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Abstract. This extended abstract is a survey of some of the recent de-
velopments in the area of automated verification dedicated to the analysis
of communicating automata.

Communicating automata are a fundamental computational model for con-
current systems, where processes cooperate via asynchronous message passing
using unbounded channels. They are a popular model for representing and rea-
soning about communication protocols, and they have been used to define the
semantics of standardized specification languages such as SDL. However, from
the algorithmic point of view communicating automata are more challenging
than other true concurrent models such as Petri nets: indeed, this model is Tur-
ing equivalent, in particular it subsumes Post tag systems [20]. Therefore, basic
questions arising in formal verification, such as the reachability problem, are
intractable.

Solving the reachability problem is actually the first step in tackling the more
general model-checking problem, that consists in verifying that the model, i.e. the
communicating automaton, satisfies a given property, usually described in some
logical formalisms such as e.g. temporal logics [17]. In this setting, reachability
is used for validating safety properties, stating that no bad state can be reached
from the initial state. A more challenging and difficult problem is synthesis:
here, the aim is to compute a model from a given specification. In this survey
we will only report on the closed synthesis problem, where the model that is to
be computed does not interact with any environment. In contrast, synthesis of
open systems, i.e. systems that are embedded in an unpredictable environment,
is even more intricate. The reason why synthesis is challenging here is that
communicating automata are a concurrent model, thus the simplest instance of
synthesis (i.e., the closed case) already amounts to compute the distribution of
a sequential object, i.e. the specification. In the open case, the situation is even
more challenging, since we need to solve some sort of concurrent games. In both
cases, the existing techniques are rather sparse.

Starting with the model-checking problem, an important line of research was
devoted to identify structural or behavioral restrictions on communicating au-
tomata that make them amenable to algorithmic methods. A first example are
lossy channel systems, or equivalently, communicating automata where any num-
ber of messages can be lost, at any time. Lossy channel systems are a particular
instance of well-structured transition systems [1, 9] , so reachability was shown to
be decidable [2], albeit of non-primitive recursive complexity [21]. On the other
hand, liveness properties were shown to be undecidable [1].



A second line of research aimed at describing the set of reachable configura-
tions of communicating automata, resp. approximations thereof, by some form
of extended finite-state automata (called symbolic representations). The idea
here is to manipulate a possibly infinite set of configurations by means of finite
objects, such as finite automata or some suitable extensions.

Whereas both previous approaches emphasize the symbolic representation of
the set of reachable configurations, an orthogonal approach based on partial or-
ders, has been developed more recently. The partial order approach emphasizes
concurrency and, in particular, the partially ordered events executed by a com-
municating automaton. Here, we are mainly interested e.g. in the reachability of
control states, so that the memory (i.e., the channel contents), is handled only
implicitly. Notice that this kind of event-based reasoning arises very naturally
when communicating automata are viewed as sequential automata synchronizing
over communication events.

The partial order approach was successfully applied for obtaining both model-
checking algorithms, as well as synthesis algorithms, for so-called existentially-
bounded finite state communicating automata [13]. The main idea here is to
assume unbounded channels, but to consider only executions that can be resched-
uled on (uniformly) bounded ones. A simple example illustrating the idea is a
pair of processes, a producer and a consumer, where the producer keeps sending
messages to the consumer. Since there is no control on the relative speed of these
two processes, the channel should be of unlimited size. However, often it suffices
to reason on executions where messages can be consumed without delay, i.e. on
executions that can be scheduled with a channel of size one.

The partial order approach has been actually inspired by the study of au-
tomata and logics over Mazurkiewicz traces ([19], see also [8] for a textbook of
the topic). The deepest result in the area of Mazurkiewicz traces is Zielonka’s
construction of distributed (trace) automata from sequential automata [23, 24].
This sophisticated construction is the building brick for the synthesis of existen-
tially bounded finite-state communicating automata in [10].

1 Basics

Communicating automata follow the simple paradigm of a network of automata
cooperating asynchronously over point-to-point, fifo communication channels.
They arise naturally as models for peer-to-peer interaction, as occurring e.g. in
distributed protocols using asynchronous message passing.

