ∈ Pq, i 6= j and c ∈ C. The labeling ℓ partitionsthe set of events by type (send, reeive, or loal), Eq = Sq

·
⋃
Rq

·
⋃
Lq, andby proess, Eq = ·

⋃
i∈P Eq,i. We denote by P (e) the proess of event e (i.e.,

P (e) = i if e ∈ Eq,i).� The message funtion mq : Sq −→ Rq that maps eah (send) event of type
i!j(c) with a (reeive) event of type j?i(c), for some i 6= j, c ∈ C.� The ayli relation <q over the set of events and referenes Eq∪Bq, de�nedby:
• For eah proess k ∈ Pq, the relation <q is a total order over the set Eq,kof events loated on k and the set of referenes b ∈ Bq with k ∈ Pϕq(b).
• e <q f whenever mq(e) = f in Mq.4



The nesting depth of M is the maximal d suh that there exists some sequene
q1 < · · · < qd+1 with ϕqj

(b) = qj+1 for some b ∈ Bqj
, for all 1 ≤ j ≤ d.In the spirit of straight-line program notation, higher levels of hierarhy or-respond to lower indies. Thus, the MSC M de�ned by M = (Mq)q=1,n will be

M1. We will depit referenes in pitures (see Figure 1) as boxes that overlapthe proesses that our in the orresponding maro.
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Fig. 1. An nMSC P using two referenes, S and M .Example 1. Consider the nMSC P in Figure 1. It uses three referenes, BP =
{b1, b2, b3} that orrespond to ϕP (b1) = ϕP (b3) = S and ϕP (b2) = M . Thenesting depth of P is 2. The visual order <P of P requires on proess 1 theorder b1 <P e <P b2 <P b3. Notie that the de�nition of an nMSC would notallow (f, e) to be a message, sine this would ontradit the ayliity of therelation <P .The semantis of an nMSC is the MSC de�ned by replaing eah refereneof M by the orresponding MSC. Indutively it su�es to de�ne the semantisof nMSCs of nesting depth one. Let M = (Mq)q=1,n be an nMSC of nestingdepth one, withMq = 〈Pq , Eq, Bq, ϕq, C, ℓq,mq, <q〉. For simplifying the notationbelow, we write instead of ϕ1(b) just b.5



The MSC 〈P,E, C, ℓ,m,<〉 de�ned by M = (Mq)q=1,n is given by P = P1,
E = ·

⋃
b∈B1

Eb
·
⋃
E1, ℓ = ∪q=1,nℓq and m = ∪q=1,nmq. The visual order < isde�ned by e < f if and only if either m(e) = f , or P (e) = P (f) and one of thefollowing onditions holds:� e, f ∈ E1 and e <1 f ,� e, f ∈ Eb and e <b f ,� e ∈ E1, f ∈ Eb and e <1 b,� e ∈ Eb, f ∈ E1 and b <1 f ,� e ∈ Eb, f ∈ Eb′ and b <1 b

′,where b, b′ ∈ B1. For simpliity, we denote the MSC de�ned by M = (Mq)q=1,nas M , too.Example 2. For the nMSC P in Figure 1, the lower right part of the pitureshows the MSC de�ned by S. Note that event g ∈ EM ours twie in S � forsimpliity, we denote both ourrenes as g.Note also that the semantis requires that b1 <1 e, but this does not meanthat all events of S = ϕP (b1) must happen before e ∈ EP . For instane, the�rst ourrene of g in S preedes event e of P , but the seond ourrene isonurrent with e.Remark 1. Obviously, a syntatially orret nMSC M might not yield an MSCbeause of the FIFO order. For example, the message (e, f) of P would violatethe FIFO ondition if M would ontain a message from proess 1 to proess3. Fortunately, it an be veri�ed easily (in polynomial time) whether an nMSCsatis�es the FIFO ondition. For heking the FIFO ondition, it su�es to testthat there is no e < g < h < f and no e < b < f with b ontaining a send from
i to j, where (e, f), (g, h) are two messages from i to j.Size of nMSC. For omplexity estimations we will denote by ℘ the overallnumber of proesses. The size of an nMSC M is denoted as |M |. It representsthe size of the syntatial desription of M , where an event is of size one andthe size of a referene is the number of its proesses.3 Nested High-Level MSCAn MSC an only desribe a �nite senario. For speifying more omplex behav-iors, in partiular in�nite sets of senarios, the ITU norm proposes to omposeMSCs in form of MSC-graphs, by using hoie and iteration.De�nition 3. (MSC-graph) An MSC-graph is a tuple G = 〈V,E, s, f, ϕ〉,where:� (V,E) is a direted graph with starting vertex s ∈ V and �nal vertex f ∈ V .� Eah vertex v is labeled by the MSC ϕ(v).6



In the same way as we de�ned nested MSCs from (�at) MSCs we an gen-eralize MSC-graphs to hierarhial HMSCs (or nested high-level MSCs, nHMSCfor short).De�nition 4. (Nested high-level MSC.) An nHMSC is a �nite sequene
G = (Gq)q=1,n, where eah Gq is either a labeled graph or an nMSC. A labeledgraph Gq is a tuple 〈Vq , Eq, ϕq, sq, fq〉 onsisting of:� A direted graph (Vq, Eq) with starting vertex sq and �nal vertex fq.� A funtion ϕq that assoiates eah vertex v with a referene q < ϕq(v) ≤ n,representing Gϕq(v).Thus, a node in an nHMSC an be mapped either to some graph or to annMSC. This de�nition ombines hierarhial automata as de�ned in [4℄ with ourde�nition of nMSC. The speial ase where there is only one proess (i.e., noonurreny) yields the hierarhial automata used in [4℄1.We �rst need to de�ne the omposition of two MSCs N1N2 with Nk =
〈Pk, Ek, Ck, ℓk,mk, <k〉. The intuition behind the omposition is simple, we justglue together the two diagrams proess by proess. So letN1N2 = 〈P,E, C, ℓ,m,<
〉 with E = E1 ·

⋃
E2, P = P1 ∪ P2, C = C1 ∪ C2, ℓ = ℓ1 ∪ ℓ2, m = m1 ∪m2 and

< = <1 ∪<2 ∪
⋃

i∈P

E1,i × E2,i.The semantis of an nHMSC G = (Gq)q=1,n is a set of MSCs L(G) de�nedreursively. If Gq is an nMSC, then L(Gq) is a singleton onsisting of the MSCde�ned by Gq. Consider a labeled graph Gq. Then L(Gq) is the set of MSCsassoiated with the aepting paths of Gq, that is, paths starting in sq andending in fq. With a path v1, . . . , vn in Gq we assoiate the set of all MSCs
M1 · · ·Mn, where Mi ∈ L(Gϕq(vi)) for all 1 ≤ i ≤ n. The set of exeutions of Gis de�ned as L(G) = L(G1).As in [1℄ we also onsider a weaker semantis for nHMSCs, that does not usethe omposition of MSCs (alled weak losure in [1℄). This semantis is basedon taking the produt of the sequential behaviors of single proesses. Severalalgorithmi problems an be solved more e�iently for the weak losure of MSC-graphs. This makes it interesting to ompare it with the usual semantis also inthe setting of nHMSCs.Weak losure of nHMSC. Let G be an nHMSC. Then Lw(G) denotes the setof MSCsM suh that for eah proess i there is some MSC N ∈ L(G) suh that
M |i is equal to N |i. Note that L(G) ⊆ Lw(G) and that the inlusion is strit, ingeneral (see [1℄).1 Atually, [4℄ allows several �nal nodes in eah automaton, whih ounts for theomplexity of their algorithms. 7
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iFig. 2. An nHMSC Gi+1 generating (a + b)2

i
−1 with G1 = ǫ.4 Membership ProblemCheking the membership of an MSCM in an MSC-graph G is used typially forheking that no bad senario an our in a given spei�ation. Another applia-tion is heking whether a good senario is already overed by the spei�ation.Cheking membership is not an easy task already beause of the onurrenyimplied by the MSC omposition, all the more in the presene of hierarhy. TheMSC membership problem M

?
∈ L(G) with M an MSC and G an MSC-graphwas onsidered in [1℄, together with the weak membership problemM

?
∈ Lw(G).The results of [1℄ an be summarized as follows:� The MSC membership problem is NP-omplete. A deterministi algorithmof time O(|G| · |M |℘) solves it2, where ℘ is the number of proesses.� The weak MSC membership problem is solvable in time O(|G| · |M |).So the MSC membership problem is solvable in polynomial time if we �x thenumber of proesses.4.1 Hierarhial Membership ProblemThe membership problem seems a priori more di�ult for an nMSC M againstan nHMSC G, sine the naive approah of guessing a path of G and hekingequality with M is too expensive (both the path of G and the MSC de�nedby M an be of exponential size). However, it is easy to show that we an testmembership in polynomial spae:Theorem 1 (Hierarhial MSC Membership Problem) Given an nMSC

