Pattern Matching and Membership for
Hierarchical Message Sequence Charts

Blaise Genest'* and Anca Muscholl2

! TRISA/CNRS, Campus de Beaulieu, F-35042 Rennes
2 LIAFA, Université Paris VII, case 7014, 2 pl. Jussieu, F-75251 Paris cedex 05

Abstract. Several formalisms and tools for software development use
hierarchy in system design, for instance statecharts and diagrams in
UML. Message sequence charts (MSCs) are a standardized notation for
asynchronously communicating processes. The norm Z.120 also includes
hierarchical HMSCs. Algorithms on MSCs rarely take into account all
possibilities covered by the norm. In particular, hierarchy is not taken
into account since the models that are usually considered are (flat) MSC-
graphs, that correspond to the unfolding of hierarchical HMSCs. How-
ever, complexity can increase exponentially by unfolding. The aim of
this paper is to show that basic algorithms can be designed such that
they avoid the costly unfolding of hierarchical MSCs and HMSCs. We
show this for the membership and the pattern matching problem. We
prove that the membership problem for hierarchical HMSCs is PSPACE-
complete. Then we describe a polynomial time algorithm for the pattern
matching problem on hierarchical MSCs.

1 Introduction

It is common to use macros when writing a program or modeling a system.
Macros (or hierarchical models) enable the modular design of complex systems.
They also present the advantage of succinctness and better readability. Several
formalisms and tools for software development use hierarchy in system design.
One of the most prominent examples is the formalism of statecharts [11], which is
a component of several object-oriented notations, such as the Unified Modeling
Language (UML). Besides statecharts, UML widely uses several kinds of dia-
grams (activity, interaction diagrams etc), all based on the ITU standard Z.120
of message sequence charts (MSC for short). While statecharts extend finite
state machines (FSM for short) by hierarchy and communication mechanisms,
MSC is a visual notation for asynchronously communicating processes. The usual
application of MSCs in telecommunication is for capturing requirements of com-
munication protocols in form of scenarios in early design stages. MSCs usually
represent incomplete specifications, obtained from a preliminary view of the sys-
tem that omits several details, such as variables or message contents. High-level
MSCs (HMSCs) combine basic MSCs using choice and iteration, thus describ-
ing possibly infinite collections of scenarios. For abstract specifications as with

* The results were obtained while being affiliated with LTAFA, Université Paris 7.

HMSCs, hierarchy is of primary importance. Since a scenario corresponds to a
specification level which can be very abstract, a designer should be able to merge
different specification cases yielding the same abstract scenario and to use this
scenario as a macro. By using macros designers may identify sub-scenarios which
have to be refined at a later stage. Thus we focus in this paper on hierarchical
MSCs (or nested MSC, nMSC for short) and hierarchical HMSCs (nested HMSC,
nHMSC for short).

Algorithms on MSCs rarely take into account the whole spectrum of the
HMSC standard definition. In particular, hierarchy is not taken into account
since the models usually considered are MSC-graphs (that correspond to the
unfolding of nHMSCs). However, complexity can increase exponentially by un-
folding. The aim of this paper is to show that this exponential blow-up is often
unnecessary, since the costly unfolding can be avoided.

In this paper we consider two basic problems for the algorithmic verifica-
tion of nMSCs and nHMSCs, the membership problem and pattern matching.
We believe that the techniques described here can be used to solve other prob-
lems on nHMSCs as well. The membership problem occurs for instance when
a negative scenario must be exluded from the specification, or when we check
that a positive scenario is already covered by the specification. Without hierar-
chy, membership of an MSC against an HMSC is NP-complete [1]. The reason
for this complexity blow-up (compared to FSM) is that MSCs are partial or-
der models. We show that hierarchy yields a small increase in complexity, pre-
cisely we show that the membership problem of an nMSC against an nHMSC is
PSPACE-complete. Surprisingly, hierarchy alone is the source of this complex-
ity. We show namely that the membership problem for hierarchical automata is
already PSPACE-complete. This result shows a difference between membership
and reachability, since reachability for communicating hierarchical automata is
EXPSPACE-complete [12].

The second problem considered in this paper is pattern matching for nMSCs.
Given two nMSCs M, N, we want to know whether M occurs as a pattern of N. A
polynomial time solution for this problem is not immediate. We apply some nice
combinatorial techniques stemming from pattern matching on compressed texts
and we obtain an algorithm of time O(|Cps|? - |M|? - |N|?), where |M], |N| denote
the sizes of the description of M and N, and |Cps| is the number of connected
components in the communication graph of M. This question subsumes the test
of equality of two nMSC, and shows that equality is decidable in PTIME as well.

Related work. For extended FSMs, [12] considers the reachability and trace
equivalence problems for communicating FSMs. Model checking hierarchical
FSMs against LTL and CTL properties is the topic of [4]. The paper [3] com-
bines hierarchy and concurrency, analyzing the complexity of several problems
(reachability, equivalence etc.) for communicating, hierarchical FSMs.

Several verification problems on MSCs and MSC-graphs have been considered
over the last years, such as detecting races [2,19], model checking [5], pattern
matching with gaps [20], inference [1], realizability [18,9, 15], and model checking
against partial order logics [17, 22]. Hierarchical MSCs have been also considered

in [5] for the model checking problem. We note however that our definition of
nHMSCs captures a larger class of MSC specifications than [5].

An extended abstract of this paper was presented at LATIN’02 [8]. As ad-
ditional result here we show how to extend the polynomial time algorithm for
pattern matching nMSCs to the case where the pattern is not connected.

2 Syntax and Semantics of Nested MSCs

We adopt the definition of (basic) message sequence charts (MSC for short), as
described in the ITU-standard [13].

Definition 1. (Message Sequence Charts.) A message sequence chart is a
tuple M = (P, E,C,{,m, <) where:

— P is a finite set of processes,

— FE is a finite set of events, each located on some process from P,

— C is a finite set of names for messages and local actions,

—(:E—T = {iljc),i?j(c),i(c) | i # j € P, c € C} labels each event with
its type: on process i € P, the type is either a send i!j(c) of message ¢ to
process j, or a receive i7j(c) of message ¢ from process j, or a local event
i(c). The labeling ¢ partitions the set of events by type (send, receive, or
local), E = SR L, and by process, E = J;cp E;. We denote by P(e) the
process of event e (i.e., P(e) =1 if e € E;).

—m : S — R is a bijection matching each send to the corresponding receive.
If m(s) =r, then {(s) = ilj(c) and £(r) = j7i(c) for some processes i,j € P
and some message content ¢ € C. We denote the events s,r as matching
events and the pair (s,7) as message.

— < C E x E is an acyclic relation between events consisting of:

e a total order on E;, for every process i € P, and
e s <1, whenever m(s) =r.

The upper left part of Figure 1 depicts an MSC M on three processes with
two messages and four events. Each vertical line corresponds to a process, with
time increasing from top to bottom. By P(M) we denote the set of processes of
M.

For the questions considered here, message names are irrelevant. Thus, send
events will be of type i!j and receive events of type ¢7j. Moreover, whenever we
refer to an MSC in this paper, we mean actually its isomorphism class, where
an isomorphism on the set of events F is a bijection that is compatible with the
type function £ and the message function m.

For communication protocols it is natural to assume that each communication
channel (i, 7), i # j, delivers messages first-in-first-out (FIFO rule). We assume
the FIFO condition throughout the paper. That is, for all messages (sg,7%),
kE = 1,2, such that ¢(s1) = £(s2) and £(r;) = {(r2) we require that s; < so
iff 71 < ro. The reflexive-transitive closure of the acyclic relation < is a partial
order called visual order and is denoted as <. A total order on E extending <

is called a linearization of M. A configuration (prefix) C of an MSC M is a
downward closed subset of events, that is, if e < f € F with f € C, then e € C.

Note that the FIFO rule implies that an MSC can be reconstructed from
any of its linearizations. We obtain the MSC from the event sequence simply by
matching the n-th send from i to j with the n-th receive on j from i, for each
pair of distinct processes (4, 7).

A special case of the pattern matching problem considered in the paper is the
equality test of two (nested) MSCs. In order to check the equality of two MSCs
M, N (i.e., up to isomorphism) one can choose any linearization of M and check
whether it is a linearization of IV, too. An alternative approach, that will be
used in our algorithms, is to check equality on each process. Thus, for an MSC
M = (P, E,C,¢,m,<) and a process i € P we let M|; denote the projection of M
on the set E; of events located on 4. That is, M|; is the sequence of events of M
on process i. We then have M = N if and only if M and N have the same set of
processes, that is P(M) = P(N) = P, and if their projections are equal, that is
M]|; = N|; for each i € P (up to isomorphism). Note that both tests rely on the
FIFO rule. Without this rule, a linearization (or the projections) does not suffice
for reconstructing the MSC. For example, the linearization s1sor172 where s1, so
are sends and r1, 7y are receives from process 1 to process 2, can produce two
MSCs, one where m(sy) = r1,m(s2) = r2 and one where m(s1) = ro, m(s2) = ry.

We follow the ITU norm and define nested MSCs (nMSC for short) by al-
lowing the reuse of an already defined MSC in a definition. The definition we
give below aims at preserving the visual character of MSCs (see also Figure 1).

Definition 2. (Nested MSC, nMSC.) A nested MSC M = (My)g=1,n is a
finite sequence of macros of the form My = (Py, Eq, By, pq,C, g, Mg, <q)-
Each macro M, consists of:

— A finite set P, of processes.

— A finite set £, of events, each event is located on some process from Py.

— A finite set By of references (bozes) used by M,.

