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Abstract

Asynchronous automata are parallel compositions of finite-state processes synchroniz-
ing over shared variables. A deep theorem due to Zielonka says that every regular trace
language can be recognized by a deterministic asynchronous automaton. The construction
is rather involved and the most efficient variant produces automata which are exponential
in the number of processes and polynomial in the size of the DFA.

In this paper we show a simple, quadratic construction in the case where the synchro-
nization actions are binary and define an acyclic communication graph.
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1 Introduction

Zielonka’s asynchronous automata [20] is probably one of the simplest, and yet powerful,
models of distributed computation. An asynchronous automaton is a parallel composition
of finite-state processes synchronizing over shared (state) variables. Such an automaton is
associated with a fixed distribution dom : Σ → (2P \ {∅}) of the alphabet of actions Σ on a
(finite) set of a processes P. Informally, action a concerns only those processes that belong
to dom(a). This automaton model has a solid theoretical foundation based on the theory
of Mazurkiewicz traces [12] (see [4] for a textbook). The key result in this area is that
every regular trace language can be recognized by a deterministic asynchronous automaton
(Zielonka’s theorem, [20]).

The above mentioned result is one of the few examples of positive results on distributed
synthesis, i.e., of the task of transforming a sequential specification into an equivalent, dis-
tributed implementation1. Distributed synthesis is a major task in the design of correct
∗Work partially supported by LIA INFORMEL.
1Another result in this direction is the theory of regions for Petri nets, [5].
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programs, given that concurrency is very challenging and often error-prone. It was actually
the primary reason for introducing the branching-time temporal logic CTL2.

Zielonka’s theorem has been used as black-box for synthesis of more complex automata
models as well, e.g. communicating automata [14, 10, 8]. Its complex proof has been revisited
on numerous occasions, see e.g. [2, 3, 15, 16, 9, 7]. The most recent construction [7] starts from
a DFA and a distribution dom : Σ → (2P \ {∅}) and produces a deterministic asynchronous
automaton of size polynomial in the size of the DFA and exponential in the number of
processes. This construction is optimal w.r.t. so-called Zielonka-type constructions.

General constructions of Zielonka-type are rather complex since they are based on trace
decompositions and time-stamping functions. The general idea is that the information that is
computed by an asynchronous automaton in a decentralized way must be assembled together,
and this step makes a crucial use of time-stamps (from a finite set). In some particular
cases one can do better, since trace decompositions are simpler to handle. The constructions
proposed in [13, 17] yield deterministic asynchronous (cellular) automata in the case where the
dependence relation D ⊆ Σ×Σ induced by dom : Σ→ (2P \ {∅}) is acyclic. A generalization
to the case where D is chordal is presented in [3], see next section for definitions. These
constructions are rather simple but still exponential in the size of a given DFA. In this note
we present a simple, yet efficient construction for the case where synchronization actions are
binary and the distribution dom : Σ → (2P \ {∅}) has an acyclic communication graph. We
show that in this case we can construct a deterministic asynchronous automaton of quadratic
size. We believe that this construction can have interesting applications, since hierarchical
communication occurs naturally, for instance in systems that are layered. Furthermore, even
if the communication graph may have cycles, certain distributed algorithms communicate
over a pre-computed spanning tree (e.g., for broadcasting), so the communication is de facto
acyclic.

Related work: A deadlock-free variant of Zielonka’s construction is proposed in [18], and
an application to the synthesis of mutex algorithms is provided in [19, 18]. Alternative con-
structions for non-deterministic asynchronous automata are also known. In [21] an inductive
construction for non-deterministic, deadlock-free asynchronous cellular automata is described.
In [1] a construction for non-deterministic asynchronous automata of size exponential in the
number of processes (and polynomial in the size of the DFA) is described. Note that while
asynchronous automata can be determinized, there are cases where the blow-up is necessarily
doubly exponential in the number of processes [11].

2 Basic definitions

A distributed action alphabet on a finite set P of processes is a pair (Σ, dom), where Σ is a
finite set of actions and dom : Σ → (2P \ ∅) is a location function. The location dom(a) of
action a ∈ Σ comprises all processes that need to synchronize in order to perform this action.

We use the standard definition of a (sequential) deterministic finite automaton (DFA for
short) over Σ as a tuple A = 〈S,Σ,∆, s0, F 〉 consisting of a finite set of states S, a transition
function ∆ : S × Σ→ S, an initial state s0 ∈ S and a set of final states F ⊆ S. As usual we
extend ∆ to words in Σ∗. The language accepted by A is denoted L(A) ⊆ Σ∗, and the size
|A| of A is defined to be the number of states.