M and an nHMSC G, we an deide whether M ?
∈ L(G) in polynomial spae.2 This is a slightly improved runtime ompared to the result stated in [1℄.8



Proof. The idea of the algorithm is quite straightforward. We guess an MSCin L(G) and we math it against the nMSC M , however expanding neither Mnor G. Reall that for testing equality of two MSCs M,N , it su�es to hooseone linearization of N and hek whether it is a linearization of M . Hene, wean hoose the linearization of the MSC in G. We onsider only linearizations inLin0(G), where Lin0(G) is de�ned reursively. If Gq is an nMSC, then Lin0(Gq)is the set of linearizations of Gq. With a path v1, . . . , vn in Gq we assoiate theset of all linearizations u1 · · ·un, where ui ∈ Lin0(Gϕq(vi)) for all 1 ≤ i ≤ n.Let us onsider a labeled graph Gq. Then Lin0(Gq) is the set of linearizationsassoiated with aepting paths of Gq, that is, paths starting in sq and endingin fq. We de�ne Lin0(G) = Lin0(G1).We need also to store a on�guration of M in polynomial spae, orrespond-ing to the events already mathed with the events from G. Sine a on�gurationin an MSC is a downward losed set of events, it an be stored as a tuple of ℘events (reall that ℘ is the number of proesses), representing the last event ofthe on�guration on eah proess. Suh a tuple is of linear size w.r.t. the size of
M . Eah event e of the (unfolded) M = (Mq)q=1,n is represented by a sequene
b1 < · · · < bm of referenes orresponding to the unfolding of referenes yielding
e. That is, we indutively store bm, where event e belongs to Mϕ(bm) (and bmis a referene used by Mϕ(bm−1)), plus the position of e in Mϕ(bm). Thus, eahevent an be stored in linear spae. In Figure 1, the �rst ourrene of g in Porresponds to (b1, b4, g), the seond ourrene to (b1, b5, g), and so on.Similarly, we an store the urrent on�guration of the linearization in Lin0(G)in polynomial spae (an event of G is represented by a sequene of nodes andreferenes). Sine a new node is started only after the linearization of the previ-ous node is ompleted, the last events on eah proess belong to the same node.The nondeterministi algorithm onsists in guessing a suessor on�gurationof G, obtained by extending the urrent on�guration by an event e suh thatthe new on�guration is still a pre�x of some linearization in Lin0(G). Then wehek that e an extend the urrent linearization of M as well. The algorithmstops when the on�guration that orresponds to the path being guessed in Gis equal to M and the path of G is aepting.

2Theorem 2 below shows that PSPACE is the best omplexity for the hier-arhial membership problem. The lower bound holds even if there is only oneproess (Theorem 2), or if the graph G is not hierarhial (Theorem 3), but notboth (Theorem 4). This shows also that �xing the number of proesses does notlower the omplexity of the problem, unlike the nonhierarhial ase.We show the PSPACE lower bound for the following problem: given a straight-line program W (see below) and a hierarhial automaton A, test whether
W ∈ L(A). This question orresponds to the hierarhial membership problemwith a single proess. Notie also that the weak membership problemM

?
∈ Lw(G)[1℄ an be redued to this question. 9



Straight-line programs. A straight-line program (SLP for short) over thealphabet Σ is a ontext-free grammar with variables V = {X1, . . . , Xk}, initialvariable X1 and rules from V × (V ∪ Σ)+. The rules are suh that there isexatly one rule for eah left-hand side variable and if Xi −→ α, then eah Xjin α satis�es j > i.The onstraints on the rules make that any variable Xi generates a uniqueword. For onveniene, we denote the word generated by the variable Xi alsoas Xi. The length of a variable Xi represents the length of the word generatedby Xi and is denoted as ||Xi||. Clearly, ||Xi|| an be at most exponential in thenumber of rules. The size of an SLP Xi is the sum of the sizes of the rules andis denoted by |Xi|. Without loss of generality, we an assume that rules are ofsize 2, that is of the form X −→ Y Z with Y, Z ∈ V ∪Σ.Sine any MSC M is determined by its projetions (M |i)i∈P , an nMSC Man be identi�ed with ℘ SLPs Li, i ∈ P . The SLP Li generates the projetion
M |i of M on the set of events of proess i ∈ P . We denote the variables usedby Li as X |i, where the variables X are related one-to-one to the maros Mqfrom the de�nition of the nMSC M . The initial variable of eah Li is thus M1|i.These SLPs an be translated in polynomial time into Chomsky normal form.Example 3. For the nMSC P in Figure 1 we have the following SLP generatingthe projetion on proess 1: P |1 → S|1eM |1S|1, S|1 →M |1hM |1 and M |1 → k.By adding new variables we an transform these 3 rules into equivalent rules inChomsky normal form.A hierarhial automaton (hNFA for short) orresponds roughly to an nHMSCover a single proess. For larity we give the de�nition formally. An hNFA is a se-quene of edge-labeled graphs A = (Aq)q=1,n, where Aq = 〈Vq, Rq, δq, ϕq, sq, fq〉,with Vq the �nite set of states, Rq the �nite set of referenes, sq, fq ∈ Vq theinitial and �nal state. The transition relation δq is a subset of (Vq ∪Rq) × (Σ ∪
{ǫ})×(Vq ∪Rq). The mapping ϕq assoiates a referene R with a subautomaton,
q < ϕq(R) ≤ n. A transition of the form (R, a, v) with R ∈ Rq, v ∈ Vq meansan a-labeled transition from the �nal state of the subautomaton Aϕq(R) to thestate v of Aq. The meaning of transitions (v, a,R) and (R′, a, R), is similar, withthe transition ending in the initial state of Aϕq(R).Theorem 2 It is PSPACE-omplete to hek whether W ∈ L(A) for an SLP
W and an hNFA A. If the alphabet is unary, then the membership problem isNP-omplete.Remark 1 The NP-hardness result in the unary ase also follows from [24℄.Proof. We �rst redue (1-in-3) SAT to the unary membership problem, sinewe use this redution in the general ase, too. This variant of SAT is still NP-omplete, see [25, 6℄.Let ϕ = ∧m

j=1C(αj , βj , γj) be an instane of (1-in-3) SAT over n variables
(xi)i=1,n. Here, (1-in-3) means that a lause C(αj , βj, γj) is true if exatly one of10



the literals αj , βj , γj is true. We use the unary alphabet {a}. Clearly, any word
x ∈ a∗ is uniquely de�ned by its length.For eah integer j, it is easy to de�ne an SLP (or an hNFA) L(j) of sizepolynomial in j that generates the word a4j . We assoiate with eah lause
Cj = C(αj , βj , γj) the word wj = L(j). Thus, let W = w1 · · ·wm ∈ a∗ be theword of length ∑m

j=1 4j. The hNFA A onsists of a sequene of hoies withtransitions labeled by ti and fi, for i varying from 1 to n, where ti ∈ a∗ is theword of length ∑
j∈Ri

4j and Ri = {j | xi ∈ {αj, βj , γj}}. In the same way,
fi ∈ a∗ is the word of length ∑

j∈Si
4j and Si = {j | (¬xi) ∈ {αj, βj , γj}}.Formally, a transition labeled by ti orresponds to sequening the automataaepting L(j), for j ∈ Ri (similarly for fi).
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nA maximal path ρ of A orresponds to a valuation σ where eah variable xiis true if the path hooses ti, and false if it hooses fi. Let nj be the numberof literals of Cj that are set true by σ. Reall that σ satis�es the formula ϕ i�
nj = 1 for all j. It is easy to see that ρ is labeled by the word L ∈ a∗ of length∑m

j=1 nj4
j . Notie that sine eah lause has three literals, nj ∈ {0, 1, 2, 3} forall j. The length of L in base 4 is thus (nmnm−1 . . . n10)4. We have W = L i�

(11 . . . 10)4 = (nmnm−1 . . . n10)4, thus i� nj = 1 for all j. That is, there is a pathin A labeled by W if and only if there is a valuation satisfying ϕ. This impliesthat the membership problem for hierarhial automata with a unary alphabetis NP-hard.We now show the �rst statement of Theorem 2. We redue the problem (1-in-3) QBF (one-in-three quanti�ed boolean formula) to the hierarhial membershipproblem. Let ϕ be an instane of (1-in-3) QBF of the form ϕ = Qnxn · · ·Q1x1ψ,where Qi ∈ {∃, ∀} and the formula ψ is of the form ∧m
j=1C(αj , βj , γj). As before,a lause Cj = C(αj , βj , γj) is true i� exatly one literal is true. The PSPACE-hardness of this problem is shown in [25, 6℄.The idea is to make the valuations of the variables orrespond to paths inthe hierarhial automaton (Ai)i=0,n and to validate the valuations using theSLPs (Wi)i=0,n. We de�ne the automata Ai and the SLPs Wi by indution on

i = 0, . . . , n. We use now the binary alphabet {a, b}. The letter a will have thesame meaning as in the NP ase, and the letter b will be used as a delimitingsymbol.We de�ne the words wj , ti, fi ∈ a∗ with respet to ψ as before. That is, eah
wj = L(j) is assoiated with the lause Cj and ti, fi are assoiated with thevariable xi. Moreover, we assoiate with eah variable xi the word wi+m ∈ a∗ oflength 4i+m. Let W0 = w1 · · ·wn+m be the word of a∗ of length ∑n+m

j=1 4j , andlet A0 be an automaton onsisting of one ǫ-transition from its initial state to its11



�nal state. Let also S0 be an automaton onsisting of one transition labeled by
b. The SLP-ompressed words (Wi)i=1,n, are de�ned by:� Wi −→Wi−1, if Qi = ∃,� Wi −→Wi−1 bWi−1, if Qi = ∀.The reursive de�nition of the hNFA (Ai)i=1,n and (Si)i=0,n−1 is illustratedin the �gure below. Transitions are either labeled by ǫ, or by xti = tiwi+m orxfi = fiwi+m. The automaton on the left de�nesAi whenQi = ∀, the automatonin the middle de�nes Ai when Qi = ∃, and the automaton on the right de�nes
Si. Note that the symbol b is only generated by S0.
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The overall idea is as follows. The values of xi+1, . . . , xn are already hosenwhen an automaton alls Ai (from a higher hierarhy level). The automaton Aion the left sets xi true, then uses Sn−i to reover the �xed values of xi+1, . . . xn,and �nally it sets xi false. The automaton Ai in the middle guesses whether xi istrue (by taking the transition labeled by xti) or false (by hoosing the transitionlabeled by xfi). If it hooses both transitions labeled by xti, xfi (or none of them),then the word labeling this path will not be equal to Wn beause Wn ontainsexatly one ourrene of wi+m between any two onseutive b's. We illustratehow Ai works in Figure 3, that shows the unfolding of the automaton A2 for
ϕ = ∀x2∀x1ψ on the left and for ϕ = ∃x2∀x1ψ on the right.To illustrate how Sn−i reovers the values of xi+1, . . . , xn, we show Sn−i for
n = 9, i = 7 in the �gure below.
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The hNFA Ai and Si are designed so that any path of Ai is labeled by atmost one xti and at most one xfi between any two onseutive b's, for eah i (foronveniene, we suppose that eah automaton starts and ends with a �tive btransition). That is, a path an be labeled by xti and xfi, but not by two xti ortwo xfi. By ontradition, assume that there are two onseutive b's in Ai suhthat there is a path from one b to the other one labeled by two xtj (the ase xfjis symmetri). We take the minimal i whih ensures this. By the minimality of i,this an only happen either beause of the �rst xti transition of Ai, or between
Sn−i and one of the two Ai−1. Sine in Sn−i all xtj our after the (unique) b,there is no xti in Ai−1 before its �rst b (if any). This already settles the asewhere Qi = ∃. Consider now the ase Qi = ∀. For the same reason as before,there an be at most one xtj between the last b of Ai−1 and the b in Sn−i, forall j < i. Finally, between the b of Sn−i and the �rst b of the seond Ai−1 therean be at most one xtj with j > i (from Sn−i) and at most one xtj with j < i(from Ai−1). Thus, in all ases we ontradit the assumption on Ai.Using the property we just showed, we an note that between any two on-seutive b's of any path of An, there are at most three wj and two wi+m for any
1 ≤ j ≤ m, 1 ≤ i ≤ n. Thus our oding in base 4 for determining whether alause is true, is still appliable. Hene, a path ρ of An is labeled by Wn i� forall 1 ≤ k ≤ n+m there is exatly one wk between any two onseutive b's.Let us show now that Wn ∈ L(An) i� there exists a satisfying valuation treeVT for ϕ. A valuation tree VT is a binary tree of height n+ 1 suh that its root(level n) is labeled by xn and all nodes on level l are labeled by xl. The leavesare on level 0, labeled by true or false. A node v labeled by xl orresponds toa valuation σ(v) of the variables xl+1, . . . , xn. Moreover, a node on level l hastwo hildren if xl is universally quanti�ed (one hild evaluates xl to true and theother one to false), and one hild if xl is existentially quanti�ed. We say that avaluation tree satis�es a QBF formula ϕ = Qnxn · · ·Q1x1ψ if for every leaf, theassoiated valuation makes ψ true.Assume �rst that VT is a valuation tree showing that ϕ is true. A valuation
σ(v) de�nes two words T (v), F (v) as follows: the word T (v) is the onatenationof all xtj where j > i and xj is true in σ(v). The word F (v) is the onatenationof all xfj where j > i and xj is false in σ(v). Let v be a node of VT labeledby xi. We de�ne the word ρ(v) = T−1(v)WiF

−1(v). We reall that T (v), F (v)are words over a∗, hene T−1(v)WiF
−1(v) is the word that results from Wi bydeleting |T (v)| many a's in the pre�x and by deleting |F (v)| many a's in thesu�x.Let us show by indution on level i that ρ(v) is in L(Ai) for any node v ofVT on level i.If v is a leaf of VT, then it de�nes an aepting valuation for ψ, hene

T (v)F (v) = W0 due to the (1-in-3) restrition. Hene ρ(v) = W0W
−1
0 = ǫ ∈

L(A0).Consider �rst an internal node v labeled by xi with Qi = ∀. Let v1, v2 be thehildren of v, with v1 orresponding to xi true, and v2 to xi false. By indutionlet us suppose that ρ(v1), ρ(v2) are in L(Ai−1). Then,14



ρ(v) = T−1(v)WiF
−1(v) = T−1(v)Wi−1bWi−1F

−1(v)

= T−1(v)T (v1)ρ(v1)F (v1)bT (v2)ρ(v2)F (v2)F
−1(v)

= xtiρ(v1)F (v1)bT (v2)ρ(v2)xfiWe used in the equations above T−1(v)T (v1) = xti for the positive hild v1 of
v and F−1(v)F (v2) = xfi for the negative hild v2 of v. Moreover, F (v1)bT (v2) =
F (v)bT (v) ∈ L(Sn−i) sine v1 orresponds to xi true, and v2 orresponds to xifalse. This shows that ρ(v) ∈ L(Ai).Consider now an internal node v that is labeled by xi with Qi = ∃. Assumeby symmetry that v1 is the hild of v in VT (thus, xi is true). By indution weassume that ρ(v1) is in L(Ai−1). It is easy to show now that ρ(v) ∈ L(Ai) using:

ρ(v) = T−1(v)WiF
−1(v) = T−1(v)Wi−1F

−1(v)

= T−1(v)T (v1)ρ(v1)F (v1)F
−1(v)

= xtiρ(v1)For the reverse diretion the arguments are similar. From a word W = Wnaepted by A = An, we obtain subwords ρ(v) in L(Ai) as above, labeled by
T−1(v)WiF

−1(v). This means that for eah leaf node v, the valuation σ(v) sat-is�es exatly one literal per lause.
2Theorem 2 shows immediately that the hierarhial membership problem isPSPACE-hard even with one proess, by enoding the alphabet {a, b} by loalations on a single proess. Similar arguments an be used for the ase where Gis an MSC-graph (with no hierarhy) as shown in the following theorem.Theorem 3 The hierarhial MSC membership problemM

?
∈ L(G) is PSPACE-omplete. The lower bound holds even if G is an MSC-graph, or if there is onlyone proess.Proof. The problem we redue from is again (1-in-3)QBF. Let ϕ be an in-stane of (1-in-3)QBF of the form ϕ = (Qnxn) . . . (Q1x1)ψ, where Qi ∈ {∃, ∀}and the formula ψ is of the form ∧j=1...mC(αj,1, αj,2, αj,3), with αj,k literals.The idea is to let valuations of the variables to orrespond to paths of G andto validate the valuations using the nMSC M . We de�ne the graph G and thenMSC M by indution on ϕ = ϕn. Let ϕi = (Qixi)ϕi−1, with ϕ0 = ψ. Eah ϕiwill determine Gi,Mi.The proesses used in the onstrution are SC1, . . . , SCm and RC1, . . . ,RCm,plus VY1, . . . ,VNn and VN1, . . . ,VNn. Here V means a variable and C a lause,