— A function ¢, that associates each reference b € B, with an index q <
wq(b) < n. Thus, reference b refers to the macro M, v)-We require that
Poyv) & -

— The type function ¢, : E; — 7T, that associates each event with a type
i1j(c),i%j(c) ori(c), withi,j € Py, i # j and ¢ € C. The labeling ¢ partitions
the set of events by type (send, receive, or local), E; = Sy R4\ Lg, and
by process, Eq = |Jicp Eqi. We denote by P(e) the process of event e (i.e.,
P(e)=1iif e € Ey;).

— The message function my : S, — R that maps each (send) event of type
i1j(c) with a (receive) event of type j?i(c), for some i # j, c € C.

— The acyclic relation <, over the set of events and references E,UB,, defined
by:

e For each process k € Py, the relation <4 is a total order over the set E ;.
of events located on k and the set of references b € By with k € P,_).
o e <, [whenever my(e) = f in M,.

The nesting depth of M is the maximal d such that there exists some sequence
@1 < -+ < qay1 with g, (b) = qj41 for some b€ By, for all 1 < j <d.

In the spirit of straight-line program notation, higher levels of hierarchy cor-
respond to lower indices. Thus, the MSC M defined by M = (My)g=1,, will be
M. We will depict references in pictures (see Figure 1) as boxes that overlap
the processes that occur in the corresponding macro.

Fig.1. An nMSC P using two references, S and M.

Ezample 1. Consider the nMSC P in Figure 1. It uses three references, Bp =
{b1,b2,b3} that correspond to ¢p(b1) = ¢p(bs) = S and pp(bs) = M. The
nesting depth of P is 2. The visual order <p of P requires on process 1 the
order by <p e <p by <p bz. Notice that the definition of an nMSC would not
allow (f,e) to be a message, since this would contradict the acyclicity of the
relation <p.

The semantics of an nMSC is the MSC defined by replacing each reference
of M by the corresponding MSC. Inductively it suffices to define the semantics
of nMSCs of nesting depth one. Let M = (Mj)q=1,» be an nMSC of nesting
depth one, with M, = (P, Eq, By, ¢q,C, g, mq, <4). For simplifying the notation
below, we write instead of ¢1(b) just b.

The MSC (P, E,C,¢,m, <) defined by M = (My)4=1,, is given by P = P,
E = e, Ev \JE1, € = Ug=1,nly and m = Ug=y nmy. The visual order < is
defined by e < f if and only if either m(e) = f, or P(e) = P(f) and one of the
following conditions holds:

— e feFEande< f,
—e, fe€E,and e <y f,
—e€Fy,f € Ey,and e < b,
—e€Fy, feFand b < f,
—ec€ By, f€Ey and b <y V,

where b, b’ € By. For simplicity, we denote the MSC defined by M = (My)g=1n
as M, too.

Ezample 2. For the nMSC P in Figure 1, the lower right part of the picture
shows the MSC defined by S. Note that event g € Fj occurs twice in S for
simplicity, we denote both occurrences as g.

Note also that the semantics requires that b; <; e, but this does not mean
that all events of S = p(b;) must happen before e € Ep. For instance, the
first occurrence of g in S precedes event e of P, but the second occurrence is
concurrent with e.

Remark 1. Obviously, a syntactically correct nMSC M might not yield an MSC
because of the FIFO order. For example, the message (e, f) of P would violate
the FIFO condition if M would contain a message from process 1 to process
3. Fortunately, it can be verified easily (in polynomial time) whether an nMSC
satisfies the FIFO condition. For checking the FIFO condition, it suffices to test
that there is no e < g < h < f and no e < b < f with b containing a send from
i to j, where (e, f), (g, h) are two messages from i to j.

Size of nMSC. For complexity estimations we will denote by the overall
number of processes. The size of an nMSC M is denoted as |M]|. It represents
the size of the syntactical description of M, where an event is of size one and
the size of a reference is the number of its processes.

3 Nested High-Level MSC

An MSC can only describe a finite scenario. For specifying more complex behav-
iors, in particular infinite sets of scenarios, the I'TU norm proposes to compose
MSCs in form of MSC-graphs, by using choice and iteration.

Definition 3. (MSC-graph) An MSC-graph is a tuple G = (V,E,s, f,¢),
where:

— (V,E) is a directed graph with starting vertez s € V' and final vertex f € V.
— Each vertez v is labeled by the MSC ¢(v).

In the same way as we defined nested MSCs from (flat) MSCs we can gen-
eralize MSC-graphs to hierarchical HMSCs (or nested high-level MSCs, nHMSC
for short).

G = (G4)g=1,n, where each G is either a labeled graph or an nMSC. A labeled
graph Gg is a tuple (Vy, Eq, ¢q, Sq. fq) consisting of:

— A directed graph (Vy, E4) with starting vertex sq and final vertez f,.

— A function g4 that associates each vertex v with a reference ¢ < q4(v) < n,
representing G, (y)-

Thus, a node in an nHMSC can be mapped either to some graph or to an
nMSC. This definition combines hierarchical automata as defined in [4] with our
definition of nMSC. The special case where there is only one process (i.e., no
concurrency) yields the hierarchical automata used in [4]!.

We first need to define the composition of two MSCs NiN, with N =
(Py, Bk, Ci, L, my, <j). The intuition behind the composition is simple, we just
glue together the two diagrams process by process. So let NyNo = (P, E,C, ¢, m, <
> with E:E1UE2, P=PUP,, C=CUCy, L =1¢1Uly, m=m1;Umsg and

<=<1U<U U By x By .
ieP

The semantics of an nHMSC G = (G4)q=1,» is a set of MSCs L(G) defined
recursively. If G, is an nMSC, then L(G,) is a singleton consisting of the MSC
defined by G,. Consider a labeled graph G,. Then L(G,) is the set of MSCs
associated with the accepting paths of G, that is, paths starting in s, and
ending in f,. With a path vy,...,v, in G4, we associate the set of all MSCs
M;y -+ M, where M; € L(G,, (y,)) for all 1 <i < n. The set of executions of G
is defined as L(G) = L(Gy).

As in [1] we also consider a weaker semantics for nHMSCs, that does not use
the composition of MSCs (called weak closure in [1]). This semantics is based
on taking the product of the sequential behaviors of single processes. Several
algorithmic problems can be solved more efficiently for the weak closure of MSC-
graphs. This makes it interesting to compare it with the usual semantics also in
the setting of nHMSCs.

Weak closure of nHMSC. Let G be an nHMSC. Then L"(G) denotes the set
of MSCs M such that for each process ¢ there is some MSC N € L(G) such that
M |; is equal to N|;. Note that L(G) C L¥(G) and that the inclusion is strict, in
general (see [1]).

! Actually, [4] allows several final nodes in each automaton, which counts for the
complexity of their algorithms.

6

. —

N

Fig. 2. An nHMSC G;+1 generating (a + b)Qi_1 with Gi =e.

4 Membership Problem

Checking the membership of an MSC M in an MSC-graph G is used typically for
checking that no bad scenario can occur in a given specification. Another applica-
tion is checking whether a good scenario is already covered by the specification.
Checking membership is not an easy task already because of the concurrency
implied by the MSC composition, all the more in the presence of hierarchy. The

?
MSC membership problem M € L(G) with M an MSC and G an MSC-graph

?
was considered in [1], together with the weak membership problem M € L¥(G).
The results of [1] can be summarized as follows:

— The MSC membership problem is NP-complete. A deterministic algorithm
of time O(|G| - |M|#®) solves it?, where g is the number of processes.
— The weak MSC membership problem is solvable in time O(|G| - |M]).

So the MSC membership problem is solvable in polynomial time if we fix the
number of processes.

4.1 Hierarchical Membership Problem

The membership problem seems a priori more difficult for an nMSC M against
an nHMSC @G, since the naive approach of guessing a path of G and checking
equality with M is too expensive (both the path of G and the MSC defined
by M can be of exponential size). However, it is easy to show that we can test
membership in polynomial space:

Theorem 1 (Hierarchical MSC Membership Problem) Given an nMSC
?
M and an nHMSC G, we can decide whether M € L(G) in polynomial space.

% This is a slightly improved runtime compared to the result stated in [1].

Proof. The idea of the algorithm is quite straightforward. We guess an MSC
in L(G) and we match it against the nMSC M, however expanding neither M
nor G. Recall that for testing equality of two MSCs M, N, it suffices to choose
one linearization of N and check whether it is a linearization of M. Hence, we
can choose the linearization of the MSC in G. We consider only linearizations in
Lin®(G), where Lin"(G) is defined recursively. If G, is an nMSC, then Lin%(G,)
is the set of linearizations of G4. With a path vy,...,v, in G, we associate the
set of all linearizations u - --u,, where u; € LinO(G%(W)) for all 1 < i < n.
Let us consider a labeled graph G,. Then Lin"(G,) is the set of linearizations
associated with accepting paths of Gy, that is, paths starting in s, and ending
in f,. We define Lin’(G) = Lin°(Gy).

We need also to store a configuration of M in polynomial space, correspond-
ing to the events already matched with the events from G. Since a configuration
in an MSC is a downward closed set of events, it can be stored as a tuple of g
events (recall that p is the number of processes), representing the last event of
the configuration on each process. Such a tuple is of linear size w.r.t. the size of
M. Each event e of the (unfolded) M = (M;)q=1,, is represented by a sequence
by < --+ < by, of references corresponding to the unfolding of references yielding
e. That is, we inductively store b,,, where event e belongs to M,y (and by,
is a reference used by M, _,)), plus the position of e in M,). Thus, each
event can be stored in linear space. In Figure 1, the first occurrence of g in P
corresponds to (b1, b4, g), the second occurrence to (b1, bs, g), and so on.

