
Distributed synthesis for acyclic architectures

Anca Muscholl and Igor Walukiewicz

University of Bordeaux and CNRS

July 11, 2014

Abstract

Synthesising distributed systems from specifications is an attrac-
tive objective, since distributed systems are notoriously difficult to
get right. Unfortunately, there are very few known decidable frame-
works for distributed synthesis. We present one such framework that
is based on communication by rendez-vous and causal memory. This
means that the specification can talk about when a communication
takes place, but it cannot limit information that is transmitted during
communication. This choice is both realistic and avoids some patholog-
ical reasons for undecidability. We show decidability of the synthesis
problem under the restriction that the communication graph of the sys-
tem is acyclic. Our result covers all ω-regular local specifications and
uncontrollable rendez-vous actions. The former can be used to have
e.g. fairness constraints, the latter allows to encode shared variable
communication primitives.

1 Introduction

Synthesising distributed systems from specifications is an attractive objec-
tive, since distributed systems are notoriously difficult to get right. Un-
fortunately, there are very few known decidable frameworks for distributed
synthesis. We present one such framework that is based on communication
by rendez-vous and causal memory. This means that the specification can
talk about when a communication takes place, but it cannot limit informa-
tion that is transmitted during communication. This choice is both realistic
and avoids some pathological reasons for undecidability. We show decidabil-
ity of the synthesis problem under the restriction that the communication
graph of the system is acyclic. Our result covers all ω-regular local spec-
ifications and uncontrollable rendez-vous actions. The former can be used
to have e.g. fairness constraints, the latter allows to encode shared variable
communication primitives.

1

Instead of synthesis we prefer to work in the more general framework
of distributed control. Our setting is a direct adaptation of the supervisory
control framework of Ramadge and Wonham [17]. Given a plant (a finite
automaton) and a specification, the goal is to construct a controller (an-
other finite automaton) such that its product with the plant satisfies the
specification. So control means restricting the behavior of the plant. In our
case the formulation is exactly the same but we consider Zielonka automata,
instead of finite automata, as plants and controllers.

Zielonka automata [19, 14] are a by now a well-established model of
distributed computation. Such a device is an asynchronous product of finite-
state processes synchronising on shared actions. Asynchronicity means that
processes can progress at different speed. The formulation of the control
problem we consider means that the controller is not allowed to initiate its
own shared actions, but it is allowed to transfer control information during
synchronisation actions of the plant.

We show decidability of the control problem for Zielonka automata where
the communication graph is acyclic: a process can communicate (synchro-
nise) with its parent and its children. We allow specifications that are con-
junctions of ω-regular specifications for each of the component processes. We
also allow uncontrollable shared actions. This model can be used to encode
some known communication primitives like test-and-set, or compare-and-
swap, that enable implementations to employ efficient machine-level atomic
instructions that are available on modern multi-core processors.

Most research on distributed synthesis and control has been done in
the setting proposed by Pnueli and Rosner [16]. This setting is also based
on shared-variable communication, however it does not allow to pass addi-
tional information between processes. So their model leads to partial infor-
mation games, and decidability of synthesis holds only for very restricted
architectures [3]. Actually, using the interplay between specifications and
architecture in a suitable way, one can get undecidability results for most
architectures rather easily. While specifications leading to undecidability
are very artificial, no elegant solution to eliminate them exists at present.

We do not know whether the control problem for Zielonka automata is
decidable for all architectures. The reason is that in our model, controllers
can exchange all their causal memory and there is no artificially hidden in-
formation. Our result extends [6] where we showed that control is decidable
with non-elementary complexity for a restricted form of reachability objec-
tives (blocking final states). Incorporating all ω-regular objectives allows
to express fairness constraints but at the same time introduces important
technical obstacles. Indeed, for our construction to work it is essential to
allow uncontrollable synchronisation actions. Such actions make a separa-
tion into controllable and uncontrollable states impossible: now there can be
both controllable and uncontrollable actions outgoing from the same state.
These extensions required to abandon the game metaphor, to invent new

2

arguments, and to design a new proof structure.
Related work. The paper [9] gives an automata-theoretic approach to

solving pipeline architectures and at the same time extends the decidabil-
ity results to CTL specifications and variations of the pipeline architecture,
like one-way ring architectures. The synthesis setting is investigated in [10]
for local specifications, meaning that each process has its own, linear-time
specification. For such specifications, it is shown that an architecture has
a decidable synthesis problem if and only if it is a sub-architecture of a
pipeline with inputs at both endpoints. The paper [3] proposes information
forks as an uniform notion explaining the (un)decidability results in dis-
tributed synthesis. In [7] the authors consider distributed control by adding
communication in order to combine local knowledge. The paper [5] studies
external specifications on strongly connected architectures where processes
communicate via signals.

Apart from [6], two closely related decidability results for synthesis with
causal memory are known, both of different flavor than ours. The first one
[4] restricts the alphabet of actions: control with reachability condition is
decidable for co-graph alphabets. This restriction excludes among others
client-server architectures, which are captured by our setting. The second
result [11] shows decidability by restricting the plant: roughly speaking, the
restriction says that every process can have only bounded missing knowledge
about the other processes, unless they diverge (see also [15] that shows a
doubly exponential upper bound). The proof of [11] goes beyond the con-
troller synthesis problem, by coding it into monadic second-order theory of
event structures and showing that this theory is decidable when the criterion
on the plant holds. Unfortunately, very simple plants have a decidable con-
trol problem but undecidable MSO-theory of the associated event structure.
Melliès [13] relates game semantics and asynchronous games, played on event
structures. More recent work [8] considers games on event structures and
shows a Borel determinacy result for such games under some restrictions.

Overview. In Section 2 we state our control problem, and in Section 3
we give the main lines of the proof. Finally, Section 5 shows an application
of our main result to the control of multi-threaded programs.