2Quoting from [6]: “We present a method of constructing concurrent programs in which the synchronization
skeleton of the program is automatically synthesized from a (branching time) temporal logic specification.”
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A (deterministic) asynchronous automaton B = 〈{Sp}p∈P, sin, {δa}a∈Σ, F 〉 over (Σ, dom)
is given by

• for every process p a finite set Sp of (local) states,

• the initial state sin ∈
∏

p∈P Sp,

• for every action a ∈ Σ a partial transition function δa :
∏

p∈dom(a) Sp
·→

∏
p∈dom(a) Sp

on tuples of states of processes in dom(a),

• a set of global final states F ⊆
∏

p∈P Sp.

For a set X ⊆ P of processes and a (global) state (sp)p∈P we abbreviate the tuple (sp)p∈X

by sX .
An asynchronous automaton can be seen as a sequential automaton with state set S =∏

p∈P Sp, transitions s a−→ s′ if (sdom(a), s
′
dom(a)) ∈ δa and sP\dom(a) = s′P\dom(a), and set of

final states F . The language L(B) is defined to be the language of the associated sequential
automaton. The size of B is defined here as

∑
p∈P |Sp|. As we will consider only actions that

are at most binary, the transition functions will be polynomial in the size defined above.

Example 2.1 Let P = {p, q, r} with Σ = {a, b, c, d} and dom(a) = {p, q}, dom(b) = {q, r},
dom(c) = {p}, dom(d) = {r}. We consider an asynchronous automaton with Sp = Sq =
Sr = {0, 1} and δc(0) = 1, δb(0, 0) = (1, 1), δa(1, 1) = (0, 0) and δd(1) = 0 (in all other
cases the transitions are undefined). Starting and ending in state (0, 0, 0), the automaton
accepts the set of all words with {a, b}-projection from (ba)∗, {a, c}-projection from (ca)∗ and
{b, d}-projection from (bd)∗.

The location mapping dom defines in a natural way an independence relation I: two
actions a, b ∈ Σ are independent (written as (a, b) ∈ I) if they involve different processes,
that is, if dom(a) ∩ dom(b) = ∅. Notice that the order of execution of two independent
actions (a, b) ∈ I in an asynchronous automaton is irrelevant, they can be executed as a, b, or
b, a - or even concurrently. More generally, we can consider the congruence ∼I on Σ∗ generated
by I, and observe that whenever u ∼I v the global state reached from the initial state on
u and v, respectively, is the same. Hence, u ∈ L(B) if and only if v ∈ L(B). To simplify
notation we write ∼ instead of ∼I when I is clear from the context. The complementary
relation D = (Σ× Σ) \ I is called the dependence relation.

An equivalence class T = [w] of ∼ is called a Mazurkiewicz trace [12, 4]. As an example,
Figure 1 shows the trace [bcadbcadb]. The word bcadbcadb is a linearization of the trace
represented in Figure 1. We have (x, y) ∈ I iff {x, y} is one of {a, d}, {b, c}, {c, d}. On that
trace, the automaton in Example 2.1 reaches state s with sp = 0 and sq = sr = 1. As we have
observed, the language of an asynchronous automaton is a sum of such equivalence classes,
in other words it is trace-closed.

For two traces T1 = [u], T2 = [v], we define the concatenation T1T2 as the trace [uv]. A
trace T1 is a prefix of a trace T if there exists another trace T2 such that T = T1T2. We write
viewp(T ) to denote the minimal trace prefix of T that contains all occurrences of actions a
with p ∈ dom(a). More generally, viewX(T ) for a set of processes X ⊆ P is the minimal trace
prefix of T that contains all occurrences of actions a with dom(a) ∩X 6= ∅. We also use the
notation dom(T ) to denote all the processes that take part in actions in T . In Figure 1 we
have viewp([bcadbcadb]) = [bcadbca] and dom(bcadbcadb) = P.
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Figure 1: A trace with Σ = {a, b, c, d}, dom(a) = {p, q}, dom(b) = {q, r}, dom(c) = {p},
dom(d) = {r}.

A sequential automaton A is called I-diamond if for all (a, b) ∈ I and s state of A we
have ∆(s, ab) = ∆(s, ba). For such an automaton we can define ∆(s, T ) as the state ∆(s, u),
where u is any word such that T = [u]. So the I-diamond property implies that a language is
trace-closed. The sequential automaton obtained from an asynchronous automaton has the
I-diamond property. There is a further, more interesting property of I-diamond automata,
that we will repeatedly use in our construction:

Lemma 2.2 [2] Given a deterministic I-diamond automaton A = 〈S,Σ,∆, s0, F 〉, there is
a function Diam : S3 × 2P → S such that for every three states s0, s1, s2 ∈ S and a set of
processes X ⊆ P, the state s = Diam(s0, s1, s2, X) satisfies the following property:

For all traces T0, T1, T2 with dom(T1) ⊆ X and dom(T2) ⊆ P\X, if ∆(s0, T0) = s0,
∆(s0, T0T1) = s1 and ∆(s0, T0T2) = s2, then ∆(s0, T0T1T2) = s.