Similarly, we can store the current configuration of the linearization in Lin(G)
in polynomial space (an event of G is represented by a sequence of nodes and
references). Since a new node is started only after the linearization of the previ-
ous node is completed, the last events on each process belong to the same node.
The nondeterministic algorithm consists in guessing a successor configuration
of GG, obtained by extending the current configuration by an event e such that
the new configuration is still a prefix of some linearization in Lin®(G). Then we
check that e can extend the current linearization of M as well. The algorithm
stops when the configuration that corresponds to the path being guessed in G
is equal to M and the path of G is accepting.

O

Theorem 2 below shows that PSPACE is the best complexity for the hier-
archical membership problem. The lower bound holds even if there is only one
process (Theorem 2), or if the graph G is not hierarchical (Theorem 3), but not
both (Theorem 4). This shows also that fixing the number of processes does not
lower the complexity of the problem, unlike the nonhierarchical case.

We show the PSPACE lower bound for the following problem: given a straight-
line program W (see below) and a hierarchical automaton A, test whether
W € L(A). This question corresponds to the hierarchical membership problem

?
with a single process. Notice also that the weak membership problem M € L*(QG)
[1] can be reduced to this question.

Straight-line programs. A straight-line program (SLP for short) over the
alphabet X is a context-free grammar with variables V = {Xy,..., X}, initial
variable X7 and rules from V x (V U X)T. The rules are such that there is
exactly one rule for each left-hand side variable and if X; — «, then each X;
in « satisfies j > 1.

The constraints on the rules make that any variable X; generates a unique
word. For convenience, we denote the word generated by the variable X; also
as X;. The length of a variable X; represents the length of the word generated
by X; and is denoted as ||X;||. Clearly, ||X;|| can be at most exponential in the
number of rules. The size of an SLP X is the sum of the sizes of the rules and
is denoted by |X;|. Without loss of generality, we can assume that rules are of
size 2, that is of the form X — Y Z with Y, Z ¢ V U X.

Since any MSC M is determined by its projections (M|;);ep, an nMSC M
can be identified with ¢ SLPs L, i € P. The SLP L generates the projection
M]; of M on the set of events of process i € P. We denote the variables used
by L* as X|;, where the variables X are related one-to-one to the macros M,
from the definition of the nMSC M. The initial variable of each L is thus Mj|;.
These SLPs can be translated in polynomial time into Chomsky normal form.

Example 3. For the nMSC P in Figure 1 we have the following SLP generating
the projection on process 1: P|y — S|1eM|1S]1, S|1 — M|1hM|y and M|; — k.
By adding new variables we can transform these 3 rules into equivalent rules in
Chomsky normal form.

A hierarchical automaton (hNFA for short) corresponds roughly to an nHMSC
over a single process. For clarity we give the definition formally. An hNFA is a se-
quence of edge-labeled graphs A = (Ag)g=1,n, where A, = (Vy, Ry, 0q, Vg, Sq» fq)
with V; the finite set of states, R, the finite set of references, s, f; € V5 the
initial and final state. The transition relation J, is a subset of (V; U Ry) x (X U
{e}) x (V,URy). The mapping ¢, associates a reference R with a subautomaton,
q < pg(R) < n. A transition of the form (R,a,v) with R € Ry,v € V, means
an a-labeled transition from the final state of the subautomaton A, (r) to the
state v of A,. The meaning of transitions (v,a, R) and (R', a, R), is similar, with
the transition ending in the initial state of A, (r)-

Theorem 2 It is PSPACE-complete to check whether W € L(A) for an SLP
W and an hNFA A. If the alphabet is unary, then the membership problem is
NP-complete.

Remark 1 The NP-hardness result in the unary case also follows from [24].

Proof. We first reduce (1-in-3) SAT to the unary membership problem, since
we use this reduction in the general case, too. This variant of SAT is still NP-
complete, see [25, 6].

Let ¢ = ATL,C(aj,34,7;) be an instance of (1-in-3) SAT over n variables
(2i)i=1,n- Here, (1-in-3) means that a clause C(c;, 8;,7;) is true if ezactly one of

10

the literals o, (5,7, is true. We use the unary alphabet {a}. Clearly, any word
x € a* is uniquely defined by its length.

For each integer j, it is easy to define an SLP (or an hNFA) L(j) of size
polynomial in j that generates the word a* . We associate with each clause
Cj = C(ay, Bj,7;) the word w; = L(j). Thus, let W = w; - -wp, € a* be the
word of length Z;"':l 47. The hNFA A consists of a sequence of choices with
transitions labeled by ¢; and f;, for i varying from 1 to n, where t; € a* is the
word of length >, . 47 and R; = {j | ; € {oj,5;,7;}}. In the same way,
fi € a* is the word of length 37, ¢ 47 and S; = {j | (~z:) € {ay,B),7}}-
Formally, a transition labeled by t¢; corresponds to sequencing the automata
accepting L(j), for j € R; (similarly for f;).

A maximal path p of A corresponds to a valuation o where each variable z;
is true if the path chooses t;, and false if it chooses f;. Let n; be the number
of literals of C; that are set true by o. Recall that o satisfies the formula ¢ iff
n; = 1 for all j. It is easy to see that p is labeled by the word L € a* of length
Z;”:l n;47. Notice that since each clause has three literals, n; € {0,1,2,3} for
all j. The length of L in base 4 is thus (n;,nm,—1...1n10)4. We have W = L iff
(11...10)4 = (mnm—1 ...110)4, thus iff n; = 1 for all j. That is, there is a path
in A labeled by W if and only if there is a valuation satisfying ¢. This implies
that the membership problem for hierarchical automata with a unary alphabet
is NP-hard.

We now show the first statement of Theorem 2. We reduce the problem (1-in-
3) QBF (one-in-three quantified boolean formula) to the hierarchical membership
problem. Let ¢ be an instance of (1-in-3) QBF of the form ¢ = Q- - - Q1219
where Q; € {3,V} and the formula v is of the form AT, C(ay, B8;,7;). As before,
a clause Cj = C(ay, B;,7;) is true iff exactly one literal is true. The PSPACE-
hardness of this problem is shown in [25, 6].

The idea is to make the valuations of the variables correspond to paths in
the hierarchical automaton (A;);—o., and to validate the valuations using the
SLPs (W;)i=o,n. We define the automata A; and the SLPs W; by induction on
i =0,...,n. We use now the binary alphabet {a,b}. The letter a will have the
same meaning as in the NP case, and the letter b will be used as a delimiting
symbol.

We define the words wy, ¢;, f; € a* with respect to v as before. That is, each
w; = L(j) is associated with the clause C; and t;, f; are associated with the
variable z;. Moreover, we associate with each variable x; the word w;;,, € a* of
length 417™ . Let Wy = wy - - Wy 4m be the word of a* of length Z;’ilm 47 and
let Ay be an automaton consisting of one e-transition from its initial state to its

11

final state. Let also Sy be an automaton consisting of one transition labeled by
b. The SLP-compressed words (W;);=1,,, are defined by:

- I/Vl —>I/Vi—171fQi:E|a

= Wi — Wi bW, if Q; =V.

The recursive definition of the hNFA (A;);=1 » and (S;)i=0,n—1 is illustrated
in the figure below. Transitions are either labeled by ¢, or by xt; = t; w4, or
xf; = fi witm. The automaton on the left defines A; when @); = V, the automaton
in the middle defines A; when @; = 3, and the automaton on the right defines
S;. Note that the symbol b is only generated by Sy.

The overall idea is as follows. The values of z;¢1,..., 2, are already chosen
when an automaton calls A; (from a higher hierarchy level). The automaton A;
on the left sets x; true, then uses S,,_; to recover the fixed values of x;41,...x,,
and finally it sets x; false. The automaton A; in the middle guesses whether x; is
true (by taking the transition labeled by xt;) or false (by choosing the transition
labeled by xf;). If it chooses both transitions labeled by xt;, xf; (or none of them),
then the word labeling this path will not be equal to W, because W,, contains
exactly one occurrence of w;;,, between any two consecutive b’s. We illustrate
how A; works in Figure 3, that shows the unfolding of the automaton As for
© = VaoVr19) on the left and for ¢ = JzoVa11) on the right.

To illustrate how S,,_; recovers the values of x;41,...,z,, we show S, _; for
n =9,4 =7 in the figure below.

% \Ogg

xf
e Q/QQ
St (l)b bl & (l)b

xtg\ xt s

'O

Fig. 3. Unfolding of As for Q222Q1x1 = V2oV on the left, and on the right, unfolding
Of AQ fOI“ szQQll‘l = E|272V1‘1

13

The hNFA A; and S; are designed so that any path of A; is labeled by at
most one xt; and at most one xf; between any two consecutive b’s, for each i (for
convenience, we suppose that each automaton starts and ends with a fictive b
transition). That is, a path can be labeled by xt; and xf;, but not by two xt; or
two xf;. By contradiction, assume that there are two consecutive b’s in A; such
that there is a path from one b to the other one labeled by two xt; (the case xf;
is symmetric). We take the minimal ¢ which ensures this. By the minimality of 4,
this can only happen either because of the first xt; transition of A;, or between
Sy,—; and one of the two A;_;. Since in S,,—; all xt; occur after the (unique) b,
there is no xt; in A;_; before its first b (if any). This already settles the case
where Q; = 3. Consider now the case ; = V. For the same reason as before,
there can be at most one xt; between the last b of A4;_; and the b in S,_;, for
all j < 4. Finally, between the b of S,,_; and the first b of the second A;_; there
can be at most one xt; with j > ¢ (from S,,—;) and at most one xt; with j <1
(from A;_1). Thus, in all cases we contradict the assumption on A4;.