2 Control for Zielonka automata

We state our control problem as a variant of the Ramadge and Wonham
formulation [17]. So we are given an alphabet Σ of actions partitioned into
system and environment actions: Σsys ∪ Σenv = Σ. Given a plant A we are
asked to find a controller C such that the product A × C satisfies a given
specification. Here both the plant and the controller are finite deterministic
automata over Σ. Additionally, the controller is required not to block en-
vironment actions, which in technical terms means that from every state of

3

the controller there should be a transition on every action from Σenv.
The definition of our problem will be the same with the difference that

we will consider a distributed automaton model, Zielonka automata, instead
of standard finite automata.

2.1 Zielonka automata

In this section we define our communicating automata model. We will make
precise what is a maximal run of such an automaton. We also introduce
correctness conditions for maximal runs. Finally, we present a notion of a
product to two automata. As we will see later, our goal will be to find a con-
troller such that when composed with a given automaton ensures correctness
of all maximal runs.

Zielonka automata are simple distributed finite-state devices. Such an
automaton is a parallel composition of several finite automata, called pro-
cesses, synchronizing on shared actions. There is no global clock, so between
two synchronizations, two processes can do a different number of actions.
Because of this Zielonka automata are also called asynchronous automata.

A distributed action alphabet on a finite set P of processes is a pair
(Σ, dom), where Σ is a finite set of actions and dom : Σ → (2P \ ∅) is
a location function. The location dom(a) of action a ∈ Σ comprises all
processes that need to synchronize in order to perform this action. Actions
from Σp = {a ∈ Σ | p ∈ dom(a)} are called p-actions. We write Σloc

p = {a |
dom(a) = {p}} for the set of local actions of p.

A (deterministic) Zielonka automaton A = 〈{Sp}p∈P, sin, {δa}a∈Σ〉 is
given by:

• for every process p a finite set Sp of (local) states,

• the initial state sin ∈
∏

p∈P Sp,

• for every action a ∈ Σ a partial transition function δa :
∏

p∈dom(a) Sp
·→∏

p∈dom(a) Sp on tuples of states of processes in dom(a).

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP ,
where P ⊆ P. We also talk about Sp as the set of p-states and of

∏
p∈P Sp

as global states.
A Zielonka automaton can be seen as a sequential automaton with the

state set S =
∏

p∈P Sp and transitions s
a−→ s′ if (sdom(a), s

′
dom(a)) ∈ δa, and

sP\dom(a) = s′P\dom(a). So the states of the sequential automaton are the
tuples of states of the processes of the Zielonka automaton. For a process p
we will talk about the p-component of the state. Notice that the automaton
A satisfies the following properties, for every s, s′ ∈ S and a, b ∈ Σ such that
dom(a) ∩ dom(b) = ∅:

• (diamond) s
ab−→ s′ iff s

ba−→ s′,

4

• (forward diamond) if a, b ∈ Σ are both enabled in s and s
a−→ s′, then

b is enabled in s′.

The idea of describing concurrency by a fixed independence relation on
actions goes back to the late seventies, to Mazurkiewicz [12] (see also [2]).
By dom(u) we denote below the union of dom(a), for all a ∈ Σ occurring in
u.

Definition 2.1 (Maximal run) For a word w ∈ Σ∞ such that run(w) is
defined, we say that run(w) is maximal if there is no a ∈ Σ such that we can
write w = uv for some v ∈ Σ∞ with dom(v)∩ dom(a) = ∅, and run(uav) is
defined.

The above definition says that a run is maximal if processes that have
only finitely many actions in the run cannot perform any additional action.
The definition conforms to the fact that a run can be extended on different
processes, since our automata are distributed devices.

Automata can be equipped with a correctness condition. We prefer to
talk about correctness condition rather than acceptance condition since we
will be interested in the set of runs of an automaton rather than in the set
of words it accepts. We will consider local correctness conditions: every
process has its own correctness condition Corrp. A run of A is correct if
for every process p, the projection of the run on the transitions of Ap is in
Corrp. A particular example of Corrp we will work with consists of regular
conditions, specified as a set Tp ⊆ Sp of terminal states and an ω-regular set
Ωp ⊆ (Sp × Σp × Sp)ω. A sequence (s0

p, a0, s
1
p)(s

1
p, a1, s

2
p) . . . satisfies Corrp

if either

• it is finite and ends with a state from Tp, or

• it is infinite and belongs to Ωp.

At this stage the set of terminal states Tp may look unnecessary, but it will
simplify our constructions later.

Finally, we will need the notion of synchronized product A × C of two
Zielonka automata. ForA = 〈{Sp}p∈P, sin, {δAa }a∈Σ〉 and C = 〈{Cp}p∈P, cin, {δCa }a∈Σ〉
let A × C = 〈{Sp × Cp}p∈P, (sin, cin), {δ×a)a∈Σ}〉 where there is a transition
from (sdom(a), cdom(a)) to (s′dom(a), c

′
dom(a)) in δ×a iff (sdom(a), s

′
dom(a)) ∈ δ

A
a

and (cdom(a), c
′
dom(a)) ∈ δ

C
a .

2.2 Control for Zielonka automata

Consider a distributed alphabet 〈P, dom : Σ → (2P \ ∅)〉. We partition
Σ into the set of system actions Σsys and environment actions Σenv. Be-
low we will introduce the notion of controller, and require that it does not

5

block environment actions. For this reason will also talk about control-
lable/uncontrollable actions when referring to system/environment actions.
We impose three simplifying assumptions:

1. All actions are at most binary: |dom(a)| ≤ 2, for every a ∈ Σ.

2. Every process has a controllable action: Σp ∩ Σsys is non-empty for
every p.

3. All controllable actions are local: |dom(a)| = 1, for every a ∈ Σsys.

The first condition is indeed a restriction of our setting. The second con-
dition is easy to satisfy by extending the alphabet with dummy control
actions. The third condition is also just for simplicity of presentation. We
will see later how controllable communication can be simulated by a local
controllable choice, followed by non-controllable local or shared actions.

Definition 2.2 (Controller, Correct Controller) A controller is a Zielonka
automaton that cannot block environment (uncontrollable) actions. In other
words, from every state every environment action is possible: for every
b ∈ Σenv, δb is a total function. We say that a controller C is correct for A
if all maximal runs of A× C satisfy the correctness condition of A.