For the proof of the lemma note that if T ′0, T
′
1, T

′
2 satisfy the same conditions as T0, T1, T2,

then ∆(s0, T ′0T
′
1T
′
2) = ∆(s0, T0T1T

′
2) = ∆(s0, T0T

′
2T1) = ∆(s0, T ′0T

′
2T1) = ∆(s0, T0T2T1) =

∆(T0T1T2).
Finally, the restriction we have on the structure of the given distributed alphabet is defined

on the following object.

Definition 2.3 A distributed alphabet (Σ, dom) with unary and binary actions defines an
undirected graph CG with node set P and edges {p, q} if there exists a ∈ Σ with dom(a) =
{p, q}, p 6= q. Such a graph is called a communication graph.

In this paper, we consider the case when the distributed alphabet defines an acyclic
communication graph CG. Without loss of generality, we will assume CG to be a rooted tree.
For a process q, let parent(q) be the parent of q in CG (for the root r, parent(r) is undefined).
We also define

←−−
view q(T ) to be the smallest trace prefix of T containing all occurrences of

actions a such that dom(a) = {q, parent(q)}, if q is different from the root. For the root r, let
←−−
view r(T ) be the empty trace for all traces T . For instance, if p is the root process in Figure 1
then

←−−
view q([bcadcbd]) = [bca], whereas view q([bcadcbd]) = [bcadb].

For q ∈ P we denote by Xq ⊆ P the set of processes in the subtree of q in CG.
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3 The construction

We are given a DFA A accepting a trace-closed language L ⊆ Σ∗, over a distributed alphabet
with only unary and binary actions such that the communication graph CG is acyclic. We
want to construct a deterministic asynchronous automaton that recognizes L.

Let A = 〈S,Σ,∆, s0, F 〉 be the minimal DFA of L. It can be easily checked that A has
the I-diamond property.

We construct the asynchronous automaton B = 〈{Sp}p∈P, sin, {δa}a∈Σ〉 for L as follows:

• For every process p ∈ P, let S × S be the set of local states. We write in the following
〈s, s′〉p to denote a local state of process p.

• The start state of process p is (sin)p = 〈s0, s0〉p.

• The transition function δa for each action a ∈ Σ is defined as follows:

– if dom(a) = {p} then δa(〈s, s′〉p) = 〈s,∆(s′, a)〉p.
– if dom(a) = {p, q} and p is the parent of q in CG, then

δa(〈s1, s
′
1〉p, 〈s2, s

′
2〉q) = (〈s1, s

′〉p, 〈s′, s′〉q) ,

where s = Diam(s2, s
′
2, s
′
1, Xq) and s′ = ∆(s, a).

Note that we only use the values of Diam(∗, ∗, ∗, X) for linearly many X ⊆ P, making the
precomputation polynomial in the size of the input.

The basic idea is that each process p simulates the automaton A on the part of the input
T it has seen (viewp(T )), and stores this information in the second co-ordinate of its state.
But to combine this information from each process and its parent and get the state reached
by A on the entire trace T , we need to store some extra information. This is the state reached
by A on the part of the trace until process p last synchronized with its parent (

←−−
viewp(T )).

We then use Lemma 2.2 to compute the state reached by A on all of T (see Propositions 4.1
and 4.2 below).

The accepting condition requires additional notation, and is defined in the next section.
With this construction, we obtain the following theorem, the main result of this paper:

Theorem 3.1 Let (Σ, dom) be a distributed alphabet with unary and binary actions, whose
communication graph is acyclic. Then every regular, trace-closed language L over Σ can be
recognized by a deterministic asynchronous automaton. The number of states is quadratic in
the number of states of the minimum DFA for L.

4 Correctness of the construction

We prove the equivalence of A and B with the help of the following proposition:

Proposition 4.1 After the execution of a trace T by the automaton B, each process q is in
a state 〈sq, s

′
q〉 such that sq = ∆(s0,

←−−
view q(T )) and s′q = ∆(s0, view q(T )).

Proof. We show this by induction on the length of the trace T , and notice that the base
case is trivially true. For the inductive step, assume the statement holds for a trace T and
let T ′ = Ta. Let 〈sq, s

′
q〉 be the state of process q ∈ P after execution of T by B. We have the

following cases:
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Figure 2: The trace T0T1T2 in case (3). The states sq, s
′
q, s
′
p are the states reached by A after

reading T0, T0T1, T0T2 respectively.