S stands for �send�, R for �reeive�, Y for �yes� and N for �no�.For all i, let MYi be the MSC onsisting of a message from VYi to VNi,then bak from VNi to VYi, and a message from SCj to RCj for all j suh15



that xi ∈ {αj,1, αj,2, αj,3}. Symmetrially, let MNi be the MSC onsisting of amessage from VNi to VYi, then bak from VYi to VNi, and a message from SCjto RCj for all j suh that ¬xi ∈ {αj,1, αj,2, αj,3}.
M0 is an MSC onsisting of one message from SCj to RCj , for all j. TheMSC-graph G0 onsists of 3n+ 1 nodes, labeled by MYi, MNi, or ∅. The graphhooses between MYi and MNi for all i, as depited on �gure 4.Note that all messages de�ned above ommute, exept for the ones betweenVYi and VNi. Let ai be the message from VYi to VNi, and bi the messagefrom VNi to VYi. We use the order between ai, bi as follows: The sequeneMYi = aibi means that xi is true, while MNi = biai means that xi is false.Assume now that Gi−1,Mi−1 are already de�ned, and that there are f uni-versal quanti�ers in ϕi−1. For simpliity, we denote a = ai and b = bi. Note thatin a valuation tree for ϕ showing that ϕ is true, eah value 0 or 1 assigned tothe variable xi is used by 2f leaves. A valuation tree is de�ned as in Theorem 2.If ϕi = ∀xiϕi−1, then letMi = (ab)2

f

Mi−1Si(ba)
2f

Mi−1. The MSC Si is usedfor synhronizing proesses ourring in Mi. It ontains a message between eah(ordered) pair of proesses of Mi (in some arbitrary order). Note that using thehierarhy we an desribe (ab)2
f , and thus Mi, by an expression of polynomialsize. Note also that eah Gi is de�ned as a (�at) MSC-graph.LetGi = (Vi, Ei), where Vi = Vi−1∪{e0} and Ei = Ei−1∪{(Fin, e0), (e0, In)}.The initial node In (the �nal node Fin, respetively) of Gi is the same as for

Gi−1. The vertex e0 is labeled by the synhronization MSC Si.
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Fig. 4. The MSC-graph on top is G0. The MSC-graph lower on the left indutively de-�nes Gi from Gi−1 in the universal ase. The MSC-graph lower on the right indutivelyde�nes Gi from Gi−1 in the existential ase.The de�nition of Mi, Gi an be explained intuitively as follows. Let ρ be apath of Gi labeled by Mi. Note that the MSC Si ourring in Mi has to math16



the MSC Si of e0. Thus ρ = ρ1e0ρ2, with ρ1 an aepting path of Gi−1 labeledby (ab)2
f

Mi−1 and ρ2 an aepting path of Gi−1 labeled by (ba)2
f

Mi−1. Eahtime ρj goes through G0 (whih happens 2f times), ρj onsumes either ab ofMYi or ba of MNi. In partiular, all 2f ourrenes onsumed by ρ1 are of theform ab, whih ensures that the valuation of xi assoiated with ρ1 is onsistent(xi is true). The same holds for the path ρ2, where the value of xi is ensured tobe false.Suppose now that ϕi = ∃xiϕi−1. LetMi = (ab)2
f

(a)Mi−1, and Gi = (Vi, Ei),where Vi = Vi−1 ∪ {e0, e1, e2, e3}. Let Ei = Ei−1 ∪ {(e0, In), (Fin, e3), (e0, e1),
(e1, In), (Fin, e2), (e2, e3)}, where as above In is the initial vertex and Fin is the�nal vertex of Gi−1. The initial and �nal verties of Gi are e0 et e3. We label e1and e2 by a, and e0 et e3 by the empty MSC.The underlying idea in this ase is that the additional ourrene of a in
Mi must be mathed by e1 or e2 (nowhere else there is an a). If it is e1, everytime the path ρ goes through G0, it must hoose ba, hene it goes through VNi.The orresponding value for xi is then fored to be false. If it is e2, then ρ musthoose ab, hene it goes through VYi. The rest of the proof is similar to theproof of Theorem 2.

2However, if there is only one proess and hierarhy is not allowed for thegraph G (or the MSC/word M), then our lower bound proof does not workanymore. Indeed, we show below that in the ase where the word W or theautomaton A are �at, the membership problem is solvable in polynomial time.Theorem 4 1. Deiding for an SLP W and an NFA A whether W ∈ L(A)an be done in time O(|W | · |A|3).2. Deiding for a word W and a hNFA A whether W ∈ L(A) an be done intime O(|W |3 · |A|3).For the �rst statement in the theorem above a similar result (for Lempel-Zivompressed words and regular expressions) has been shown in [24℄.The polynomial time algorithms for Theorem 4 are stated below. The �rstalgorithm omputes by dynami programming the set TX of pairs (a, b) of statesof a NFA A between whih a path labeled by X exists, for eah variable X ofthe SLP. A variable X is said to belong to the lowest level, if the rule assoiatedwith X is terminal.Membership ((Xi)i=1,n SLP, A=(V,E,a0,af) NFA)For eah variable Xi on the lowest level:TXi
= { (a,b) ∈ V × V | a Xi−→ b };For i = 1 · · · n:Let TXi

= ∅;Let Y,Z s.t. Xi → Y Z;For all verties a,b, ∈ V:If (a,b) ∈ TY and (b,) ∈ TZ:TXi
= TXi

∪ {(a,)};17



Return (a0,af) ∈ TX1
;The seond algorithm omputes for eah sub-automaton B of a hNFA A theset TB of fators of a word W that it aepts. We denote as W [i . . . j] the fatorof W from position i to position j, i ≤ j. The algorithm atually omputes foreah i ≤ j the set Ti,j of pairs (a, b) of states of B between whih a W [i . . . j]-labeled path exists. For onveniene, we assume without loss of generality that alltransitions (exept for the lowest hierarhy level) orrespond to sub-automata.We use the fat that (a, b) ∈ Ti,j if either there is a transition from a to b labeledby a sub-automaton C aepting W [i . . . j], or else the path labeled by W [i . . . j]an be deomposed as a, c and c, b, and then there exists 0 < e < j − i suhthat (a, c) ∈ Ti,i+e and (c, b) ∈ Ti+e,j . We thus ompute �rst the lower levelsof hierarhy, and we ompute then for eah sub-automaton the sets Di,i+d, forinreasing d.Membership (W word, A=(V,E,a0,af) hNFA)For eah sub-automaton B of A on the lowest level of hierarhy:TB = {(i,j) | W[ i . . . j℄ is aepted by B};For eah sub-automaton B of A, by inreasing hierarhial level:For d = 0, . . . , |W |, for i = 1, . . . , |W | − d,Di,i+d = { (a, b) | a, b verties of B s.t. a

C
−→ bfor some C with (i, i+ d) ∈ TC};For eah e < d and every a, b, c verties of B,If (a,b) ∈ Di,i+e and (b,) ∈ Di+e+1,i+d:Di,i+d = Di,i+d ∪ {(a,)};TB = {(i,j) | (a0,af) ∈ Di,j};Return (1, |W |) ∈ TAThe �gure below summarizes the omplexities of the di�erent variants forthe hierarhial MSC membership problem, as onsidered in this setion. Thelast two olumns orrespond to the ase of a single proess (word ase) and tothe general MSC ase, respetively. The fat that the membership problem isNP-omplete for an MSCM and an nHMSC G is easy to show. The lower boundholds already for MSC-graphs G [1℄, and for the upper bound it su�es to guessa path of G of the size ofM , whih is polynomial, and hek whether it is labeledby M .