The correctness of C means that all the runs of A that are allowed by the
controller are correct. In particular, C does not have a correctness condition
by itself. Considering only maximal runs of A × C imposes some minimal
fairness conditions: for example it implies that if a process can do a local
action almost always, then it will eventually do some action.

Our control problem can be formulated as follows:

Definition 2.3 (Control problem) Given a distributed alphabet 〈P, dom :
Σ → (2P \ ∅)〉 together with a partition of actions (Σsys,Σenv), and given
a Zielonka automaton A over this alphabet, does there exist a controller C
over the same alphabet such that C is correct for A.

The important point in our definition is that the controller should have
the same distributed structure as the environment. The product of the
two automata means that plant and controller are totally synchronized,
in particular communications between processes happen at the same time.
Hence concurrency in the controlled system is the same as in the plant. The
major difference between the controlled system and the plant is that the
states of the controller carry the additional information computed by the
controller. Zielonka automata use rendez-vous model with complete sharing
of information between processes participating in a rendez-vous. So our
controllers can use causal memory.

6

3 Decidability for acyclic architectures

The goal is to show decidability of the control problem for Zielonka automata
for acyclic architectures. A communication architecture is a graph where
nodes are processes and edges link processes that have common actions. An
acyclic architecture is one whose communication graph is acyclic.

Theorem 3.1 Let 〈P, dom : Σ → (2P \ ∅)〉 be a distributed alphabet with
acyclic architecture. The control problem for Zielonka automata over this
alphabet is decidable. If a controller exists, then it can be effectively con-
structed.

Our constructive procedure to solve the control problem will work by
induction on the number of processes in the automaton. A Zielonka automa-
ton over a single process is just a finite automaton, and the control problem
is then just the standard control problem as considered by Ramadge and
Wonham, but extended to all ω-regular conditions [1]. If there are several
processes that do not communicate, then we can solve the problem for each
process separately.

Otherwise we choose a leaf process r and its parent q (cf. Figure 1). We
will construct a new automaton AO over P\{r}, where r is “glued together”
with q. The control problem for A will have a solution iff the one for AO
will have. Moreover, for every solution for AO we will be able to construct
a solution for A.

Figure 1: Eliminating process r: r is glued with q.

For the rest of this section let us fix (1) the leaf process r and its parent
q, and (2) a Zielonka automaton with a correctness condition

A = 〈{Sp}p∈P, sin, {δa}a∈Σ〉 , {Corrp}p∈P

We will first simplify the problem by requiring some additional properties
from A, and show in Section 4 how to satisfy these requirements.

Definition 3.2 (r-short, r-local strategy) Automaton A is r-short if there
is a bound on the number of actions that r can perform without doing a
communication with q. An r-local strategy from a state sr ∈ Sr is a partial old ver-

sion: is
a partial
func-
tion f :
(Sr)

∗ →
Σsys
r

map-
ping se-
quences
of r-
states to
control-
lable r-
actions,
such
that if
f(v) = a
then a
is possi-
ble from
the last
state in
the se-
quence
v.

old ver-
sion: is
a partial
func-
tion f :
(Sr)

∗ →
Σsys
r

map-
ping se-
quences
of r-
states to
control-
lable r-
actions,
such
that if
f(v) = a
then a
is possi-
ble from
the last
state in
the se-
quence
v.

function f : (Σloc
r)∗ → Σsys

r mapping sequences from Σloc
r to actions from

Σsys
r , such that if f(v) = a then sr

va−→ in Ar.

7

Observe that if the automaton is r-short then the domain of f is finite.
Before we start we also introduce the notion of covering controller. This

notion will simplify the presentation because it will allow us to focus on the
runs of the controller instead of building the product of the given automaton
and the controller.

Definition 3.3 (Covering controller) Let C be a Zielonka automaton
over the same alphabet as A; let Cp be the set of states of process p in
C. Automaton C is a covering controller for A if there is a function π :
{Cp}p∈P → {Sp}p∈P, mapping each Cp to Sp and satisfying two conditions:

(i) if cdom(b)
b−→ c′dom(b) then π(cdom(b))

b−→ π(c′dom(b)); (ii) for every un-

controllable action a: if a is enabled from π(cdom(a)) then it is also enabled
from cdom(a).

Remark 3.4 The first condition on the covering controller ensures that all
its runs are relevant, the second condition says that it cannot block relevant
uncontrollable actions. Strictly speaking, a covering controller C may not
be a controller since we do not require that every uncontrollable action is
enabled in every state, but only those actions that are enabled in A. We
define Ĉ by adding to every state of C a self-loop on every uncontrollable
action missing from that state.

Notice that thanks to the projection π, a covering controller can inherit
the correctness condition of A. Moreover, the sequences labeling the maximal
runs of C, A× C and A× Ĉ are the same.

Lemma 3.5 There is a correct controller for A if and only if there is a
covering controller C for A such that all the maximal runs of C satisfy the
inherited correctness condition.

Proof. If C is a covering controller for A such that all its maximal runs
satisfy the inherited correctness condition then Ĉ is a correct controller for
A.

Conversely, if C is a correct controller for A then A × C is a covering
controller where all maximal runs satisfy the inherited correctness condition.

�
Even though strictly speaking a covering controller is not a controller, we

will refer to a covering controller with the property that all its maximal runs
satisfy the inherited correctness condition, as correct covering controller.

We end the section by showing the assumption that controllable actions
are local, is not a restriction.

Proposition 3.6 The control problem for Zielonka automata where com-
munication actions may be controllable, reduces to the setting where control-
lable actions are all local.

8

Proof. We start with an automaton A over a distributed alphabet
〈Σ, dom〉 and a correct covering controller C. We define first a new au-
tomaton A′ over an extended distributed alphabet 〈Σ′, dom ′〉 with Σ′ = Σ∪
{ch(A) | A ⊆ Σsys

p for some p ∈ P}. All new actions are local: dom ′(ch(A)) =
{p} if A ⊆ Σsys

p ; the domain of other actions do not change. What changes is
that all old actions become uncontrollable, and the only controllable actions
in Σ′ are those of the form ch(A).