1. If q /∈ dom(a) then
←−−
view q(Ta) =

←−−
view q(T ) and view q(Ta) = view q(T ), so we can use

the induction hypothesis.

2. If dom(a) = {q} then still
←−−
view q(Ta) =

←−−
view q(T ), so we have sq = ∆(s0,

←−−
view q(Ta)).

But now view q(Ta) = view q(T )a holds, and ∆(s0, view q(Ta)) = ∆(∆(s0, view q(T )), a) =
∆(s′q, a). This agrees with the new state of q from the definition of B, namely 〈sq,∆(s′q, a)〉.

3. If dom(a) = {q, parent(q)} for some q, then let p = parent(q) and note that
←−−
viewp(Ta) =

←−−
viewp(T ). We also have:

←−−
view q(Ta) = view q(Ta) = viewp(Ta) = view{p,q}(T ) · a .

We can factorize view{p,q}(T ) as follows (see also Figure 2):

view{p,q}(T ) = T0T1T2 ,

where

T0 =
←−−
view q(T ) ,

T0T1 = view q(T ), T0T2 = viewp(T ) ,
dom(T1) ∩ dom(T2) = ∅ .

Thus we can use Lemma 2.2 to conclude that ∆(s0, view{p,q}(T )) = Diam(sq, s
′
q, s
′
p, Xq).

Let s = Diam(sq, s
′
q, s
′
p, Xq), then we have:

∆(s0,
←−−
view q(Ta)) = ∆(s0, T0T1T2a) = ∆(∆(s0, T0T1T2), a) = ∆(s, a) = s′ ,

for some state s′. This agrees with the definition of B, which states that the new state
of p is 〈sp, s

′〉 and the one of q is 〈s′, s′〉.

�
Now that we have a better understanding of how exactly B simulates A, we can define

the final states of B. As before, let 〈sp, s
′
p〉p∈P be a state of B after reading some trace T .

We define the following recursive function state(p) that takes the process p as argument and
has access to the states 〈sp, s

′
p〉p∈P as global data, and calculates the state ∆(s0, viewXp(T )).
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Then we simply define 〈sp, s
′
p〉p∈P to be a final state of B if and only if state(r) ∈ F , where

r is the root process.

input : A process p
output: the state ∆(s0, viewXp(T ))

s← s′p;1

foreach child q of p do2

s← Diam(sq, state(q), s,Xq);3

end4

return s5

Function state(p)

We next prove the correctness of the function state(p):

Proposition 4.2 The function state(p) returns the state ∆(s0, viewXp(T )).

Proof. Let q1, . . . , qk be the children of p. We prove by induction on i, that s =
∆(s0, view{p}∪Xq1∪···∪Xqi

(T )) after the ith round of the foreach loop. Before the first iter-
ation, we have i = 0 and the result follows simply from Proposition 4.1. For the induction
step, factorize

view{p}∪Xq1∪···∪Xqi
(T ) = T0T1T2

where

T0 =
←−−
view qi(T ), T0T1 = viewXqi

(T ), T0T2 = view{p}∪Xq1∪···∪Xqi−1
(T )

such that dom(T1) ∩ dom(T2) = ∅. We have (by Proposition 4.1) that

∆(s0, T0) = ∆(s0,
←−−
view qi(T )) = sqi .

Moreover, recursively assuming correctness of state(qi) for the children, we have

∆(s0, T0T1) = ∆(s0, viewXqi
(T )) = state(qi).

By the induction hypothesis, the value of s before the ith round is

∆(s0, T0T2) = ∆(s0, view{p}∪Xq1∪···∪Xqi−1
(T )) .

Thus, using Lemma 2.2 we know that after the ith round

s = Diam(sqi , state(qi), s,Xqi) = ∆(s0, T0T1T2) = ∆(s0, view{p}∪Xq1∪···∪Xqi
(T )).

Since viewXp(T ) = view{p}∪Xq1∪···∪Xqk
(T ), we get the required result.

�

Finally, since Xr = P, we have viewXr(T ) = T and state(r) = ∆(s0, T ), thus L(A) =
L(B).
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5 Conclusion

We showed a simple and efficient construction for deterministic asynchronous automata in the
case where shared actions are binary and induce an acyclic synchronization relation between
processes. This restriction seems very natural, since many systems use process hierarchy (or
spanning trees) for communication. As shown by [7] it is very unlikely that the general case
can be simplified, due to the exponential lower bound in the number of processes. Whether
other natural restrictions on the communication graph can lead to similar simple constructions
as presented here, remains open.

Acknowledgment: We thank the referees for their constructive and detailed suggestions
for improving the presentation. The second author thanks M. Bojańczyk for the question
leading to this result.
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