M G words MSCFlat Nested P NP-ompleteNested Flat P PSPACE-ompleteNested Nested PSPACE-omplete PSPACE-ompleteFig. 5. Complexity of the membership problem.
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5 Pattern Mathing of nMSCsThe aim of this setion is to show that the pattern mathing problem for nM-SCs an be solved in polynomial time, without unfolding the nMSCs. We �rstonsider a speial ase of pattern mathing, namely testing the equality of twonMSCs. Then we desribe �rst a pattern mathing algorithm when the patternnMSC is onneted, and seond the additional work for non-onneted patterns.5.1 Equality of nMSCsReall �rst that the FIFO rule allows to test the equality of two MSCs M and
N proess-wise, whih amounts to test the equality of ℘ pairs of words (over thetype alphabet T ). In the hierarhial ase we already used in Setion 4.1 therepresentation of an nMSC M by ℘ straight-line programs Li, where SLP Ligenerates the projetion M |i of M on proess i.In order to test the equality of two nMSCs in polynomial time, we an usediretly the following result:Theorem 5 ([23℄) Let P be an SLP, and A,B be two variables of P . We andetermine whether A and B generate the same word in time O(|P |5 log(|P |)).The theorem above provides an algorithm for testingM = N of timeO((|M |+
|N |)5 log(|M | + |N |)). We an improve the running time by using the patternmathing algorithm desribed in the next setion.5.2 Pattern Mathing nMSCsDe�nition 5. The pattern mathing problem for two MSCsM and N = 〈P,E, C,
ℓ,m,<〉 onsists in knowing whether there exists some subset F ⊆ E of eventsof N suh that the restrition of the mappings ℓ,m to F equals M . Moreover,we require that F is onvex, that is if e, f ∈ F and e < g < f , then g ∈ F . Weall suh an event set F an ourrene of M in N .If M,N are nMSCs, then M ours as a pattern in N if the MSC de�ned by
M is a pattern in the MSC de�ned by N , and we write M ⊆ N in this ase.It is easy to see that for an MSC M to be a pattern of an MSC N it doesnot su�e to have eah M |i a pattern of N |i. But of ourse, this ondition isneessary. Before we onsider the nested ase, we show a simple algorithm forthe �at ase:Theorem 6 Let M,N be two MSCs. We an hek whether M is a pattern of
N in linear time.Proof. The main idea omes from pattern mathing in trae monoids, [16℄. Weuse the linear time algorithm of Knuth-Morris-Pratt for determining ourrenesofM |i in N |i, for all i ∈ P . We searh for tuples of ourrenes of (M |i)i∈P thatform a fator of N . That is, we look for a on�guration of N suh that on eah19



proess i, we have M |i as a su�x. This is done by progressing one event at atime from a on�guration C of N to the next on�guration C′ as follows. For aproess j, let next(C, j) be C ∪{e}, where e is the next event on j and if C ∪{e}is a on�guration (otherwise, next(C, j) is unde�ned).For the urrent on�guration C of N we will reord the set J of proesses isuh that M |i is a su�x of C on proess i. From C we look for a proess j /∈ Jsuh that next(C, j) holds. If suh a j exists, then we set C′ = next(C, j) andupdate J by possibly adding j. Otherwise, the next event on every j /∈ J is areeive from some i ∈ J , where the orresponding send does not belong to C. Let
J0 be the set of all suh proesses i. Note that the ourrene found on any ofthe proesses from J0 annot form an ourrene ofM in N . So we an progresson any of the proesses in J0 (if possible). We �rst try to �nd some i ∈ J0 suhthat next(C, i) is de�ned. If suh an i exists, then we set C′ = next(C, i) andupdate J by possibly removing i. If not, then we surely �nd some i ∈ J \J0 suhthat next(C, i) is de�ned (otherwise C annot be extended at all, whih meansthat N is not an MSC). Then we apply the same reasoning to this i.The overall omplexity of the algorithm is linear, by taking are that eahevent in N is onsidered at most a onstant number of times. We need for thisto reord in addition the set X of proesses i suh that next(C, i) is unde�ned,although there is some next event e on i. This is the ase where e is a reeive on
i, and the mathing send f does not belong to C. Together with i ∈ X we storethe proess j of f . Altogether we reord the four sets J \X , J ∩X , J̄ \X and
J̄ ∩ X . Whenever we add an event e on proess i, we update the membershipof i in one of these sets by looking at the next event e on i. Moreover, if e is asend with mathing reeive f on j, then the membership of j is also updated.Thus, we an hoose the proess where we progress in onstant time, and everyupdate an be done in onstant time, too. 2De�nition 6. Let N = (Ni)i=1,n be an nMSC (or an SLP), and let i, j ≤ n.1. We write Ni < Nj whenever Ni is used in the de�nition of Nj or in thede�nition of Z with Z < Nj . We write Ni ≤ Nj when i = j or Ni < Nj.The variable Ni is then alled lower than the variable Nj .2. We say that Ni ours literally in Nj when Ni is used as a referene (variableresp.) in the de�nition of Nj , and we write Ni ∈ Nj if this is the ase.The strategy we will use for nMSC pattern mathing is to ompute an impliitrepresentation of all positions whereM |i ours as a pattern in N |i. In a seondstep we ompute all positions where the projetions M |i form an MSC fator.The basis of our algorithm is a pattern mathing algorithm for SLP-ompressedwords, that was proposed in [21℄ (based on ideas from [23℄)3:Theorem 7 ([21℄) Let P be an SLP and let A,B be two variables of P . Animpliit representation of all ourrenes of the word de�ned by A in the wordde�ned by B an be omputed in time O(|A|2|B|2).3 Very reently, an improved algorithm of omplexity O(|A||B|2) was desribed in [14℄.20
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i V i+1arithmeti progression O(X,Y, V i)The idea of the algorithm in [21℄ is based on word ombinatoris, as wedesribe next. First, we suppose that the right-hand sides of the rules of theSLPs are either terminal (onsisting only of terminal symbols, here types from
T ), or onsist of variables only. For a variable Y we denote by |Y | the length ofits right-hand side.Let X be a variable of the SLP A and suppose that X ours in B, i.e. theword de�ned by X is a fator of the word de�ned by B. Suppose that X doesnot appear as a fator inside any variable Y of B with terminal rule Y → α.Then X ours in a variable Y with Y −→ V 1 · · ·V k. Let i be suh that V iis the �rst symbol that this ourrene of X overlaps, and the ourrene endsbeyond V i (see also the �gure above). In partiular, Y is the lowest variable thatontains this ourrene of X . We let O(X,Y, V i) denote the set of positionsof Y at whih an ourrene of X starts within V i and ends beyond V i. LetO(X,Y ) =

⋃k
i=1 O(X,Y, V i) if the rule for Y is nonterminal, otherwise itdenotes the set of positions of Y where X ours.Using a ombinatorial argument (lemma of Fine and Wilf, [7℄), it is shownin [21℄ that O(X,Y, V i) is an arithmeti progression that an be omputedby dynami programming in polynomial time. Therefore, O(X,Y ) onsists ofat most |Y | arithmeti progressions, if the rule of Y is nonterminal (otherwise,O(X,Y ) is of size at most |Y |). We represent eah set O(X,Y, V i) by atriple of numbers (n, s, k) where n and p + s are the positions in Y of thetwo �rst ourrenes of X in O(X,Y, V i), and k = #O(X,Y, V i) is thenumber of ourrenes of X in O(X,Y, V i). That is, we have Y = Y1XY2with ||Y1|| = n + si, for all 0 ≤ i < k. As an example, onsider the words Y =

aaabababababb and X = ababab. The arithmeti progression whih orrespondsto the ourrenes of X in Y is (2, 2, 3) (the �rst position in a word being 0).Remark 2 By the algorithm of [21℄ we note that the equality of two SLPsM,Nan be heked in time O(|M |2|N |2), whih improves the omplexity providedby the algorithm proposed in [23℄.Throughout the setion we denote ourrenes of projetions M |i using su-persripts. That is, M |1i will orrespond to a given starting position of M |i aspattern of N |i. Suppose that for eah i ∈ P , M i ours in N |i as a fator, andlet Ei be the orresponding set of events (positions). We say that (M i)i∈P formsa fator of N if the set of events F = ∪i∈PEi satis�es De�nition 5 (fator MSC).5.3 Pattern Mathing for Conneted PatternsWe turn now to the pattern mathing problem for nMSCs M , N where thepattern M is onneted. That is, we suppose throughout this setion that M21



annot be written asM1M2, whereM1,M2 are nonempty MSCs with no ommonproess.Following the de�nitions of the previous setion we will denote by O(M,Y )the set of ourrenes M0 of the nMSC M in the nMSC Y , suh that M0 doesnot our in any referene Z < Y . We denote by O(M,Y, V ) ⊆ O(M,Y )those ourrenes that start within V and end beyond V , where V ∈ Y is areferene ourring literally in Y . This means that 1) all events of M0 mustour within or after V , 2) for at least one proess i, the ourreneM0|i startswithin V and ends after V . Notie that for a proess i as in point 2), we have
M |0i ∈ O(M |i, Y, V ).De�nition 7. Let M |1i and M |2j be ourrenes of M |i in N |i, resp. of M |j in
N |j . We say that M |1i and M |2j are ompatible, if the �rst send (resp. reeive)between the proesses i and j onM |1i mathes the �rst reeive (resp. send) onM |2j(if i, j ommuniate in M). More generally, we all the indies orresponding to
M |1i , M |2j in a given arithmeti progression ompatible.Lemma 1. Let (M |0i )i∈P be ourrenes of M |i in N |i. Then (M |0i )i∈P formsa fator of N i� (M |0i )i∈P are pairwise ompatible.Our searh for ompatible ourrenes uses the following properties, that areeasily shown using the fat that M is onneted:Fat 1 1. Let Y be a variable of N and h 6= j two proesses. Then for eah