Using the property we just showed, we can note that between any two con-
secutive b’s of any path of A,,, there are at most three w; and two w;,, for any
1 <j<m,1 <4 <n. Thus our coding in base 4 for determining whether a
clause is true, is still applicable. Hence, a path p of A,, is labeled by W,, iff for
all 1 < k < n+ m there is exactly one w; between any two consecutive b’s.

Let us show now that W,, € L(A,,) iff there exists a satisfying valuation tree
VT for ¢. A valuation tree VT is a binary tree of height n+ 1 such that its root
(level n) is labeled by x,, and all nodes on level [are labeled by z;. The leaves
are on level 0, labeled by true or false. A node v labeled by z; corresponds to
a valuation o(v) of the variables x;y1,...,2,. Moreover, a node on level [has
two children if z; is universally quantified (one child evaluates xz; to true and the
other one to false), and one child if z; is existentially quantified. We say that a
valuation tree satisfies a QBF formula ¢ = Q,x, - - - Q1x17 if for every leaf, the
associated valuation makes ¢ true.

Assume first that VT is a valuation tree showing that ¢ is true. A valuation
o(v) defines two words T'(v), F'(v) as follows: the word T'(v) is the concatenation
of all xt; where j > ¢ and x; is true in o(v). The word F'(v) is the concatenation
of all xf; where j > i and x; is false in o(v). Let v be a node of VT labeled
by x;. We define the word p(v) = T~ (v)W;F~1(v). We recall that T(v), F(v)
are words over a*, hence T~ (v)W; F~1(v) is the word that results from W; by
deleting |T'(v)| many a’s in the prefix and by deleting |F(v)| many a’s in the
suffix.

Let us show by induction on level i that p(v) is in L(A;) for any node v of
VT on level 1.

If v is a leaf of VT, then it defines an accepting valuation for ¢, hence
T(v)F(v) = Wy due to the (1-in-3) restriction. Hence p(v) = WoW; ' = € €
L(Ap).

Consider first an internal node v labeled by z; with @; = V. Let vy, v2 be the
children of v, with v; corresponding to x; true, and vy to x; false. By induction
let us suppose that p(v1), p(ve) are in L(A;_1). Then,

14

pv) =T~ o)W~ (v) = T7H(0) Wi bWio 1 F 7 (0)
=T ()T (v1)p(v1) F (01)bT (v2) p(v2) F (v2) F~* (v)
= xt; p(v1)F (v1)0T (v2) p(ve)xf;

We used in the equations above T~ (v)T'(v1) = xt; for the positive child v; of
vand F~1(v)F(vz) = xf; for the negative child vy of v. Moreover, F(v1)bT (vg) =
F(v)bT (v) € L(S,—;) since vy corresponds to x; true, and vy corresponds to x;
false. This shows that p(v) € L(A;).

Consider now an internal node v that is labeled by x; with Q; = 3. Assume
by symmetry that vy is the child of v in VT (thus, x; is true). By induction we
assume that p(vy) is in L(A;—1). It is easy to show now that p(v) € L(A;) using:

p(v) =T~)WiF~H(v) = T~ (0)Wi1 F~H (v)
=T ()T (v1)p(v1) F(01) F~ (v)
= xt;p(v1)

For the reverse direction the arguments are similar. From a word W = W,
accepted by A = A,, we obtain subwords p(v) in L(A;) as above, labeled by
T~ (v)W;F~(v). This means that for each leaf node v, the valuation o(v) sat-
isfies exactly one literal per clause.

O

Theorem 2 shows immediately that the hierarchical membership problem is
PSPACE-hard even with one process, by encoding the alphabet {a,b} by local
actions on a single process. Similar arguments can be used for the case where G
is an MSC-graph (with no hierarchy) as shown in the following theorem.

?
Theorem 3 The hierarchical MSC membership problem M € L(G) is PSPACE-
complete. The lower bound holds even if G is an MSC-graph, or if there is only
one process.

Proof. The problem we reduce from is again (1-in-3)QBF. Let ¢ be an in-
stance of (1-in-3)QBF of the form ¢ = (Qnzy) ... (Q121)Y, where Q; € {3,V}
and the formula 1 is of the form Aj=1._,mC(ej 1,52, ;3), with a; literals.

The idea is to let valuations of the variables to correspond to paths of G and
to validate the valuations using the nMSC M. We define the graph G and the
nMSC M by induction on ¢ = @,. Let ¢; = (Q:x;) wi—1, with o = 1. Each ¢;
will determine G;, M;.

The processes used in the construction are SCq,...,SC,, and RCy,...,RC,,,
plus VYq,...,VN,, and VNy,..., VN,,. Here V means a variable and C a clause,
S stands for “send”; R for “receive”, Y for “yes” and N for “no”.

For all i, let MY; be the MSC consisting of a message from VY; to VN,
then back from VN; to VY;, and a message from SC; to RC; for all j such

15

that z; € {aj1,a;2,a;j3}. Symmetrically, let MN; be the MSC consisting of a
message from VN; to VY;, then back from VY; to VN;, and a message from SC;
to RC; for all j such that —a; € {1, 2, a3}

My is an MSC consisting of one message from SC; to RC;, for all j. The
MSC-graph Gy consists of 3n + 1 nodes, labeled by MY;, MN;, or (). The graph
chooses between MY; and MN; for all i, as depicted on figure 4.

Note that all messages defined above commute, except for the ones between
VY; and VN;. Let a; be the message from VY; to VN;, and b; the message
from VN; to VY,;. We use the order between a;, b; as follows: The sequence
MY; = a;b; means that x; is true, while MN; = b;a; means that z; is false.

Assume now that G;_1, M;_; are already defined, and that there are f uni-
versal quantifiers in ¢; 1. For simplicity, we denote a = a; and b = b;. Note that
in a valuation tree for ¢ showing that ¢ is true, each value 0 or 1 assigned to
the variable x; is used by 27 leaves. A valuation tree is defined as in Theorem 2.

If p; = Va;pi_1, then let M; = (ab)?” M;_15;(ba)?’ M;_1. The MSC S; is used
for synchronizing processes occurring in M;. It contains a message between each
(ordered) pair of processes of M; (in some arbitrary order). Note that using the
hierarchy we can describe (ab)2f, and thus M;, by an expression of polynomial
size. Note also that each G; is defined as a (flat) MSC-graph.

Let Gi = (‘/1, Ez), where V; = ‘/i_lu{@()} and Ei = Ei_lu{(FiIl, 60), (eO,In)}.
The initial node In (the final node Fin, respectively) of G; is the same as for
G;_1. The vertex eq is labeled by the synchronization MSC S;.

MY, Go MY,
C<'\CA>'\I/’ O . C<O /C\

S.

Fin

Fig. 4. The MSC-graph on top is Go. The MSC-graph lower on the left inductively de-
fines G; from G;_; in the universal case. The MSC-graph lower on the right inductively
defines GG; from G;_1 in the existential case.

The definition of M;, G; can be explained intuitively as follows. Let p be a
path of G; labeled by M;. Note that the MSC S; occurring in M; has to match

16

the MSC S; of ey. Thus p = p1egps, with p; an accepting path of G;_; labeled
by (ab)szi,l and py an accepting path of G;_; labeled by (ba)szi,l. Each
time p; goes through Gy (which happens 27 times), p; consumes either ab of
MY; or ba of MN;. In particular, all 2/ occurrences consumed by p; are of the
form ab, which ensures that the valuation of z; associated with p; is consistent
(x; is true). The same holds for the path ps, where the value of x; is ensured to
be false.

Suppose now that p; = Jx;¢;_1. Let M; = (ab)zf (a)M;_1,and G; = (V;, E;),
where V; = ‘/i—l U {60,61,62,63}. Let Ei = Ez'—l U {(eo,ln), (Fin,@g), (60,61),
(e1,In), (Fin,es), (e2,€3)}, where as above In is the initial vertex and Fin is the
final vertex of G;_1. The initial and final vertices of G; are eg et e3. We label e
and ey by a, and eg et eg by the empty MSC.

The underlying idea in this case is that the additional occurrence of a in
M; must be matched by e; or ey (nowhere else there is an a). If it is ep, every
time the path p goes through Gy, it must choose ba, hence it goes through VN;.
The corresponding value for x; is then forced to be false. If it is eq, then p must
choose ab, hence it goes through VY;. The rest of the proof is similar to the
proof of Theorem 2.

O

However, if there is only one process and hierarchy is not allowed for the
graph G (or the MSC/word M), then our lower bound proof does not work

anymore. Indeed, we show below that in the case where the word W or the
automaton A are flat, the membership problem is solvable in polynomial time.

Theorem 4 1. Deciding for an SLP W and an NFA A whether W € L(A)
can be done in time O(|W| - |AJ?).

2. Deciding for a word W and a hNFA A whether W € L(A) can be done in
time O(|W 3 - |AJ]?).

For the first statement in the theorem above a similar result (for Lempel-Ziv
compressed words and regular expressions) has been shown in [24].

The polynomial time algorithms for Theorem 4 are stated below. The first
algorithm computes by dynamic programming the set T'x of pairs (a, b) of states
of a NFA A between which a path labeled by X exists, for each variable X of
the SLP. A variable X is said to belong to the lowest level, if the rule associated
with X is terminal.