• The set of p-states of A′ is the set of p-states of A, plus some new
states of the form 〈sp, A〉 where sp is a p-state of A and A ⊆ Σsys

p .

• For every old p-state sp we delete all outgoing controllable transitions
and add

sp
ch(A)−→ 〈sp, A〉 ,

for every set A of controllable actions enabled in sp. From 〈sp, A〉
we put in A′ transitions as follows. If a ∈ A is local then we have
〈sp, A〉

a−→ s′p whenever sp
a−→ s′p in A. If a ∈ A ∩ B and dom(a) =

{p, p′} then we have (〈sp, A〉, 〈sp′ , B〉)
a−→ (s′p, s

′
p′) whenever (sp, sp′)

a−→
(s′p, s

′
p′) in A.

• The correctness condition of A′ is a straightforward modification of
the one of A.

Assume first that C′ is a correct covering controller for A′. From C′ we
define the automaton C over the same sets of states, by modifying slightly

the transitions as follows. Suppose that c
ch(A)−→ d is a (local) transition in

C′p. Since C′ is covering we have a transition of the form sp = π′(c)
ch(A)−→

π′(d) = 〈sp, A〉 in A′. Let a ∈ A be local. Since a is uncontrollable in A′

and 〈sp, A〉
a−→ s′p (for some s′p) we must also have d

a−→ e for some state e

of C′p, since C′ is covering. We delete c
ch(A)−→ d from C′ and replace d

a−→ e by

c
a−→ e. If a is shared by p, p′, let us consider some transition c′

ch(B)−→ d′ with
a ∈ B in C′p′ . Since a is uncontrollable in A′ we find again some transition

(d, d′)
a−→ (e, e′) in C′. We replace then (d, d′)

a−→ (e, e′) by (c, c′)
a−→ (e, e′)

in C. Of course, this is done in parallel for all transitions labelled by some
ch(A). It is immediate that C is covering A, by taking π = π′. Maximal runs
of C map to maximal runs of C′ and thus satisfy the correctness condition
for A.

Conversely, given a correct covering controller C for A we define C′ for
A′. Local p-states of C′ are those of C, plus additional states of the form cA,
where c is a p-state of C and A ⊆ Σsys

p . Consider any p-state c of C, and let
A be the set of controllable actions enabled in c (a communication action
a with dom(a) = {p, p′} is enabled in c if there exists some p′-state c′ and

9

an a-transition from (c, c′)). We replace all controllable transitions from c

by one (local) controllable transition c
ch(A)−→ cA, plus some uncontrollable

transitions. If a ∈ A is local, then we add the uncontrollable transitions
cA

a−→ d whenever c
a−→ d in C. If dom(a) = {p, p′}, (c, c′)

a−→ (d, d′)
in C, and B is the set of controllable actions enabled in the p′-state c′,
then we replace (c, c′)

a−→ (d, d′) by (cA, c
′
B)

a−→ (d, d′). Extending π by
π′(cA) = 〈π(c), A〉 shows that C′ is a covering controller for A′. Maximal
runs of C′ satisfy the acceptance condition as for C. �

3.1 The new plant AO

We suppose in the following that A = 〈{Sp}p∈PO , sin, {δa}a∈Σ〉 is r-short
and we define the reduced automaton AO that is the result of eliminat-
ing process r (cf. Figure 1). Let PO = P \ {r}. We construct AO =
〈{SOp }p∈PO , sOin, {δOa }a∈ΣO〉 where the components are defined below.

All the processes p 6= q of AO will be the same as in A. This means:
SOp = Sp, and ΣOp = Σp. Moreover, all transitions δa with dom(a)∩{q, r} = ∅
are as in A. Finally, in AO the correctness condition of p 6= q is the same as
in A.

The states of process q in AO are of one of the following types:

〈sq, sr〉 , 〈sq, sr, f〉 , 〈sq, a, sr, f〉 ,

where sq ∈ Sq, sr ∈ Sr, f is an r-local strategy from sr (see Definition 3.2),
and a ∈ Σloc

q . The new initial state for q is 〈(sin)q, (sin)r〉. Recall that that
since A is r-short, any r-local strategy in Ar is necessarily finite, so SOq is a
finite set.

The set ΣOq of actions of q is introduced below, together with the tran-
sitions. An example of a simulation of Aq and Ar by AOq is presented in
Figure 2.

1. Choose a local strategy for r:

〈sq, sr〉
ch(f)−→ 〈sq, sr, f〉 , if f is r-local strategy.

2. Declare a (local) controllable action:

〈sq, sr, f〉
ch(a)−→ 〈sq, a, sr, f〉 if a ∈ Σq controllable and enabled in sq.

3. Execute a:

〈sq, a, sr, f〉
a−→ 〈s′q, sr, f〉 if sq

a−→ s′q.

4. Local uncontrollable action of q:

〈sq, a, sr, f〉
b−→ 〈s′q, sr, f〉, if sq

b−→ s′q with b ∈ Σq uncontrollable.

10

Figure 2: Simulation of Aq and Ar by AOq .

5. Synchronization between q and p 6= r

(sp, 〈sq, a, sr, f〉)
b−→ (s′p, 〈s′q, sr, f〉) if (sp, sq)

b−→ (s′p, s
′
q).

Here b ∈ Σp ∩ Σq is uncontrollable (since all communication actions
are uncontrollable).

6. Local action of r:

〈sq, a, sr, f〉
b−→ 〈sq, a, s′r, f ′〉, if sr

b−→ s′r and b is allowed by f.

The r-local strategy f ′ from s′r is obtained from f , by executing b. added f’added f’

7. Synchronization between q and r:

〈sq, a, sr, f〉
b−→ 〈s′q, s′r〉 if (sq, sr)

b−→ (s′q, s
′
r).

Here b ∈ Σq ∩ Σr, it is uncontrollable.

To summarize, in ΣOq we have all actions of Σr and Σq, but they become
uncontrollable. The new actions of process q in plant AO are:

• controllable action ch(f) ∈ Σsys, for every local r-strategy f ,

• controllable action ch(a), for every controllable a ∈ Σq.