M |0h ∈ O(M |h, Y ) there an be at most one ourrene M |0j in Y that isompatible with M |0h.2. For eah ourrene M0 in O(M,Y, V ) there exists some proess h suhthat M0|h ∈ O(M |h, Y, V ). We all suh a proess h a leading proess for
M0. Thus, any pairwise ompatible tuple (M0|k)k 6=h ⊆ Y is determined bythe ourrene M0|h, beause of 1).Example 4. For the nMSC P in Figure 1 and the pattern N in Figure 6 we haveO(N,P ) = ∅ and O(N,S) is a singleton, orresponding to the unique our-rene ofN in S. The leading proesses are 1 and 3, sine e.g. O(N |3, S|3) = {0}.Note that O(N |2, S|2) = ∅ and O(N |2,M |2) = {0} is the arithmeti progres-sion (0, 0, 0).An index i = n + js, j < k, of an arithmeti progression (n, s, k) in Y isalled external , if it is either the �rst or the last index of the progression, thatis either i = n or i = n+ (k − 1)s. Any nonexternal index is alled an internalindex.The next proposition provides the main argument that the searh for a pair-wise ompatible tuple of ourrenes (M |i)i∈P an be done in polynomial time.Intuitively, we show that the ourrenes of (M |i)i∈P an be loated in the samevariable Y of N , up to polynomially many exeptions. Without this property wewould have to onsider di�erent variables Y i for di�erent proesses i ∈ P . Wereall that for every message (e, f) in an nMSC N = (Nq)q=1,n the events e and

f appear literally in the same maro Nq.22
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1 2 3

Fig. 6. Pattern MSC NProposition 1 Assume thatM0 ∈ O(M,Y, V ) and thatM0|i ∈ O(M |i, Y
i, V i)for i ∈ P , where Y, Y i, V i are variables of N . Then we have one of the followingtwo ases:1. Y i = Y and V i = V for all i ∈ P .2. For some leading proess h for M0 (in partiular, V h = V and Y h = Y ),the ourrene M0|h is an external index of O(M |h, Y h, V h).Proof. Suppose that for every leading proess h, the ourrene M0|h is aninternal index of O(M |h, Y

h, V h). We want to infer that Y i = Y and V i = Vfor all i ∈ P . Assume also that there is a message from proess i to proess j in
M . We deompose M |i = Ai,jB

s
i,jCi,j suh that the word Bs

i,j begins with the�rst send from i to j, and ends with the last one. Similarly, we deomposeM |j =
Aj,iB

r
j,iCj,i suh that the word Br

j,i begins with the �rst reeive on j from i, andends with the last one. We need the next lemma to infer that if an ourrene
M0 is suh thatM0|i ∈ O(M |i, Y i, V i) andM0|j ∈ O(M |j , Y j , V j) are bothinternal indies, then we have Y i = Y j and V i = V j . This will allow �nishingthe proof of the proposition, using the fat that M is onneted.Lemma 2. Assume that the arithmeti progression π = O(M |i, Y, V ) onsistsof at least three indies. Then eah ourene of Bs

i,j that orresponds to someinternal index of π, belongs to O(Bs
i,j , Y, V ).Proof of lemma: SineM |i belongs to an arithmeti progression onsistingof at least three indies, M |i is of the form (a1 · · · an)d(a1 · · · am), where d ≥ 3and m < n.By assumption, there is a message from i to j in M |i, hene ak = i!j forsome k. Sine Ai,j and Ci,j have no i!j, we obtain Ai,j = a1 · · ·ak−1 and Ci,j =

al+1 · · · ana1 · · · am, with l > m.In partiular, we have |Ai,j | < n and |Ci,j | < n. Sine eah M |i ontainsthe last position of the word generated by V , the subword Bs
i,j also ontainsthis position, exept possibly for the �rst and the last Bs

i,j . Hene, every Bs
i,jassoiated with an internal index of π is in O(Bs

i,j , Y, V ).23
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2Let now h be a leading proess, thus Y h = Y and V h = V . Let also
j 6= h suh that j, h ommuniate in M . Sine M0|h is an internal index ofO(M |h, Y, V ) we an apply Lemma 2 and we obtain for the orrespondingourrene Bs,0

h,j ∈ O(Bs
h,j , Y, V ). Hene, we also have Br,0

j,h ∈ O(Br
j,h, Y, V ),sine mathing sends and reeives always appear literally in the same variable.Reall thatM0|j ∈ O(M |j , Y

j , V j) with Y j ≤ Y . Using Br,0
j,h ∈ O(Br

j,h, Y, V )we obtain that Y ≤ Y j , hene Y j = Y . Applying the lemma again to M0|j weobtain also V j = V , that is, j is a leading proess, too. The result follows for allproesses i, due to M being onneted. 2Theorem 8 LetM,N be two nMSCs, with M onneted. We an hek whether
M ours in N in time O(|M |2|N |2).The algorithm below returns ourrenes of M in N , in form of pairs (Y, π),where Y ≤ N and π is an arithmeti progression designating a set of positionswithin Y that orrespond to ourrenes of M . We denote below the number ofproesses by p.Pattern-Mathing (nMSC M, N)For eah variable X on the lowest level of hierarhy:If M ⊆ X at position pos then return (X, pos);For all variables Y , V of N with V ∈ Y :Compute O(M |1, Y , V ), . . ., O(M |p, Y , V );For every variable Y of N:For every proess h:For every pos(h) at the beginning or end of anarithmeti progression of O(M |h, Y ):Let (M |h)pos(h) be the orresponding ourrene of M |h:If there exist ((M |k)pos(k))k 6=h ompatible with (M |h)pos(h)where for all k, pos(k) ∈ O(M |k, Zk) with Zk ≤ Y :return (Y , (pos(k))k ∈ P ;For every V ∈ Y s.t. for all i: πi = O(M |i, Y , V ) 6= ∅:For eah i, let πi = (ni, si, ki);Let (t1, . . . , tp, e1, . . . , ep) = Periods(Redue(π1, . . . , πp));Let π′

i = (ni + tisi, siei, (ki − ti)/ei)If (π′
i)i 6= ∅ then return (Y , (π′

i)i)Notie that we have to restrit pos(k) to be inside Y for every k to ensure that
h is leading, whih ensures the uniqueness of pos(k) for every k. For simplifyingthe presentation of the algorithm we will assume below that every proess i in24



M sends at least one message to every proess j > i. This is just a tehnialassumption, whih makes the presentation nier. The algorithm �rst omputesthe ourrenes M |i proess-wise. Then, in the third for-loop, it �rst onsidersexternal indies, orresponding to the seond ase of Proposition 1. If no patternis found, the algorithm looks for an ourrene orresponding to the �rst ase ofProposition 1, where M0|i ∈ O(M |i, Y, V ) for every proess i. The arithmetiprogression O(M |i, Y, V ) is denoted by πi = (ni, si, ki) above. We denote by
ui the word onsisting of the si �rst symbols of M |i. By assumption, eah uiontains both symbols i!j and i?j, for all j > i. For eah i < j we denote by
mi,j the number of sends from i to j in ui, and by mj,i the number of reeivesfrom i to j in uj .We desribe now the subroutines Redue and Periods and show that ouralgorithm returns only ourrenes of M whih are indeed fators of N . Thesubroutine Redue restrits the arithmeti progressions (π1, . . . , πp) by addingan o�set to eah ni of an arithmeti progression πi = (ni, si, ki), and reduing
ki. This is done suh that for all pairs of distint proesses i, j there existsa send to proess j and a reeive from j in every ourrene from πi, suhthat the mathing event belongs to πj . For instane, in the example below thearithmeti progression π1 will start after a all of Redue with u0