Membership ((X;)i—1,, SLP, A=(V,E,ag,ay) NFA)
For each variable X; on the lowest level:
Ty, = { (a,b) €V x V | a =5 b };
For 1=1 --- n:
Let Tx, = (Z);
Let Y,Z s.t. X; — Y Z;
For all vertices a,b,c € V:
If (a,b) € Ty and (b,c) € Tyz:
Tx, = Tx, U {(a,c)};

17

Return (ap,ay) € Tx,;

The second algorithm computes for each sub-automaton B of a hNFA A the
set Tg of factors of a word W that it accepts. We denote as Wi ... j] the factor
of W from position i to position j, i < j. The algorithm actually computes for
each ¢ < j the set T; ; of pairs (a,b) of states of B between which a WTi...j]-
labeled path exists. For convenience, we assume without loss of generality that all
transitions (except for the lowest hierarchy level) correspond to sub-automata.
We use the fact that (a,b) € T; ; if either there is a transition from a to b labeled
by a sub-automaton C accepting Wi...j], or else the path labeled by Wi. .. j]
can be decomposed as a,c and ¢, b, and then there exists 0 < e < j — ¢ such
that (a,c) € Tji+e and (¢, b) € Tiye ;. We thus compute first the lower levels
of hierarchy, and we compute then for each sub-automaton the sets D; ;4 4, for
increasing d.

Membership (W word, A=(V,E,ag,ay) hNFA)
For each sub-automaton B of A on the lowest level of hierarchy:

Tp = {(i,j) | WL ¢ ... j1 1is accepted by B};
For each sub-automaton B of A, by increasing hierarchical level:
For d=0, ..., |W|, for i =1, ..., |[W|-d,
Diita = { (a,b) | a, b vertices of B s.t. a <

for some C with (,i+d) € Tc};
For each e < d and every a,b,c vertices of B,
If (a,b) € Di7i+6 and (b,c) € Di+e+1,i+d:
Diita = Diitqa U {(a,c)};
Tp = {(1,_]) | (ao,af) S DiJ‘};
Return (1,|W]|) € Ta

The figure below summarizes the complexities of the different variants for
the hierarchical MSC membership problem, as considered in this section. The
last two columns correspond to the case of a single process (word case) and to
the general MSC case, respectively. The fact that the membership problem is
NP-complete for an MSC M and an nHMSC @ is easy to show. The lower bound
holds already for MSC-graphs G [1], and for the upper bound it suffices to guess
a path of G of the size of M, which is polynomial, and check whether it is labeled
by M.

|M |G || words | MSC |
Flat |Nested P NP-complete

Nested|Flat P PSPACE-complete
Nested|Nested||[PSPACE-complete| PSPACE-complete

Fig. 5. Complexity of the membership problem.

18

5 Pattern Matching of nMSCs

The aim of this section is to show that the pattern matching problem for nM-
SCs can be solved in polynomial time, without unfolding the nMSCs. We first
consider a special case of pattern matching, namely testing the equality of two
nMSCs. Then we describe first a pattern matching algorithm when the pattern
nMSC is connected, and second the additional work for non-connected patterns.

5.1 Equality of nMSCs

Recall first that the FIFO rule allows to test the equality of two MSCs M and
N process-wise, which amounts to test the equality of p pairs of words (over the
type alphabet 7). In the hierarchical case we already used in Section 4.1 the
representation of an nMSC M by @ straight-line programs L?, where SLP L?
generates the projection M|; of M on process i.

In order to test the equality of two nMSCs in polynomial time, we can use
directly the following result:

Theorem 5 ([23]) Let P be an SLP, and A, B be two variables of P. We can
determine whether A and B generate the same word in time O(|P|°log(|P])).

The theorem above provides an algorithm for testing M = N of time O((| M |+
IN|)®log(|M| + |N|)). We can improve the running time by using the pattern
matching algorithm described in the next section.

5.2 Pattern Matching nMSCs

Definition 5. The pattern matching problem for two MSCs M and N = (P, E,C,
L,m, <) consists in knowing whether there exists some subset F C E of events
of N such that the restriction of the mappings {,m to F equals M. Moreover,
we require that F' is convex, that is if e, f € F and e < g < f, then g € F. We
call such an event set F' an occurrence of M in N.

If M, N are nMSCs, then M occurs as a pattern in N if the MSC defined by
M is a pattern in the MSC defined by N, and we write M C N in this case.

Tt is easy to see that for an MSC M to be a pattern of an MSC N it does
not suffice to have each M|; a pattern of N|;. But of course, this condition is
necessary. Before we consider the nested case, we show a simple algorithm for
the flat case:

Theorem 6 Let M, N be two MSCs. We can check whether M is a pattern of
N in linear time.

Proof. The main idea comes from pattern matching in trace monoids, [16]. We
use the linear time algorithm of Knuth-Morris-Pratt for determining occurrences
of M|; in N|;, for all i € P. We search for tuples of occurrences of (M|;);cp that
form a factor of N. That is, we look for a configuration of N such that on each

19

process ¢, we have M|; as a suffix. This is done by progressing one event at a
time from a configuration C' of N to the next configuration C” as follows. For a
process j, let next(C, j) be CU{e}, where e is the next event on j and if CU{e}
is a configuration (otherwise, next(C, j) is undefined).

For the current configuration C' of N we will record the set J of processes i
such that M|; is a suffix of C' on process . From C' we look for a process j ¢ J
such that next(C, j) holds. If such a j exists, then we set C' = next(C,j) and
update J by possibly adding j. Otherwise, the next event on every j ¢ J is a
receive from some ¢ € J, where the corresponding send does not belong to C. Let
Jo be the set of all such processes i. Note that the occurrence found on any of
the processes from Jy cannot form an occurrence of M in N. So we can progress
on any of the processes in Jy (if possible). We first try to find some i € Jy such
that next(C,) is defined. If such an i exists, then we set C' = next(C,4) and
update J by possibly removing i. If not, then we surely find some ¢ € J\ Jy such
that next(C,4) is defined (otherwise C' cannot be extended at all, which means
that N is not an MSC). Then we apply the same reasoning to this .

The overall complexity of the algorithm is linear, by taking care that each
event in N is considered at most a constant number of times. We need for this
to record in addition the set X of processes i such that next(C,) is undefined,
although there is some next event e on ¢. This is the case where e is a receive on
i, and the matching send f does not belong to C'. Together with ¢ € X we store
the process j of f. Altogether we record the four sets J\ X, JN X, J\ X and
J N X. Whenever we add an event e on process i, we update the membership
of 7 in one of these sets by looking at the next event e on i. Moreover, if e is a
send with matching receive f on j, then the membership of j is also updated.
Thus, we can choose the process where we progress in constant time, and every
update can be done in constant time, too. O

Definition 6. Let N = (N;);=1,, be an nMSC (or an SLP), and let i,j < n.

1. We write Ny < N; whenever N; is used in the definition of N; or in the
definition of Z with Z < N;. We write N; < N; when i = j or N; < Nj.
The variable N; is then called lower than the variable N;.

2. We say that N; occurs literally in N; when N; is used as a reference (variable
resp.) in the definition of N;, and we write N; € N; if this is the case.

The strategy we will use for nMSC pattern matching is to compute an implicit
representation of all positions where M|; occurs as a pattern in N|;. In a second
step we compute all positions where the projections M|; form an MSC factor.
The basis of our algorithm is a pattern matching algorithm for SLP-compressed
words, that was proposed in [21] (based on ideas from [23])?:

Theorem 7 ([21]) Let P be an SLP and let A, B be two variables of P. An
implicit representation of all occurrences of the word defined by A in the word
defined by B can be computed in time O(|A|*|B|?).

Very recently, an improved algorithm of complexity O(|A||B|?) was described in [14].

20

Vi Vi+l
Y | C O U U |
X | X

arithmetic progression Occ(X,Y,V?)

The idea of the algorithm in [21] is based on word combinatorics, as we
describe next. First, we suppose that the right-hand sides of the rules of the
SLPs are either terminal (consisting only of terminal symbols, here types from
T), or consist of variables only. For a variable Y we denote by |Y| the length of
its right-hand side.

Let X be a variable of the SLP A and suppose that X occurs in B, i.e. the
word defined by X is a factor of the word defined by B. Suppose that X does
not appear as a factor inside any variable Y of B with terminal rule Y — a.
Then X occurs in a variable Y with Y — V1...V* Let i be such that V*
is the first symbol that this occurrence of X overlaps, and the occurrence ends
beyond V' (see also the figure above). In particular, Y is the lowest variable that
contains this occurrence of X. We let Occ(X,Y, V?) denote the set of positions
of Y at which an occurrence of X starts within V? and ends beyond V?. Let
Occ(X,Y) = Ule Occ(X,Y,V?) if the rule for Y is nonterminal, otherwise it
denotes the set of positions of Y where X occurs.

Using a combinatorial argument (lemma of Fine and Wilf, [7]), it is shown
in [21] that Occ(X,Y,V?) is an arithmetic progression that can be computed
by dynamic programming in polynomial time. Therefore, Occ(X,Y’) consists of
at most |Y| arithmetic progressions, if the rule of Y is nonterminal (otherwise,
Occ(X,Y) is of size at most |Y]). We represent each set Occ(X,Y,V?) by a
triple of numbers (n,s,k) where n and p + s are the positions in Y of the
two first occurrences of X in Occ(X,Y,V?), and k = #O0cc(X,Y,V?) is the
number of occurrences of X in Occ(X,Y,V?). That is, we have Y = Y; XY>
with [|Y1]] = n + si, for all 0 < i < k. As an example, consider the words ¥ =
aaabababababb and X = ababab. The arithmetic progression which corresponds
to the occurrences of X in Y is (2,2, 3) (the first position in a word being 0).

Remark 2 By the algorithm of [21] we note that the equality of two SLPs M, N
can be checked in time O(|M|*|N|?), which improves the complexity provided
by the algorithm proposed in [23].

Throughout the section we denote occurrences of projections M|; using su-
perscripts. That is, M|} will correspond to a given starting position of M|; as
pattern of N|;. Suppose that for each i € P, M* occurs in N|; as a factor, and
let E; be the corresponding set of events (positions). We say that (M?);cp forms
a factor of N if the set of events F' = U;c p F; satisfies Definition 5 (factor MSC).