We consider systems described by means of a fixed communication network,
consisting of a (usually finite) set of concurrent processes P, together with a
set of channels Ch ⊆ {(p, q) ∈ P2 | p 6= q}, that stand for point-to-point links.
Following the classical definition [6], we exclude multiple channels between a pair
of processes, as well as self-linking channels. However, this has no severe impact
on the kind of results we will present. At best, it has an impact when one aims
at classifying networks w.r.t. decidability of various verification questions. In
this model, processes act either by point-to-point communication or by local



actions. A send action denoted as p!q(m) means that process p sends a message
with content m to process q. A receive action denoted as p?q(m) means that p
receives from q a message with content m. Whenever we write p!q and q?p, we will
assume that (p, q) ∈ Ch. A local action m on process p is denoted as `p(m). For a
given (finite) set M of message contents, resp. local actions, and a process p ∈ P,
we define the set of p-local actions as Σp = {p!q(m), p?q(m), `p(m) | m ∈ M}
and set Σ =

⋃
p∈P Σp.

A communicating automaton (CA for short) is a tuple A = 〈(Ap)p∈P , F 〉
where

– each Ap = (Sp,→p, s
0
p) is a labeled transition system (LTS for short) with

state space Sp, transition relation →p⊆ Sp ×Σp × Sp, and s0p ∈ Sp as initial
state;

– F ⊆
∏

p∈P Sp is a set of global final states.

We denote the product S :=
∏

p∈P Sp as set of global states.

The behavior of a CA is defined as the behavior of an infinite-state LTS, by
considering the possible (local) transitions on the set of configurations of the
CA. A configuration of the CA A consists a global state s ∈ S, together with a
word wp,q ∈ M∗ for each channel (p, q) ∈ Ch. We write C = 〈s = (sp)p∈P , w =
(wp,q)(p,q)∈Ch〉 for a configuration with global state s ∈ S and channel contents
w ∈ (M∗)Ch. The set of all configurations of A is denoted CA (or simply C when
there is no risk of confusion). For any two configurations C = 〈s, w〉, C ′ = 〈s′, w′〉
and any action a ∈ Σp of A, we say that C ′ is a successor of C (and write
C

a−→ C ′, or simply C −→ C ′ or C ′ ∈ post(C), when the action does not
matter), if

– sp
a−→p s

′
p is a p-local transition, and s′q = sq for all q 6= p,

– Send action: if a = p!q(m), then w′p,q = wp,qm (message m is inserted into
the channel from p to q) and w′r,s = wr,s for all (r, s) 6= (p, q) (all other
channels are unchanged).

– Receive action: if a = p?q(m), then wq,p = mw′q,p (message m is deleted
from the channel from q to p) and w′r,s = wr,s for all (r, s) 6= (q, p) (all other
channels are unchanged).

– Local action: if a = `m, then w = w′.

A run of a CA A is (finite or infinite) sequence of transitions: ρ = C0
a0−→

C1
a1−→ C2 · · · , with Ci ∈ CA configurations and ai ∈ Σ actions. For a run ρ as

above, we also write C0
∗−→ Cn.

We define accepting runs in the usual way, by referring to the global states. A
finite run ρ = C0

a0−→ C1
a1−→ · · ·Cn is accepting if C0 = 〈s0, ε〉 and Cn = 〈f, w〉,

where εp,q = ε for all (p, q) ∈ Ch, f ∈ F and w ∈ (M∗)Ch.

The reachability set of a CA A, denoted Reach(A), is the set

Reach(A) := {w ∈ (M∗)Ch | C0
∗−→ 〈f, w〉 for some f ∈ F} .



The language of a CA A, denoted L(A) ⊆ Σ∗, is the set

L(A) = {a0a1 · · · an−1 | C0
a0−→ C1

a1−→ C2 · · ·
an−1−→ Cn is an accepting run} .

Remark 1. Notice that we did not impose in the definition of a communicating
automaton A = 〈(Ap)p∈P , F 〉 any restriction on the local LTS Ap. In general,
we might be interested in various kinds of (possibly infinite-state) LTS, such as
pushdown automata. However, a basic kind of CA is obtained by requiring that
every Ap is a finite-state automaton, and then we denote A as communicating
finite-state machine (CFM for short). Most of the research done in the past 15
years on CAs focused on CFMs, and we will concentrate on them in the next
sections.