1, sine the twoopies of u1 before have no send to proess 2 suh that the mathing reeivebelongs to π2. Thus, the �rst two ourrenes of u1 in π1 will not be used forlooking for ompatible ourrenes. It also redues the number of ourrenesof arithmeti progressions. Redue takes quadrati time by omputing for everypair of proesses i, j the �rst and the last event on i that sends or reeives amessage from an ourrene from πj . We then ompute the events whih ful�llevery onstraint.
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Let (πi)i=1,p be arithmeti progressions of ourrenes of
M |1, . . . ,M |p, suh that for eah pair i < j there is a messagefrom eah ui in πi to some uj in πj . That is, (πi)i∈P is theresult of a all of Redue. Let u0

i be the �rst index of eaharithmeti progression πi. The only problem that remains fordeiding whether there exist ompatible ourrenesM |i,M |jis that the existene of messages from ui in πi to uj in πj doesnot mean that the events math orretly w.r.t. M . We willlook for tuples of ourrenes of the M |i that are pairwiseompatible by onsidering sub-progressions of the πi.From now on we want to determine all tuples (ui)i∈P or-responding to the starting positions of pairwise ompatibletuples ((M |1)0, . . . , (M |p)0). As we show later, suh tuplesour periodially, hene we just need to determine some pe-riods (µ1, . . . , µp) ∈ N
p and the �rst positions (u1

1, . . . , u
1
p)from whih we an apply these periods.For all i < j let zi,j < mi,j be the number of events of type

i!j in u0
i before the �rst event that has a mathing event in πj . Let also zj,i < mj,ibe the number of events of type j?i in u0

j before the �rst one that has a mathing25



send in πi. In the �gure above we have i = 1, j = 2,m1,2 = 2 (there are two sendsin eah u1), m2,1 = 3 (there are three reeives in eah u2), z1,2 = 1 (the �rstsend of u0
1 has no mathing reeive in π2) and z2,1 = 0. Let z0

i,j be suh that afterreading the �rst z0
i,j + zi,j sends from πi to πj we arrive at a message onsistingof the �rst i!j of some ui and the �rst j?i of some uj . In the example, we markedas z0 = z0

1,2 the earliest message onsisting of the �rst 1!2 of some u1 and the�rst 2?1 of some u2, and z0
1,2 = 3. So z0

i,j +zi,j ≡ 0 (mod mi,j) and z0
i,j +zj,i ≡ 0

(mod mj,i). Using the Chinese Remainder Theorem the subroutine Periods �rstomputes the least solutions z0
i,j modulo lm(mi,j ,mj,i) to the above equationsin time O(min(|M |i|, |M |j|)3). We perform this omputation for eah pair ofproesses in overall time O(|M |3) for obtaining the new period µi and the newo�set u1

i . Notie that µi = lm{mi,j | i < j}. The restrition of the arithmetiprogression πi aording to µi, u
1
i is denoted π′

i.By de�nition, the �rst i!j of eah ui in the restrited arithmeti progression
π′

i mathes the �rst j?i of some uj of the unrestrited arithmeti progression
πj . The �nal step of Periods is to ompute ourrenes of M from (π′

i)i=1,p.Let xi,j denote the number of uj between the ourrene u1
j and the ourreneontaining the reeive of the �rst message from u1

i . We want to ompute alltuples (ui)i=1,p suh that the �rst i!j of ui mathes the �rst j?i of uj . That is,we need a solution (ti)i=1,p of the following system of p(p− 1) linear equations:
µimi,jti = xi,jmj,i + µjmj,itj .Thus, the value of t1 determines eah ti, modulo some value ei depending onthe onstants (mi,j)i,j . We an ombine the equation for (1, i) with the equationfor (i, j) to obtain a system of p(p− 1) equations:

δi,jt1 = yi,j + νi,jtj .Let j ∈ P . Notie that several of these equations (for di�erent i) involve thesame pair of variables t1 and tj . Either all these equations are equivalent, or theyyield a unique solution, or no solution at all. If there is a unique solution, thenwe stop the proedure and test this solution in eah equation. If this is indeed asolution of the system, we return its value. If there is no solution, we do not �ndan ourrene of M at this level. Hene, we an assume for the following thatthe equations for j are all equivalent. Then it su�es to onsider a system of pequations of the above form (i.e., we �x some i for eah j).If gcd(δi,j , νi,j) does not divide yi,j , there is no solution to our system. Else,we an divide δi,j , yi,j , νi,j by gcd(δi,j , νi,j), and thus onsider only the ase where
gcd(δi,j , νi,j) = 1.Let γi,j be the inverse of δi,j modulo νi,j . Hene the equations are redued to
p simple equations of the form t1 ≡ yi,jγi,j (mod νi,j). The subroutine Periods�nally omputes a solution (t1, . . . , tp) using again the Chinese Remainder The-orem and returns (ti + u1

i − u0
i , ei)i.Sine the intersetion of an arithmeti progression with the periodi set isstill an arithmeti progression, in the end we have arithmeti progressions of26



periods inreased by a fator of ei, that ontains only ompatible ourrenes.A all of Periods osts time O(|M |3).Remark 3 We an slightly adapt the algorithm for omputing all ourrenesof M in N . Note that the number of ourrenes might be exponential (as inthe word ase), thus the representation of all ourrenes will be impliit.5.4 Pattern Mathing for Non-Conneted PatternsWe turn now to the general ase where the nMSC patternM is not onneted. Weshow that the omplexity of the algorithm inreases just by a fator O(|CM |2) ≤
O(℘2), namely the square of the number of weakly onneted omponents ofM .It will be helpful in the following to have all proesses of N appear in M .This an be enfored by a simple modi�ation of M,N , as depited below. Foreah referene Y of N and eah proess i ∈ PN \ PM we add a loal ation loion proess i in Y before eah message or referene on i, and before the end of
Y . Let M ′ = M ·

∏
i∈PN\PM

loi. Obviously,M ′ ours in N ′ i� M ours in N .
Occ(M      )

1 5 5

loc5Occ(M      ){1,2} {3,4}

2 3 4 1 2 3 4

Let M,N be nMSCs. For eah referene X of M or N , let CX ⊆ 2PM be theset of maximal onneted omponents of the ommuniation graph of X (this isthe graph with verties orresponding to proesses and edges between ommuni-ating proesses). We will denote by X |C the projetion of X over the proessesin C ∈ CX . In other words, X = (X |C)C∈CX
represents the deomposition ofthe MSC assoiated with X into onneted nMSCs. It follows from the previoussetion that we an ompute in time O(|M |2|N |2) a ompat representation ofall ourrenes ofM |C in N , for eah C ∈ CM . The next de�nition states when atuple of ourrenes (M |C)C∈CM

of the onneted omponents ofM orrespondsto an ourrene of M in N .De�nition 8. Let a ∈ O(M |C , Y ), b ∈ O(M |D, Y ) be two ourrenes ofonneted omponents of M , where C,D ∈ CM and C 6= D. Then a, b are alledompatible if there is no message in Y from some proess in C to some proessin D that is sent after a and reeived before b (or vie versa).Lemma 3. Let aC ∈ O(M |C , Y ), for all C ∈ CM . Then (aC)C∈CM
is anourrene of M in Y i� aC , aD are ompatible for all C,D ∈ CM , C 6= D.27



Proof. The impliation from left to right follows diretly from the de�nitionof patterns. For the onverse assume that (aC)C∈CM
is not an ourrene ofM in

Y . This means that there is some hain of messages (sk, rk)m
k=1 with P (s1) ∈ C,

P (rm) ∈ D, P (rk) = P (sk+1) for all k, and suh that aC preedes s1, ri preedes
si+1, and rm preedes aD. Sine all proesses appear in M , there exist some kand C′, D′ ∈ CM suh that P (sk) ∈ C′, P (rk) ∈ D′, aC′ preedes sk and rkpreedes aD′ . But this means that aC′ , aD′ are not ompatible, ontradition. 2Let C ∈ CM . Note that the ourrenes of the onneted omponentsM |C in
Y are totally ordered by the visual order of Y . This justi�es the use of min and
max on ourrenes of the same onneted omponent in the proposition below.Proposition 2 Let a = (aC)C∈CM

, b = (bC)C∈CM
∈ (O(M |C , Y ))C∈CM

be twoourrenes of M in Y . Then (min(aC , bC))C∈CM
and (max(aC , bC))C∈CM

arealso ourrenes of M in Y .Proof. By Lemma 3 it su�es to hek that min(aC , bC), min(aD, bD) areompatible, for all C,D ∈ CM , C 6= D. The only ase to verify is when min(aC , bC)
= aC < bC and min(aD, bD) = bD < aD. Assume by ontradition that there isa message from C to D that is sent after aC and reeived before bD. Then aCand aD > bD are not ompatible, a ontradition. The ase where a message issent after bD and reeived before aC is symmetrial. 2We desribe the pattern mathing algorithm in a simpler ase where thefollowing two onditions hold. First, we assume that every message is on thelowest hierarhial level. This means that maros either onsist of referenes (andloal ations) only, or they are MSCs. In other words, we forbid messages rossingreferenes in N . Seond, for all referenes Y, Z with Z ∈ Y and eah ourreneof M |C in Y either M |C is inluded in Z, or it has an empty intersetion with
Z. That is, we assume that no ourrene of M |C in Y is split between severalreferenes Z ∈ Y . If N satis�es these onditions w.r.t. M , then we all thepair (M,N) nie. The general ase is tehnially more involved, but it does notrequire new ideas.If M ours as a pattern of N , then Proposition 2 ensures that there is aunique minimal ourrene of M in N (minimal with respet to the omponentwise ordering of tuples from (O(M |C , N))C∈CM