The correctness condition for process q in AO is:

1. The correct infinite runs of q in AO are those that have the projection
on transitions of Aq correct with respect to Corr q, and either: (i) the
projection on transitions of Ar is infinite and correct with respect to
Corr r; or (ii) the projection on transitions of Ar is finite and for f, sr
appearing in almost all states of q of the run we have that from sr all
sequences respecting strategy f end in a state from Tr.

11

2. TOq contains states 〈sq, sr, f〉 such that sq ∈ Tq, and sr ∈ Tr.

Item 1(ii) in the definition of correct runs is to cater for the case where
q progresses alone till infinity and blocks r, even though r could reach a
terminal state in a couple of moves. Clearly, item 1 can be expressed as an
ω-regular condition.

Observe also the need to schedule actions of process q, using ch(a) ac-
tions, before the actions of process r. The reason is the following. First,
we need to make all r-actions uncontrollable, so that the environment could
choose any play respecting the chosen r-local strategy. If we allowed control-
lable q-actions at the same time as r actions then the strategy for automaton
AO would be to propose nothing and force the environment to play r-actions.
This would allow the controller for AO to get information that is impossible
to obtain in A.

The correctness of this construction is stated in the theorem below, whose
proof will be given in the next two subsections.

Theorem 3.7 For every r-short Zielonka automaton A and every local, ω-
regular correctness conditions: there is a correct controller for A iff there is
a correct controller for AO.

3.2 Correctness of the reduction

3.2.1 From C to CO

We want to construct from a correct covering controller for A a correct
covering controller for AO. We start with some notation.

Definition 3.8 (run, state, runO, stateO) Given two Zielonka automata C
over (Σ, dom) and CO over (ΣO, loc). For w ∈ Σ∞ we denote by run(w) the
sequence of transitions of C when reading w; observe that run(w) may not be
defined since C may not be complete. For finite w let state(w) be the last state
in run(w). By runp(w) we denote the projection of run(w) on transitions
of process p. Similarly we define runO(w′), stateO(w′) and runOp (w′) for CO
and w′ ∈ (ΣO)∞.

By Lemma 3.5 we can assume that we have a correct covering controller
C for A. We show how to construct a correct controller CO for AO. This will
give the left to right implication of Theorem 3.7.

Remark 3.9 Some simple observations about C.

1. We may assume that from every state of C there is at most one tran-
sition on a local controllable action. If there were more than one, we
could arbitrary remove one of them. This will reduce the number of
maximal runs so the resulting controller with stay correct.

12

2. C determines for every state c of Cr a local r-strategy f from π(c):

if c = c0
a1−→ c1

a2−→ · · · ak−→ ck, π(ci) = si and ai ∈ Σloc
r for all i,

then f(a1 · · · ak) = a, where a ∈ Σsys
r is a (unique) controllable action old:

f(c0 · · · ck) =
a

old:
f(c0 · · · ck) =
a

possible from ck. This strategy may have memory, but all the (local)
plays respecting f are of bounded length, assuming that A is r-short.

The components COp for p 6= q are just Cp, and the initial state is the
same. The component COq is described below. Its states are of the form
(cq, cr), (cq, cr, f) and (cq, a, cr, f) with cq ∈ Cq, cr ∈ Cr, a ∈ Σsys

q , and local
r-strategy f from π(cr). Its initial state is (c0

q , c
0
r), with c0

q , c
0
r initial states

of Cq, Cr.
The transitions of COq ensure the right choice of a local strategy and of a

local action:

• Choice of r-strategy:

(cq, cr)
ch(f)−→ (cq, cr, f)

where f is the local r-strategy from π(cr) determined by C in state cr.

• Choice of a (local) controllable q-action:

(cq, cr, f)
ch(a)−→ (cq, a, cr, f)

For a ∈ Σsys
q unique such that cq

a−→ c′q, for some c′q. If there is no
such transition then we put some arbitrary fixed action a0 ∈ Σsys

q .

The other transitions of COq are on uncontrollable actions, they just reflect
the structure of AO:

• Execution of the chosen controllable q-action:

(cq, a, cr, f)
a−→ (c′q, cr, f) if cq

a−→ c′q in Cq.

• Execution of an uncontrollable local q-action:

(cq, a, cr, f)
b−→ (c′q, cr, f) if cq

b−→ c′q in Cq, where b ∈ Σenv
q ∩ Σloc

q .

• Communication between q and p 6= r:

(cp, (cq, a, cr, f))
b−→ (c′p, (c

′
q, cr, f)) if (cp, cq)

b−→ (c′p, c
′
q) in C.

• Local move of r: changed
2nd f
into f’

changed
2nd f
into f’(cq, a, cr, f)

b−→ (cq, a, c
′
r, f
′) if cr

b−→ c′r in Cr, where b ∈ Σloc
r .

The r-local strategy f ′ from π(c′r) is obtained from f after executing
b.

13

• Communication between q and r

(cq, a, cr, f)
b−→ (c′q, c

′
r) if (cq, cr)

b−→ (c′q, c
′
r) in C.

Lemma 3.10 If C is a covering controller for A then CO is a covering
controller for AO. The covering function is

πO(cq, cr) =(π(cq), π(cr))

πO(cq, cr, f) =(π(cq), π(cr), f)

πO(cq, a, cr, f) =(π(cq), a, π(cr), f) .

For the correctness proof we will need one more definition:

Definition 3.11 (hide) For w ∈ (ΣO)∞ we let hide(w) ∈ Σ∞ be the se-
quence obtained by removing actions from ΣO \ Σ.

Observe that by construction of CO if runO(w) is defined then in w there
can be at most two consecutive q-actions from ΣO \ Σ.

Lemma 3.12 Let w ∈ (ΣO)∗. If runO(w) is defined then so is run(hide(w)).
Moreover, letting cO = stateO(w) and c = state(hide(w)), we have that (i)
cOp = cp for all p 6= q, r, and (ii) cOq is either (cq, cr), or (cq, cr, f), or
(cq, a, cr, f); where a and f are determined by cq and cr as follows:

• a is the unique controllable q-action from cq in C (or a0 if there is
none).

• f is the local r-strategy determined by C in cr.