2 Symbolic representations

The basic idea when using symbolic representations is to approximate in a fini-
tary way behavior of a CFM. Often, such a computation is intended to capture
the effect of iterating single loops. This leads to define meta-transitions and to
use them to accelerate the usual fixpoint computation defining ReachA:

X := {C0}, X := X ∪ post(X)

Queue-content Decision Diagrams (QDD for short) were proposed in [3] for de-
scribing (possibly infinite) sets of configurations of CFM by finite automata.
With such representations, one can answer to various questions such as bound-
edness of channels or reachability. But of course, the method only offers a semi-
algorithm for the reachability problem.

Let us assume that our network has k channels, with a fixed order on Ch.
The channel contents w = (wi)k

i=1 of a configuration 〈s, w〉 of the CFM can be
represented by a word w1#w2# · · ·wk# (assuming that # /∈M). A QDD is then
a finite automaton reading words from (M∗#)k. Computing the effect of a loop
means iterating a sequence σ ∈ S∗, that leads from a global state s ∈ S back to
s. The general idea is to start with s, σ,B, where B is a QDD, and to compute the
effect of σ∗ on the set of configurations {〈s, (wi)k

i=1〉 | w1#w2# · · ·wk# ∈ L(B)}.
The paper [4] characterizes those sequences σ that preserve regularity, i.e., QDD
representations, as non-counting sequences. This roughly means that such loops
cannot send on two different channels. This paper also suggests a semi-algorithm
for model-checking LTL properties on runs of CFM, where atomic propositions
refer to control states.

The paper [5] goes beyond regular representations, introducing Constrained
Queue-content Decision Diagrams (CQDD for short). CQDDs are restricted fi-
nite automata, extended by linear constraints on the frequency of transitions in
a run. The main result of [5] is that the CQDD representation is preserved by
the iteration of arbitrary loops.



3 Faulty channels

Assuming that channels are imperfect, at least two types of faults may seem
natural for real systems. Lossy machines are such that channels can loose an
arbitrary number of messages, at any time. For machines with insertion errors,
new messages can be inserted in channels, at any time. Although these two
models have different flavor, the techniques used to manipulate them are quite
similar, so that we will only consider lossy CFMs in the following.

Lossy CFMs (or lossy channel systems) represent a special instance of a
more general class of infinite-state systems, known as well-structured transition
systems (WSTS for short), [2, 9]. The basic idea behind a WSTS 〈S,−→〉 with
state space S is to use a well quasi-order (wqo for short) on S in order to
manipulate certain infinite subsets of S symbolically. A wqo � on S is a well-
founded preorder with no infinite anti-chain. What makes a transition system
〈S,−→〉 a WSTS is monotonicity : for every s′ ∈ post(s) and every s1 ∈ S with
s � s1, it is required that some s′1 ∈ post(s1) exists such that s′ � s′1.

Two basic properties are crucial for WSTS. The first one is that every upward-
closed1 subset X ⊆ S can be described by a finite set of minimal elements. The
second property is that the predecessor relation preserves upward-closed sets.
That is, pre(X) := {x | x −→ y for some y ∈ X} is upward-closed whenever X
is upward-closed. As a consequence, reachability of upward-closed sets X can be
decided by a backward algorithm, that computes in a fixpoint manner pre∗(X).
Intersecting the result with the set of initial configurations solves the reachability
problem.

For lossy CFMs, the choice for a wqo is very natural. One starts with the
subword ordering: for two words x, y ∈ M∗, let x � y if x = x1 · · ·xn and
y = y0x1y1 · · · yn−1xnyn for some yi ∈ M∗. This wqo easily extends to Mk

and then to configurations of the CFM. For two configurations C = 〈s, w〉,
C ′ = 〈s′, w′〉 we set C � C ′ if s = s′ and w � w′.