5.3 Pattern Matching for Connected Patterns

We turn now to the pattern matching problem for nMSCs M, N where the
pattern M is connected. That is, we suppose throughout this section that M

21

cannot be written as M1 M, where M, Ms are nonempty MSCs with no common
process.

Following the definitions of the previous section we will denote by Occ(M,Y)
the set of occurrences M9 of the nMSC M in the nMSC Y, such that MY does
not occur in any reference Z < Y. We denote by Occ(M,Y,V) C Occ(M,Y)
those occurrences that start within V' and end beyond V, where V € Y is a
reference occurring literally in Y. This means that 1) all events of M° must
occur within or after V, 2) for at least one process 4, the occurrence M°|; starts
within V' and ends after V. Notice that for a process i as in point 2), we have
M|? € Oce(M|;,Y, V).

Definition 7. Let M|; and M|} be occurrences of M|; in N|;, resp. of M|; in
N|;. We say that M|} and M|§ are compatible, if the first send (resp. receive)
between the processes i and j on M|} matches the first receive (resp. send) on M|3
(if i, j communicate in M). More generally, we call the indices corresponding to
M|}, M|§ i a given arithmetic progression compatible.

Lemma 1. Let (M|9);cp be occurrences of M|; in N|;. Then (M|?);cp forms
a factor of N iff (M|9)icp are pairwise compatible.

Our search for compatible occurrences uses the following properties, that are
easily shown using the fact that M is connected:

Fact 1 1. Let Y be a variable of N and h # j two processes. Then for each
M9 € Oce(M|p,Y) there can be at most one occurrence M|(J) in Y that is
compatible with M|9.

2. For each occurrence M in Occ(M,Y,V) there exists some process h such
that M°|, € Occ(M|y,Y, V). We call such a process h a leading process for
M?°. Thus, any pairwise compatible tuple (M°|)rzn C Y is determined by
the occurrence M°|,, because of 1).

Ezample 4. For the nMSC P in Figure 1 and the pattern IV in Figure 6 we have
Occ(N, P) = 0 and Occ(N, S) is a singleton, corresponding to the unique occur-
rence of N in S. The leading processes are 1 and 3, since e.g. Occ(N|s, S|3) = {0}.
Note that Occ(N |2, S]2) = 0 and Oce(N|g, M|2) = {0} is the arithmetic progres-
sion (0,0, 0).

An index i = n + js, j < k, of an arithmetic progression (n,s, k) in Y is
called external, if it is either the first or the last index of the progression, that
is either ¢ = n or ¢ = n + (k — 1)s. Any nonexternal index is called an internal
inde.

The next proposition provides the main argument that the search for a pair-
wise compatible tuple of occurrences (M|;);cp can be done in polynomial time.
Intuitively, we show that the occurrences of (M|;);cp can be located in the same
variable Y of N, up to polynomially many exceptions. Without this property we
would have to consider different variables Y for different processes i € P. We
recall that for every message (e, f) in an nMSC N = (Ny)4=1,» the events e and
f appear literally in the same macro Nj.

22

Fig. 6. Pattern MSC N

Proposition 1 Assume that M° € Oce(M,Y,V) and that M°|; € Occ(M|;, Y, V)
fori € P, where Y,Y", V' are variables of N. Then we have one of the following
two cases:

1.Y'=Y and VI =V foralli € P.
2. For some leading process h for M° (in particular, VF =V and Yh =Y),
the occurrence M|, is an external index of Occ(M|n, Y™, V7).

Proof. Suppose that for every leading process h, the occurrence M°|, is an
internal index of Occ(M |y, Y, V*). We want to infer that Y =Y and Vi =V
for all ¢ € P. Assume also that there is a message from process i to process j in
M. We decompose M|; = Ai,jBijCi’j such that the word B ; begins with the
first send from 7 to j, and ends with the last one. Similarly, we decompose M|; =
Aj:Bj ;Cji such that the word B7; begins with the first receive on j from 7, and
ends with the last one. We need the next lemma to infer that if an occurrence
M?O is such that M°|; € Occ(M|;, Y, V%) and M°|; € Occ(M|;,Y7,V7) are both
internal indices, then we have Y* = Y7 and V* = V7. This will allow finishing
the proof of the proposition, using the fact that M is connected.

Lemma 2. Assume that the arithmetic progression m = Oce(M|;, Y, V) consists
of at least three indices. Then each occurence of B} ; that corresponds to some
internal index of m, belongs to Oce(B;;,Y, V).

Proof of lemma: Since M|; belongs to an arithmetic progression consisting
of at least three indices, M|; is of the form (ay---a,)%(a; - - - an,), where d > 3
and m < n.

By assumption, there is a message from i to j in M]|;, hence a, = i!j for
some k. Since A; ; and C; ; have no ilj, we obtain A; ; = a1 ---ax—1 and C; ; =
Q41 Apa1 - G, With 1 > m.

In particular, we have |A4; ;| < n and |C; ;| < n. Since each M|; contains
the last position of the word generated by V, the subword B;; also contains
this position, except possibly for the first and the last Bij. Hence, every Bf’j

associated with an internal index of 7 is in Occ(B};,Y, V).

23

Y| [Y | |

O

Let now h be a leading process, thus Y» = Y and V* = V. Let also

j # h such that j,h communicate in M. Since M"|; is an internal index of
Occ(M|p, Y, V) we can apply Lemma 2 and we obtain for the corresponding
occurrence Bh € OC(’(th,Y V). Hence, we also have Bj € Oce(B],,Y,V),
since ma‘rchlng sends and receives always appear literally in ‘rhe same variable.
Recall that M°|; € Oce(M|;,Y7?,V7) with Y7 < Y. Using B E Oce(B} .Y, V)
we obtain that Y < Y7, hence Y7 = Y. Applying the lemma again to M0|J we
obtain also V7 =V, that is, j is a leading process, too. The result follows for all
processes i, due to M being connected. O

Theorem 8 Let M, N be two nMSC's, with M connected. We can check whether
M occurs in N in time O(|M|?|N|?).

The algorithm below returns occurrences of M in N, in form of pairs (Y, 7),
where Y < N and = is an arithmetic progression designating a set of positions
within Y that correspond to occurrences of M. We denote below the number of
processes by p.

Pattern-Matching (nMSC M, N)
For each variable X on the lowest level of hierarchy:
If M C X at position pos then return (X, pos);
For all variables Y,V of N with V € Y:
Compute Occ(M|;,Y,V),...,0cc(M|,,Y,V);
For every variable Y of N:
For every process h:
For every pos(h) at the beginning or end of an
arithmetic progression of Occ(M]|,Y):
Let (M]|,)P*(") be the corresponding occurrence of M]|:
If there exist ((]\/_I'|k)p°S)kaéh compatible with (M|h)pos(h)
where for all k, pos(k) € 0Occ(M|, ZF) with ZF < Y:
return (Y, (pos(k))k ¢ p;
For every V €Y s.t. for all i: m; = 0cc(M|;,Y,V) # 0:
For each i, let m; = (n;, S ki);
Let (f1,...,tp,€1,...,€p) = Periods(Reduce(my,...,mp));
Let 7T£ = (ni—l—tisi,siei,(/ﬂi—ti)/ei)
If (7.); # (then return (Y, (7});)

Notice that we have to restrict pos(k) to be inside Y for every k to ensure that

h is leading, which ensures the uniqueness of pos(k) for every k. For simplifying
the presentation of the algorithm we will assume below that every process i in

24

M sends at least one message to every process j > ¢. This is just a technical
assumption, which makes the presentation nicer. The algorithm first computes
the occurrences M |; process-wise. Then, in the third for-loop, it first considers
external indices, corresponding to the second case of Proposition 1. If no pattern
is found, the algorithm looks for an occurrence corresponding to the first case of
Proposition 1, where M°|; € Occ(M|;,Y, V) for every process i. The arithmetic
progression Occ(M|;,Y, V) is denoted by m; = (ny, si, k;) above. We denote by
u; the word consisting of the s; first symbols of M|;. By assumption, each u;
contains both symbols i!j and 77, for all j > i. For each i < j we denote by
m; ; the number of sends from 7 to j in u;, and by m;; the number of receives
from 7 to j in u;.

We describe now the subroutines Reduce and Periods and show that our
algorithm returns only occurrences of M which are indeed factors of N. The
subroutine Reduce restricts the arithmetic progressions (71, ..., m,) by adding
an offset to each n; of an arithmetic progression m; = (n;, s;, k;), and reducing
k;. This is done such that for all pairs of distinct processes i,j there exists
a send to process j and a receive from j in every occurrence from m;, such
that the matching event belongs to ;. For instance, in the example below the
arithmetic progression 7; will start after a call of Reduce with u{, since the two
copies of u; before have no send to process 2 such that the matching receive
belongs to mo. Thus, the first two occurrences of up in w7 will not be used for
looking for compatible occurrences. It also reduces the number of occurrences
of arithmetic progressions. Reduce takes quadratic time by computing for every
pair of processes i, the first and the last event on ¢ that sends or receives a
message from an occurrence from 7;. We then compute the events which fulfill
every constraint.