Proof. The proof is by induction on the length of w. It follows by direct
examination of the rules. �

Lemma 3.13 Assume that w ∈ (ΣO)∞. For every process p 6= q we have
runOp (w) = runp(hide(w)). Concerning runOq (w): if we project it on transi-
tions of Cq we obtain runq(hide(w)); if we project it on transitions of Cr we
obtain runr(hide(w)).

Proof. Directly from the previous lemma. �

Lemma 3.14 If C is a correct covering controller for A then CO is a correct
covering controller for AO.

Proof. Since C is a correct covering controller we have that all maximal
runs of C are correct w.r.t A. By Lemma 3.10 we know that CO is a covering
controller, so it is enough to show that all maximal runs of CO are correct
w.r.t. AO.

14

Take a maximal run in CO, say on w ∈ (ΣO)∞. The first obstacle is that
run(hide(w)) may be not maximal in C. This can only happen when there
are infinitely many q-actions in w, but only finitely many r-actions. Then we
have w = v1v2 and there are no r-actions in v2. Let stateOq (v1) = (cq, a, cr, f).
We have that cr and f appear in all stateOq (v1v

′), for every prefix v′ of v2.
The run run(hide(w)) is not maximal when there is at least some local
action of Cr enabled in cr. Let x be a maximal sequence of local r-actions
that is possible in Cr from state cr. Since A is r-short, every such sequence
is finite. Moreover we choose x in such a way that it brings Cr into a state
not in Tr (if it is possible). We get that u = v1xv2 also defines a maximal
run of CO, but now the run on hide(u) is maximal in C. Notice that runO(u)
satisfies CorrO iff runO(w) does: the difference is the sequence x, and we
have chosen, if possible, a losing sequence.

We need to show that the run of AO on u satisfies CorrO using the fact
that the run on hide(u) satisfies Corr . For p 6= q, Lemma 3.13 tells us that
runOp (u) is the same as runp(hide(u)). Since CorrOp and Corrp are the same,
we are done.

It remains to consider runOq (u). If there are finitely many q-actions in
u ∈ (ΣO)∞ then u = u1u2 with no q-action in u2. Consider stateOq (u1) =
(cq, a, cr, f). We have that stateq(hide(u1)) = cq and stater(hide(u1)) = cr.
As there are no q-actions in u2, and runq(u) satisfies Corr q, we must have
π(cq) ∈ Tq and π(cr) ∈ Tr. This shows that runOq (u) satisfies CorrOq .

If there are infinitely many q-actions in u ∈ (ΣO)∞, we still have two
cases. The first is when there are infinitely many actions from Σr as well.
Then runOq (u) satisfies CorrOq if the corresponding runs runq(hide(u)) and
runr(hide(u)) satisfy Corr q and Corr r, respectively. This is guaranteed by
our assumption that run(hide(u)) satisfies Corr .

The last case is when in u ∈ (ΣO)∞ we have infinitely many q-actions and
only finitely many actions from Σr. Then u = u1u2 with no actions from Σr

in u2. We get stateOq (u1) = (cq, a, cr, f) with both cr, f appearing in all the
further states of the run. Since runr(hide(u)) satisfies Corr r, we have that
π(cr) ∈ Tr. But then, by the construction of u, there is no Σr-transition
possible from cr (and neither from π(cr) in AOr , since CO is covering). This
means that runOq (u) satisfies CorrOq .

�

3.3 From DO to D

Given a correct covering controller DO for AO we will construct a correct
controller D for A. This property is stated in Lemma 3.21 below. The
lemma gives the right-to-left implication of Theorem 3.7.

The components Dp for p 6= q, r will be the same as in DO. So it remains
to define Dq and Dr.

The states of Dq and Dr will be constructed from states of DOq . We will

15

need only certain states of DOq , namely those dq whose projection πO(dq) has
four components, we call them true states of DOq :

ts(DOq) = {dq ∈ DOq | πO(dq) is of the form (sq, a, sr, f)}.

The set of states of Dq is just ts(DOq), while the states of Dr are pairs (dq, x)

where dq is a state from ts(DOq) and x ∈ (Σloc
r)∗ is a sequence of local r-

actions that is possible from dq in DO, in symbols dq
x−→. We will show

later that Dr is finite. The initial state of Dq is the state d1
q reached from

the initial state of DOq by the (unique) transitions of the form ch(f0), ch(a0).
The initial state of Dr is (d1

q , ε).
The local transitions for Dr are very easy to describe

(dq, x)
b−→ (dq, xb) if b ∈ Σloc

r and dq
xb−→.

Before defining the transitions of Dq let us observe that if dq ∈ DOq is not
in ts(DOq) then only one controllable transition is possible from it. Indeed, as
DO is a covering controller, if πO(dq) is of the form (sq, sr) then there can be
only an outgoing transition on a letter of the form ch(f). Similarly, if πO(dq)
is of the form (sq, sr, f) then only a ch(a) transition is possible. Since both
ch(f) and ch(a) are controllable, we can assume that in DOq there is no state
with two outgoing transitions on a letter of this form. For a state dq ∈ DOq
not in ts(DOq) we will denote by ts(dq) the unique state of ts(DOq) reachable

from dq by one or two transitions of the kind
ch(f)−→ or

ch(a)−→ , depending on the
cases discussed above.

We now describe the q-actions possible in D.

• Local action of q:

dq
b−→ ts(d′q) if dq

b−→ d′q in DOq , b ∈ Σloc
q .

• Communication between q and p 6= r:

(dp, dq)
b−→ (d′p, ts(d′q)) if (dp, dq)

b−→ (d′p, d
′
q) in DO.

• Communication between q and r:

(d1
q , (d

2
q , x))

b−→ (ts(d′′q), (ts(d′′q), ε))

if d1
q

x−→ d′q
b−→ d′′q in DOq , b ∈ Σq ∩Σr; observe that

x−→ is a sequence
of transitions.