. In order to �nd the mini-mal ourrene of M in a referene X of N , we look for ompatible minimalourrenes in eah referene Y ∈ X . If Y does not ontain the omplete M ,then we need more information about possible omponents M |C that are out-side Y and that are ompatible with the omponents within Y . Sine there maybe several referenes X with Y ∈ X we enode this additional information byimaginary ourrenes denoted ↓C and ↑C , for eah omponent C ∈ CM . Theourrene ↓C for omponent C means an ourrene of M |C after Y , while
↑C for C means an ourrene of M |C before Y . Thus, we let ↑C< aC <↓Cfor all aC ∈ O(M |C , Y ). For C 6= D, we say that ↑C , aD ∈ O(M |C , Y ) areompatible if there is no message from C to D that is reeived before aD in Y(symmetrially for ↓). The preise de�nition follows:28



De�nition 9. Let Y be a referene of N . Let E ⊆ {6=↑C,=↓C | C ∈ CM} be aset of onstraints. We de�ne MinY
E = (aC)C∈CM

as the minimal tuple satisfyingthe following onditions:1. For eah C ∈ CM , aC ∈ O(M |C , Y ) ∪ {↑C , ↓C}.2. The ourrenes (aC)C∈CM
are pairwise ompatible.3. (aC)C∈CM

satis�es the onstraint E. That is, (6=↑D) ∈ E implies that aD 6=↑D,and (=↓D) ∈ E implies that aD =↓D.
1 5

Occ(M )
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Note that the minimal ourrene in the previous de�nition is well de�ned,sine there exists at least one tuple (aC)C∈CM
satisfying the three onditionsabove, namely aC =↓C for all C. In other words, there may always be an our-rene of M after Y .Example 5. The two extreme onstraints orrespond toMin∅ = (↑C)C∈CM

and Min(=↓C)C∈CM
= (↓C)C∈CM

.In the �gure to the right we also have:� Min{6=↑1} = (a, ↑2, e, ↑4, ↑5) = Min{6=↑1, 6=↑3}.� Min{=↓2} = (b, ↓2, e, ↑4, ↑5).� Min{6=↑4,=↓5} = (↑1, ↑2, ↑3, g, ↓5).The next lemma shows that it su�es to ompute (reursively) the tuplesMinY
E , for suitable onstraints E and referenes Y of N .Lemma 4. Let (bC)C∈CM

= MinN
( 6=↑C)C∈CM

. Then M is a pattern of N i�
bC 6=↓C, for all C ∈ CM .The problem is that we might need the tuples MinY

E for arbitrary sets E ofonstraints (and there are exponentially many). Fortunately, we an avoid theexponential blow-up by omputing MinY
E only for singletons E = {6=↑C} and

E = {↓C}, C ∈ CM . We �rst show that these tuples su�e for omputing inpolynomial time MinY
E for arbitrary E. In a seond step, we show that we willneed only a polynomial number of onstraints E in the reursive step.Lemma 5. Let E,F ⊆ {6=↑C,=↓C | C ∈ CM} be two sets of onstraints. ThenMinY

E∪F = max(MinY
E ,MinY

F ).Proof. Let b = (bC)C = max(MinY
E ,MinY

F ). We have of ourse MinY
E∪F ≥MinY

E and MinY
E∪F ≥ MinY

F , hene MinY
E∪F ≥ b. But MinY

E∪F is the minimaltuple that satis�es the three properties whih b satis�es, too: the tuple b haspairwise ompatible omponents bC and it satis�es the onstraints in E ∪ F .Therefore, b = MinY
E∪F . 229



1 5

Occ(M )
i

2 3 4

Y
a

c
d

1

b

Y2

MinY 1Y 2

{6=↑5} = (a, b, c, ↑4, d).MinY 1

{6=↑5} = (a, ↓2, c, ↑4, d) = MinY 1

{=↓2, 6=↑5}.MinY 2

{6=↑2} = (↑1, b, ↑3, ↑4, ↑5).Proposition 3 Assume that the pair (M,N) is nie and onsider some refer-ene Y of N and a omponent D ∈ CM . Then MinY
{6=↑D} and MinY

{=↓D} an beomputed in time O(|Y |℘2) from the tuples (MinZ
{6=↑C})C∈CM

and (MinZ
{=↓C})C∈CM

,where Z ∈ Y .Proof. We an assume without restrition that any referene Y of N thatis not on the lowest hierarhy level has exatly two subreferenes, that is Y =
Y 1Y 2.We will ompute the set of omponents E↓ ⊆ CM that onsists of all C suhthatM |C has no ourrene in Y 1 whih is ompatible with the onstraints, thus
M |C must our either in Y 2 or after Y . In order to do this, we start with E↓ = ∅and we augment E↓ as long as there exist a, b with the following properties:� (aC)C is an ourrene in Y 1 with aC =↓C i� C ∈ E↓,� (bC)C is an ourrene in Y 2 with bC =↑C i� C /∈ E↓.The algorithm for omputing MinY

{6=↑D} is desribed below (for MinY
{=↓D} thereasoning is similar):(1) Let E↓ = ∅(2) Compute (aC)C = MinY 1

E , with E = {6=↑D} ∪ {=↓C | C ∈ E↓}(3) Let E↓ = { C | aC = ↓C}// For all C ∈ E↓, M |C must be in Y 2 or after Y .30



(4) Compute (bC)C = MinY 2

( 6=↑C)C∈ E↓(5) Let E↓ = { C | bC 6= ↑C}. If E↓ hanges, then goto (2).(6) Let dC = bC if C ∈ E↓, and dC = aC, otherwise.(7) Return (dC)C.Note that eah time the set E↓ hanges at step (3), it inreases by at leastone omponent. Hene, we return to step (2) at most O(℘) times.For the running time let us denote by Et
↓ the value of E↓ after t iterations.The t-th iteration needs time ℘(|Et

↓| − |Et−1
↓ |), thus the overall running time isat most O(℘2).If an nMSC has more than two referenes, then we de�ne several sets Ei

↓ toexplain the minimal referene Y i where the ourrene of the projetion shouldbe. Considering that for eah step, one set Ei
↓ has to hange, the running timeis ℘2|Y |. 2Theorem 9 We an test whether M ours as pattern of N in time O(C2

M (|M |2

|N |2)).Proof. We show the theorem only for the ase where (M,N) is a nie pair.The general ase is tehnially more involved, but does not require new ideas.Theorem 8 is used for omputing �rst the impliit representation of all o-urrenes of M |C in Y , for all omponents C ∈ CM of M and all referenes Y of
N . For eah Y we need then only the position of the minimal ourrene of eah
M |C in Y (if any). We ompute then MinY

6=↑C
and MinY

=↓C
for all omponents

C ∈ CM and referenes Y of N . We apply Proposition 3 to ompute MinY
6=↑Cand MinY

=↓C
. The time osts are O(|M |2|N |2) for the onneted omponents and

O(℘3|N |) ≤ O(|M |2|N |2) for the additional algorithms looking for ompatibleomponents. The overall running time is thus O(|M |2|N |2). In the general asewe get an additional fator C2
M , where CM is the number of onneted om-ponents of M , expressing additional onstraints due to omponents M |C thatmight be split over several referenes of N . 26 ConlusionIn developing new tehniques for algorithms on hierarhial MSCs, we pro-vided arguments that algorithms an bene�t from the hierarhial struture. Weshowed that pattern mathing and membership algorithms an e�iently use thehierarhy, together with tehniques stemming from ombinatoris, arithmetisand dynami programming. We believe that similar tehniques an be usefulfor other problems on hierarhial MSCs, for instane veri�ation of propertiesexpressed by template MSCs [10℄.Aknowledgment: We wish to thank Mar Zeitoun and Markus Lohrey forinsightful omments on previous versions of this paper. A speial thank is dueto the referees of TOCS, who did an enormous work in reviewing all details ofour paper and proposing very many improvements and orretions, even in themost tehnial parts. 31
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