Let (m;);=1, be arithmetic progressions of occurrences of

M]y, ..., M|,, such that for each pair i < j there is a message -
from each u; in 7; to some w; in m;. That is, (7;);cp is the 1™~
result of a call of Reduce. Let u) be the first index of each AQ
arithmetic progression 7;. The only problem that remains for u® —
deciding whether there exist compatible occurrences M |;, M|; 4<‘§
is that the existence of messages from u; in 7; to u; in 7; does AQ\
not mean that the events match correctly w.r.t. M. We will T~ > u
look for tuples of occurrences of the M]|; that are pairwise ul < T
compatible by considering sub-progressions of the ;. 1 i: e
From now on we want to determine all tuples (u;);cp cor- I~ S
responding to the starting positions of pairwise compatible T~ c
tuples ((M]1)°,...,(M,)°). As we show later, such tuples =~ ———=| ¢
occur periodically, hence we just need to determine some pe- =
. . 1 1 —
riods (p1,...,pp) € NP and the first positions (ug,...,u,) ~—
from which we can apply these periods. T2

For all i < jlet z; ; < m; ; be the number of events of type
i!j in u? before the first event that has a matching event in 7;. Let also z;,; < mj;
be the number of events of type j7¢ in u(; before the first one that has a matching

25

send in ;. In the figure above we have i = 1, j = 2, my o = 2 (there are two sends
in each ul). me1 = 3 (there are three receives in each wug), 212 = 1 (the first
send of ul has no matchmg receive in) and 231 = 0. Let zo be such that after
reading the first z ig T % sends from 7; to 7; we arrive at a message consisting
of the first z'] of some u; and the first j7¢ of some u;. In the example, we marked
as z' = z{ , the earliest message cons1stmg of the first 112 of some u1 and the
first 271 of some o, and zl 5 =3.50 2 jt2i;=0 (mod m; ;) and 2? itz =0
(mod m; ;). Using the Chinese Remamder Theorem the subroutine Periods first
computes the least solutions zoj modulo lem(m; j,m;;) to the above equations
in time O(min(|M|;|,|M|;])?). We perform this computation for each pair of
processes in overall time O(|M|3) for obtaining the new period y; and the new
offset u;. Notice that p; = lcm{m” | ¢ < j}. The restriction of the arithmetic
progression m; according to u;,u; is denoted 7.

By definition, the first i!j of each u; in the restricted arithmetic progression
m; matches the first j?i of some u; of the unrestricted arithmetic progression
mj. The final step of Periods is to compute occurrences of M from (7});—1 p.
Let z; ; denote the number of u; between the occurrence ujl and the occurrence
containing the receive of the first message from ul. We want to compute all
tuples (u;)i=1,p such that the first ilj of u; matches the first j77 of u;. That is,
we need a solution (t;);=1,, of the following system of p(p — 1) linear equations:

i it = Ti,jMji + it .

Thus, the value of ¢; determines each ¢;, modulo some value e; depending on
the constants (m;_;); j. We can combine the equation for (1,7) with the equation
for (i,7) to obtain a system of p(p — 1) equations:

Oi gt = Yij + Vit

Let j € P. Notice that several of these equations (for different 7) involve the
same pair of variables t; and t;. Either all these equations are equivalent, or they
yield a unique solution, or no solution at all. If there is a unique solution, then
we stop the procedure and test this solution in each equation. If this is indeed a
solution of the system, we return its value. If there is no solution, we do not find
an occurrence of M at this level. Hence, we can assume for the following that
the equations for j are all equivalent. Then it suffices to consider a system of p
equations of the above form (i.e., we fix some ¢ for each j).

If ged(05,5, v4,5) does not divide y; ;, there is no solution to our system. Else,
we can divide &; j, y; ;,vi,; by ged(d; ;, i), and thus consider only the case where
ng(éi,ja l/@j) =1.

Let ; ; be the inverse of §; ; modulo v; ;. Hence the equations are reduced to
p simple equations of the form ¢; = y; j7v; ; (mod v; ;). The subroutine Periods
finally computes a solution (¢1,...,%,) using again the Chinese Remainder The-
orem and returns (¢; +ul —u?, e;);.

Since the intersection of an arithmetic progression with the periodic set is
still an arithmetic progression, in the end we have arithmetic progressions of

26

periods increased by a factor of e;, that contains only compatible occurrences.
A call of Periods costs time O(|M|?).

Remark 3 We can slightly adapt the algorithm for computing all occurrences
of M in N. Note that the number of occurrences might be exponential (as in
the word case), thus the representation of all occurrences will be implicit.

5.4 Pattern Matching for Non-Connected Patterns

We turn now to the general case where the nMSC pattern M is not connected. We
show that the complexity of the algorithm increases just by a factor O(|Cps|?) <
O(p?), namely the square of the number of weakly connected components of M.

Tt will be helpful in the following to have all processes of N appear in M.
This can be enforced by a simple modification of M, N, as depicted below. For
each reference Y of N and each process i € Py \ Py we add a local action loc;
on process 7 in Y before each message or reference on ¢, and before the end of
Y.Let M' = M- HiePN\PM loc;. Obviously, M’ occurs in N’ iff M occurs in N.

12345 12345

W Occ(M, ,,) <@ Occ(M O locg

s.ay)

Let M, N be nMSCs. For each reference X of M or N, let Cx C 2™ be the
set of maximal connected components of the communication graph of X (this is
the graph with vertices corresponding to processes and edges between communi-
cating processes). We will denote by X |¢ the projection of X over the processes
in C € Cx. In other words, X = (X|¢)cecy represents the decomposition of
the MSC associated with X into connected nMSCs. It follows from the previous
section that we can compute in time O(|M|?|N|?) a compact representation of
all occurrences of M|¢ in N, for each C' € Cys. The next definition states when a
tuple of occurrences (M|¢)cec,, of the connected components of M corresponds
to an occurrence of M in .

Definition 8. Let a € Occ(M|c,Y),b € Oce(M|p,Y) be two occurrences of
connected components of M, where C, D € Cpy and C # D. Then a,b are called
compatible if there is no message in 'Y from some process in C' to some process
in D that is sent after a and received before b (or vice versa).

Lemma 3. Let ac € Oce(M|c,Y), for all C € Cpr. Then (ac)cec,, S an
occurrence of M in Y iff ac,ap are compatible for all C, D € Cp;, C # D.

27

Proof. The implication from left to right follows directly from the definition
of patterns. For the converse assume that (ac)cec,, is not an occurrence of M in
Y. This means that there is some chain of messages (sx, 7)., with P(s1) € C,
P(ry) € D, P(ri) = P(sk+1) for all k, and such that ac precedes s, r; precedes
Si+1, and 7, precedes ap. Since all processes appear in M, there exist some k
and C’', D" € Cp; such that P(s;) € C', P(r) € D', acr precedes s; and 1y
precedes ap/. But this means that ac/, ap/ are not compatible, contradiction. O

Let C' € Cyps. Note that the occurrences of the connected components M |¢ in
Y are totally ordered by the visual order of Y. This justifies the use of min and
max on occurrences of the same connected component in the proposition below.

Proposition 2 Leta = (ao)oecM,b = (bC)CeCM S (OCC(M|C, Y))CECM be two
occurrences of M in'Y. Then (min(ac,bc))cec,, and (max(ac,bc))cec,, are
also occurrences of M inY.

Proof. By Lemma 3 it suffices to check that min(ac,bc), min(ap,bp) are
compatible, for all C, D € Cps, C' # D. The only case to verify is when min(ac, be)
= ac < be and min(ap,bp) = bp < ap. Assume by contradiction that there is
a message from C' to D that is sent after ac and received before bp. Then ac
and ap > bp are not compatible, a contradiction. The case where a message is

sent after bp and received before a¢ is symmetrical. O

We describe the pattern matching algorithm in a simpler case where the
following two conditions hold. First, we assume that every message is on the
lowest hierarchical level. This means that macros either consist of references (and
local actions) only, or they are MSCs. In other words, we forbid messages crossing
references in V. Second, for all references Y, Z with Z € Y and each occurrence
of M|c in Y either M| is included in Z, or it has an empty intersection with
Z. That is, we assume that no occurrence of M|c in Y is split between several
references Z € Y. If N satisfies these conditions w.r.t. M, then we call the
pair (M, N) nice. The general case is technically more involved, but it does not
require new ideas.

If M occurs as a pattern of IV, then Proposition 2 ensures that there is a
unique minimal occurrence of M in N (minimal with respect to the component
wise ordering of tuples from (Occ(M|c, N))cec,,- In order to find the mini-
mal occurrence of M in a reference X of N, we look for compatible minimal
occurrences in each reference Y € X. If Y does not contain the complete M,
then we need more information about possible components M| that are out-
side Y and that are compatible with the components within Y. Since there may
be several references X with Y € X we encode this additional information by
imaginary occurrences denoted |o and ¢, for each component C' € Cy;. The
occurrence |¢ for component C' means an occurrence of M|o after Y, while
T¢ for C means an occurrence of M|c before Y. Thus, we let T¢< ac <lo
for all ac € Oce(M|c,Y). For C # D, we say that T¢,ap € Occ(M|c,Y) are
compatible if there is no message from C' to D that is received before ap in Y
(symmetrically for |). The precise definition follows:

28

Definition 9. Let Y be a reference of N. Let E C {#7¢c,=lc| C € Cy} be a
set of constraints. We define Ming = (ac)cec,, 6s the minimal tuple satisfying
the following conditions:

1. For each C € Cpr, ac € Oce(M|c,Y)U{T¢c, lc}-
2. The occurrences (ac)cec,, are pairwise compatible.

3. (ac)cec,, satisfies the constraint E. That is, (#1p) € E implies thatap #1p,
and (=|p) € E implies that ap =] p.