In the last item the transition does not depend on d2
q . We will show later

that with respect to x, that is a sequence of local r-actions, both d1
q and

16

Figure 3: Decomposing controller DOq into Dq and Dr.

d2
q carry the same information. Informally, d1

q has been reached from d2
q by

a sequence of actions of q that are either local or shared with p 6= r. The

condition d1
q

x−→ d′q
b−→ d′′q simulates the order of actions where all local

r-actions come after the other actions of q, then we add a communication
between q and r.

The next lemma says that D is a covering controller for A. Since A
is assumed to be r-short, the lemma also gives a bound on the length of
sequences in the states of Dr.

Lemma 3.15 If DO is a covering controller for AO then D is a covering
controller for A.

Proof. We need to define the projection function π using the projection
function πO. For p 6= q, r set π = πO. For Dq we define π(dq) = sq where sq is
the state of Aq in πO(dq). For Dr and its state (dq, x) we define π(dq, x) = s′r
where dq

x−→ d′q and s′r is the state of Ar in πO(d′q).
We need to check that the transitions defined above preserve this pro-

jection function; namely for every process p: if dp
b−→ d′p in Dp then

π(dp)
b−→ π(d′p) in Ap; and similarly for communication actions. The state-

ment is obvious if the move is in components other than q or r. We are left
with four cases:

• Local move of q, namely dq
b−→ d′q. We have dq

b−→ d′′1
ch(a′)−→ d′q in DO

for some a′, since d′q = ts(d′′q). By the fact that DO covers AO and the
definition of moves of the latter automaton we have in AO:

πO(dq) = 〈sq, a, sr, f〉
b−→ 〈s′q, sr, f〉

ch(a′)−→ 〈s′q, a′, sr, f〉 = πO(d′q) ,

and by definition of AO we know that sq
b−→ s′q is in A.

• Communication between q and p 6= r is similar.

17

• Local move of r: (dq, x)
b−→ (dq, xb). By definition we know that from

dq it is possible to do in DO the sequence of actions xb, that is dq
x−→

d1
q

b−→ d2
q . We have πO(dq) = (sq, a, sr, f), πO(d1

q) = (sq, a, s
1
r , f1) and

πO(d2
q) = (sq, a, s

2
r , f2); since xb is a sequence of local r-actions the

other components do not change. We have s1
r

b−→ s2
r by definition of

AOq , and πO(dq, x) = s1
r , π

O(dq, xb) = s2
r , as required. updatedupdated

• Communication between q and r: (d1
q , (d

2
q , x))

b−→ (ts(d′′q), (ts(d′′q), ε)).

By definition this is possible only when d1
q

x−→ d′q
b−→ d′′q in DOq . Since

DO is covering we get the following sequence of transitions in AO: updatedupdated

πO(d1
q) = 〈sq, a, sr, f〉

x−→ 〈sq, a, s1
r , f
′〉 b−→ 〈s′q, s′r〉

ch(g)−→

〈s′q, s′r, g〉
ch(a′)−→ 〈s′q, a′, s′r, g〉 = πO(ts(d′′q))

So we have (sq, s
1
r)

b−→ (s′q, s
′
r) in A and π(d1

q) = sq, π(ts(d′′q)) = s′q,
π(ts(d′′q), ε) = s′r. We claim that π(d2

q , x) = s1
r , and for this we need to

observe a property of the runs of D (proved by induction on the length of
the run). The intuition for the property below is that dq was reached from
d′q by actions that do not involve r. addedadded

Property (*) If from the initial state D can reach a global
state with dq and (d′q, x) at the coordinates corresponding to q
and r, respectively, then the sr- and f -components of the πO

projections of dq and d′q are the same: πO(dq) = (sq, a, sr, f) and
πO(d′q) = (s′q, a

′, sr, f), for some sq, s
′
q, a, a

′, sr, f .

From Property (*) it follows that π(d2
q , ε) = sr, hence π(d2

q , x) = s1
r since

sr
x−→ s1

r .
It remains to check the controllability condition for D. For components

other than q and r this is obvious. We have four cases to examine.

First, let us take a state (dq, x) of Dr. Suppose that π(dq, x)
b−→ s′r is

a local, uncontrollable transition in Ar. We need to show that (dq, x)
b−→

(dq, xb) is possible in Dr. Since (dq, x) is a state of Dr we have dq
x−→ d′q

in DOq . Moreover, πO(d′q) is of the form (sq, a, sr, f) and π(dq, x) = sr. We

get that (sq, a, sr, f)
b−→ (sq, s

′
r, f
′) exists in AOq . Since DO satisfies the updatedupdated

controllability condition, in DOq there must be a transition d′q
b−→ d′′q for

some d′′q . Hence, by definition, (dq, x)
b−→ (dq, xb) exists in Dr.

For the next case we take a state dq of Dq and suppose that π(dq)
b−→

s′q is a local, uncontrollable transition in Aq. We need to show that a b-
transition is possible from dq in Dq. We get πO(dq) is of the form (sq, a, sr, f),

18

and π(dq) = sq. This means that the transition (sq, a, sr, f)
b−→ (s′q, sr, f)

is in AOq . Since DO is covering, we get dq
b−→ d′q for some d′q in DOq . But

then dq
b−→ ts(d′q) in Dq by definition.

The case of communication of q with p 6= r is similar to the above.
The last case is a communication between q and r. So take (d1

q , (d
2
q , x))

and suppose (π(d1
q), π(d2

q , x))
b−→ (s′q, s

′
r) in A. We have that πO(d1

q) is
of the form (s1

q , a1, sr, f) and πO(d2
q) is of the form (s2

q , a2, sr, f); the sr-
and f -components are the same by Property (*). Moreover, by definition
π(d1

q) = s1
q holds. Let s1

r = π(d2
q , x), thus sr

x−→ s1
r . These observations

allow us to obtain the following sequence of transitions in AO: updatedupdated

(s1
q , a1, sr, f)

x−→ (s1
q , a1, s

1
r , f1)

b−→ (s′q, s
′
r)

Since DO satisfies the controllability condition we must have transitions

d1
q

x−→ d′q
b−→ d′′q in DO, with πO(d′′q) = (s′q, s

′
r). This means (d1

q , (d
2
q , x))

b−→
(ts(d′′q), (ts(d′′q), ε)) in D and π(ts(d′′q)) = s′q, π(ts(d′′q), ε) = s′r. �

As in the previous subsection we introduce the notation for runs and
states.