This technique allows to decide e.g. control-state reachability for lossy CFMs.
More complex properties, such as repeated reachability of a control state, are
undecidable [2]. For deciding termination from an initial configuration, a differ-
ent technique is employed, based on the computation of a finite reachability tree
(forward algorithm). However, the more general problem of termination from any
initial configuration, is undecidable [18]. From a different perspective, a recent
paper [7] considered mixed architectures, where some channels are lossy and oth-
ers are error-free, and characterized architectures with a decidable reachability
question.

4 Partial order approach

An early line of work considered universally bounded CFMs. This property
amounts to say that there exists a uniform bound B such that every run can be

1 X is upward-closed if X = {y | x � y for some x ∈ X}.



executed with channels of size B, no matter how events are scheduled. Equiva-
lently, the number of transitory messages is at most B, at any time. Since the
size of the communication channels is fixed uniformly, this constraint turns a
CFM into a finite state device. Checking that a CFM is universally bounded is
undecidable, in general. However if the bound B is given, and if the CFM A is
deadlock-free, then we can check in polynomial space whether A is universally
B-bounded [11].

Being universally bounded leads immediately to a decision procedure for the
model-checking problem, since we can transform the CFM into an (exponentially
larger) finite automaton.

An even more important result concerns closed synthesis. Suppose that we
are given a regular language L ⊆ Σ∗, that satisfies the following properties for
some B > 0 (notice that these properties are decidable for a given B):

1. For every prefix w of a word from L, and every (p, q) ∈ Ch, we have |w|p!q −
|w|q?p ≤ B.

2. Every word in L can induce a fifo run, which leads to a configuration where
all channels are empty.

3. Whenever w ∈ L, we can swap adjacent actions in w that (1) do not belong
to the same process and (2) do not form a matching send/receive pair, and
the resulting word is still in L.

The main result of [14], later extended to infinite runs in [16], is a construc-
tion for transforming a regular language satisfying the three properties above
into a universally B-bounded CFM. As mentioned previously, the challenge for
such constructions is to distribute a sequential object, e.g. the finite automaton
describing L. The techniques make heavy use of Mazurkiewicz trace theory and,
in particular, of Zielonka’s construction for distributed automata.

The drawback of models with universally bounded channels is the limited
expressive power. Intuitively, universal channel bounds require message acknowl-
edgments, which can be difficult to impose in general. For instance, basic proto-
cols of producer-consumer type (such as e.g. the USB protocol) are not univer-
sally bounded, since the communication is one-way and does not allow acknowl-
edgments. Therefore, a relaxation of this restriction on channels was proposed
in [13, 10]. The idea is to require an existential bound on channels. This means
roughly that every CFM run must have some scheduling of events that respects
the given channel bound (other schedules might exceed the bound). In other
words, runs can be executed with bounded channels, provided that we schedule
the events fairly. For instance, in a producer-consumer setting, the scheduling
alternates between producer and consumer actions. This requirement is perfectly
legitimate in practice, since real life protocols must be executable with limited
communication channels. When a channel overflow happens, then the sender
stops temporarily until some message is consumed from the queue.

For channel systems with existential bounds, the fundamental Kleene-Büchi
equivalence of automata, logics and regular expressions was shown to hold in
[10]. Automata means here CFMs, whereas logics refers to monadic second-
order logics over partial orders. Regular expressions refer to a visual formalism



that is very popular for early design of communication protocols, namely mes-
sage sequence charts. Regarding model-checking, the complexity for existentially-
bounded CFMs remains the same as in the case of universal bounds [13].

5 Conclusion and outlook

This survey focused on two basic questions related to the automated verification
of communicating automata, namely model-checking and (closed) synthesis. We
presented three different approaches that allow to tackle these questions, usually
offering some approximation of the behavior of this type of automata. We did
not mention results specific to the ITU standard of message sequence charts, see
[12] for some further references on this topic.

Concerning further work on communicating automata, let us mention some
recent development. The extension of communicating automata by local push-
downs received recently attention justified by questions on the analysis of mul-
tithreaded programs or distributed software. Of course, the model is highly un-
decidable but still, methods like context-bounded model-checking or suitable
restrictions on the network provide reasonable practical settings where reacha-
bility is decidable, [22, 15].
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