Note that the minimal occurrence in the previous definition is well defined,
since there exists at least one tuple (ac)cec,, satisfying the three conditions
above, namely a¢c =] ¢ for all C. In other words, there may always be an occur-

rence of M after Y. 1 2 345
H B B B B

FEzxample 5. The two extreme constraints correspond to

Min@ = (TC)CECM and Min(:lc)CecM = (lC)CECM-
In the figure to the right we also have:

a
b
c
[]

— Mingzq,) = (a, T2, €, T4, T5) = Mingq, 21,3 L
— Min{:l2} = (b; J,Qv €, T4a T5) = OCC(Mi)
— Min{;éml,:ls} = (TlaT?vT?wgv 15)

The next lemma shows that it suffices to compute (recursively) the tuples
Min},, for suitable constraints E and references Y of N.

Lemma 4. Let (bo)cec,, = Miné\;To)
be #le, for all C € Cyy.

Then M is a pattern of N iff

cecyy”

The problem is that we might need the tuples Ming for arbitrary sets E of
constraints (and there are exponentially many). Fortunately, we can avoid the
exponential blow-up by computing Ming only for singletons £ = {#]¢} and
E = {lc}, C € Cp. We first show that these tuples suffice for computing in
polynomial time Ming for arbitrary E. In a second step, we show that we will
need only a polynomial number of constraints F in the recursive step.

Lemma 5. Let E,F C {#1¢c,=lc| C € Capr} be two sets of constraints. Then
Min}, ,» = max(Min},, Min}.).

‘ I;/roof. Let‘ bY: (bc)c. = max(MinE,}l}/[in},:). We haveiog/cou?se MingU.F >
Miny and Ming,» > Ming, hence Ming, ,» > b. But Ming 5 is the minimal
tuple that satisfies the three properties which b satisfies, too: the tuple b has
pairwise compatible components bc and it satisfies the constraints in £ U F.
Therefore, b = MinguF. O

29

| |
] T
—
1 T~ n
Y n ¢ d
a
-
~~a v
b < |
[|
Y? e
‘// \
M~
IOcc(Mi)

Mln%;%/f} = (a/7 b7 C? T4) d)
.yl ; . y!
Mingzq,y = (a, L2, ¢, Ta,d) = Ming_p, o3
L v2
Mln%;éTQ} = (Tlv ba T37 T47 T5)

Proposition 3 Assume that the pair (M, N) is nice and consider some refer-
ence Y of N and a component D € Cp;. Then Min%;TD} and Min%/:lD} can be

computed in time O(|Y |p?) from the tuples (Min{Z;ﬁTc})chM and (Min{Z:lc})cecM,
where Z € Y.

Proof. We can assume without restriction that any reference Y of N that
is not on the lowest hierarchy level has exactly two subreferences, that is Y =
Yly?2,

We will compute the set of components F| C Cps that consists of all C' such
that M| has no occurrence in Y which is compatible with the constraints, thus
M |c must occur either in Y2 or after Y. In order to do this, we start with E| = {)
and we augment E| as long as there exist a, b with the following properties:

~ (a¢)c is an occurrence in Y1 with ac =|¢ iff C € E|,
— (be)c is an occurrence in Y2 with be =1¢ iff C ¢ E|.

The algorithm for computing Min%;TD} is described below (for Min%/:lD} the
reasoning is similar):

(1) Let El =0
(2) Compute (ac)c = Mingl, with E={#IptU{=lc | C € E|}
(3) Let B, = {C | ac = lc}

// For all C € E|, M|c must be in Y2 or after Y.

30

L y2
(4) Compute (bo)c = MlnéﬁTc)CE 5

(6) Let E| = { C | bc # T¢}. If E| changes, then goto (2).
(6) Let dg=0b¢c if C € E|, and dc =ac, otherwise.
(7) Return (d¢)c-

Note that each time the set E| changes at step (3), it increases by at least
one component. Hence, we return to step (2) at most O(p) times.

For the running time let us denote by Ef the value of E| after t iterations.
The t-th iteration needs time p(|E]| — |Ej_1|), thus the overall running time is
at most O(p?).

If an nMSC has more than two references, then we define several sets E} to
explain the minimal reference Y* where the occurrence of the projection should
be. Considering that for each step, one set E| has to change, the running time
is P?|Y]. |

Theorem 9 We can test whether M occurs as pattern of N in time O(C3(|M|?
IN?)).

Proof. We show the theorem only for the case where (M, N) is a nice pair.
The general case is technically more involved, but does not require new ideas.

Theorem 8 is used for computing first the implicit representation of all oc-
currences of M|c in Y, for all components C' € Cps of M and all references Y of
N. For each Y we need then only the position of the minimal occurrence of each
M|c in Y (if any). We compute then MingzTC and Minzlo for all components
C € Cp; and references Y of N. We apply Proposition 3 to compute Min;ZTC

and MinY | . The time costs are O(|M|?|N|?) for the connected components and
O(p3|N|) < O(|M|?|N|?) for the additional algorithms looking for compatible
components. The overall running time is thus O(|M|?|N|?). In the general case
we get an additional factor C%,, where Cys is the number of connected com-
ponents of M, expressing additional constraints due to components M|c that
might be split over several references of N. o

6 Conclusion

In developing new techniques for algorithms on hierarchical MSCs, we pro-
vided arguments that algorithms can benefit from the hierarchical structure. We
showed that pattern matching and membership algorithms can efficiently use the
hierarchy, together with techniques stemming from combinatorics, arithmetics
and dynamic programming. We believe that similar techniques can be useful
for other problems on hierarchical MSCs, for instance verification of properties
expressed by template MSCs [10].

Acknowledgment: We wish to thank Marc Zeitoun and Markus Lohrey for
insightful comments on previous versions of this paper. A special thank is due
to the referees of TOCS, who did an enormous work in reviewing all details of
our paper and proposing very many improvements and corrections, even in the
most technical parts.

31

References

1. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. In Proc. of ICALP’01, LNCS 2076, pp. 797 808, 2001. Journal version in
Theor. Comput. Sci., 331(1): 97-114 (2005).

2. R. Alur, G. H. Holzmann, and D. A. Peled. An analyzer for message sequence
charts. Software Concepts and Tools, 17(2):70 77, 1996.

3. R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state ma-
chines. In Proc. of ICALP’99, LNCS 1644, pp. 169 178, 1999.

4. R. Alur and M. Yannakakis. Model checking of hierarchical state machines. In
Proc. of SIGSOFT’98, pp. 175-188, 1998. Extended version in ACM Trans. Program.
Lang. Syst. 23(3): 273-303, 2001.

5. R. Alur and M. Yannakakis. Model checking of message sequence charts. In Proc. of
CONCUR’99, LNCS 1664, pp. 114 129, 1999.

6. V. Dalmau. Computational Complexity of Problems over Generalized Formulas.
PhD thesis, Universitat politécnica de Catalunya (UPC), 2000.

7. N.J. Fine and H.S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16, 1965.

8. B. Genest, A. Muscholl. Pattern Matching and Membership for Hierarchical Message
Sequence Charts. In Proc. of LATIN’02, LNCS 2286, pp. 326-340, 2002.

9. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state High-level MSCs:
Model-checking and realizability. In Proc. of ICALP’02, LNCS 2380, pp. 657 668,
2002. Journal version in J. of Comp. and Sys. Sci., 72(4):617-647, 2006.

10. B. Genest, M. Minea, A. Muscholl, and D. Peled. Specifying and verifying partial
order properties using template MSCs. In Proc. of FoSSaCS’04, LNCS 2987, pp. 195—
209, 2004.

11. D. Harel. Statecharts: A visual formulation for complex systems. Science of Com-
puter Programming, 8(3):231-274, 1987.

12. D. Harel, O. Kupferman and M. Y. Vardi. On the complexity of verifying concur-
rent transition systems. In Proc. of CONCUR’97, LNCS 1243, pp. 258-272, 1997.
Journal version in Inf. and Comput. 173(2): 143-161, 2002.

13. ITU-TS recommendation Z.120, 1996.

14. Yu. Lifshits. Solving Classical String Problems on Compressed Texts. Available at
http://xxx.lanl.gov/abs/cs.DS/0604058.

15. M. Lohrey. Safe realizability of high-level message sequence charts. In Proc. of
CONCUR’02, LNCS 2421, pp. 177-192, 2002. Journal version in Theor. Comput.
Sci. 309(1-3): 529-554, 2003.

16. H. Liu, C. Wrathall and K. Zeger. Efficient Solution of Some Problems in Free
Partially Commutative Monoids. Inf. and Comput., 89:180 198, 1990.

17. P. Madhusudan. Reasoning about sequential and branching behaviours of message
sequence graphs. In Proc. of ICALP’01, LNCS 2076, pp. 809-820, 2001.

18. M. Mukund, K. Narayan Kumar, and M. Sohoni. Synthesizing distributed finite-
state systems from MSCs. In Proc. of CONCUR’00, LNCS 1877, pp. 521-535, 2000.

19. A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In Proc. of MF(CS’99, LNCS 1672, pp. 81-91, 1999.

20. A. Muscholl, D. Peled, and Z. Su. Deciding properties of message sequence charts.
In Proc. of FoSSaCS’98, LNCS 1378, pp. 226 242, 1998.

21. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching al-
gorithm for strings in terms of straight-line programs. In Proc. of CPM’97, LNCS
1264, pp. 1-11, 1997.

32

22. D. Peled. Specification and verification of Message Sequence Charts. In Proc. of

FORTE/PSTV’00, pp. 139-154, Kluwer 2000.
23. W. Plandowski. Testing equivalence of morphisms on context-free languages. In

Proc. of ESA’94, LNCS 855, pp. 460-470, 1994.
24. W. Rytter. Algorithms on compressed strings and arrays. In Proc. of SOFSEM’99,

LNCS 1725, pp. 48 65, 1999.
25. T. J. Schaefer. The complexity of satisfiability problems. In Proc. of STOC’78,

pp. 216-226, 1978.

33