Definition 3.16 For w ∈ Σ∞ let run(w) be the sequence of transitions of
D when reading w. Observe that run(w) may not be always defined. Let
state(w) be the last state in run(w). By runp(w) we denote the projection
of run(w) on transitions of process p. Similarly for w ∈ (ΣO)∞ we define
runO(w), stateO(w) and runOp (w).

For the correctness lemma we will need one more definition, that will
allow to relate runs of D to runs of DO.

Definition 3.17 (slow) We define slow r(D) as the set of all sequences la-
belling runs of D of the form

y0x0a1 · · · akykxkak+1 . . . or y0x0a1 · · · yk−1xk−1akxkyω ,

where ai ∈ Σq ∩ Σr, xi ∈ (Σloc
r)∗, yi ∈ (Σ \ Σr)

∗, and yω ∈ (Σ \ Σr)
ω

Lemma 3.18 A covering controller D is correct for A iff for all w ∈
slow r(D), run(w) satisfies the correctness condition inherited from A.

Proof. Observe first D is r-short, since A is r-short and D is covering.
Thus every sequence labelling some run of D either has finitely many r-
actions or infinitely many communications of r with q.

Secondly, note that every sequence w labelling some run of D can be
rewritten into a sequence w′ from slow r(D) by repeatedly replacing factors
ab by ba, if dom(a)∩ dom(b) = ∅. We have that run(w′) is also defined and

19

runp(w) = runp(w
′) for every process p. Therefore for correctness it will be

enough to reason on sequences from slow r(D). �
For every sequence w ∈ slow r(D) as in Definition 3.17 we define the

sequence χ(w) ∈ (ΣO)∞ by induction on the length of w:

χ(ε) = ch(f0) ch(a0) f0 and a0 determined by the initial q-state of DO ,

χ(wb) =


χ(w)b if b 6∈ Σq

χ(w)b ch(a) if b ∈ Σq \ Σr

χ(w)b ch(f) ch(a) if b ∈ Σq ∩ Σr.

where a and f are determined by stateOq (χ(w)b). The next lemma says,
among other, that this definition makes sense, that is, stateOq (χ(w)b) is de-
fined when needed.

Lemma 3.19 For every sequence w ∈ slow r(D) we have that runO(χ(w))
is defined. If w is finite then the states reached on w and χ(w) satisfy the
following:

1. statep(w) = stateOp (χ(w)) for every p 6= q, r.

2. Let w = y0x0a1 · · · akykxk, where ai ∈ Σq ∩ Σr, xi ∈ (Σloc
r)∗, and

yi ∈ (Σ \ Σr)
∗. Then stater(w) = (dq, xk) and stateq(w) = d′q, where

dq = stateOq (χ(y0x0a1 · · · ak)) and d′q = stateOq (χ(y0x0a1 · · · akyk)).

Proof. Induction on the length of w = y0x0a1 · · · akykxk. If w = ε then

stateq(ε) = d1
q and stater(ε) = (d1

q , ε) where d0
q

ch(f0) ch(a)−→ d1
q in Dq, which

shows the claim. Let w = w′b. If b /∈ (Σq ∪ Σr), then xk = ε, yk = y′b,

χ(w′b) = χ(w′)b, stateq(w
′b) = stateq(w

′)
ind.
= stateOq (χ(y0x0a1 · · · aky′)) =

stateOq (χ(y0x0a1 · · · aky′)b). Moreover, stater(w
′b) = stater(w

′)
ind.
= (dq, ε),

where dq = stateOq (χ(y0x0a1 · · · ak)). Finally, assuming that runO(χ(w′))
defined, observe that this run can be extended by a b-transition since it can
be in w and the concerned states are the same.

We consider the remaining cases:

1. Let b ∈ Σloc
r , then χ(w′b) = χ(w′)b and xk = x′b. We have stateq(w

′b) =

stateq(w
′)

ind.
= stateOq (χ(y0x0a1 · · · yk)) =: d′q. Moreover, stater(w

′) =
(dq, x

′), where dq = stateOq (χ(y0x0a1 · · · ak)). In Dr there is a transi-

tion (dq, x
′)

b−→ (dq, x
′b), which shows the claim about states. Finally

we justify that the run on χ(w′) in DO can be extended by a b. We

know that dq
x′b−→ and d′q

x′−→ in DO, and want to show that d′q
x′b−→.

This holds since DO is covering and since Property (*) guarantees that
the sr and f components of πO(dq) and πO(d′q) are the same.

20

2. Let b ∈ Σq \ Σr, so b is either local on q or a communication with
p 6= q, r. We have xk = ε and yk = y′b. Assume that b is local on
q. We have χ(w) = χ(w′)b ch(a), where a ∈ Σloc

q and dq are such

that dq = stateOq (χ(w′)) and dq
b−→ d1

q
ch(a)−→ d2

q in DO. By induction,
stateq(w

′) = stateOq (χ(y0x0a1 · · · aky′)) = dq, and by definition of Dq,

dq
b−→ d2

q = ts(d1
q). Thus stateq(w) = d2

q = stateOq (χ(w)) and the
claim about states is shown. The run on χ(w) in DO exists by the
definition of χ(w) from χ(w′).

The case of a communication with p 6= r is similar to the above.

3. Let b ∈ Σq ∩ Σr be a communication between q and r, thus ak = b
and xk = yk = ε. We have χ(w) = χ(w′)b ch(f) ch(a), where a, f

are such that stateOq (χ(w′)) = dq
b−→ d1

q
ch(f) ch(a)−→ d2

q . Let d′q =
stateOq (χ(y0x0a1 · · · ak−1)) and d′′q = stateOq (χ(y0x0a1 · · · ak−1yk−1)).
By induction, stateq(w

′) = d′′q and stater(w
′) = (d′q, xk−1). In D we

have a transition (d′′q , (d
′
q, xk−1))

b−→ (d2
q , (d

2
q , ε)) since d′′q

xk−1−→ dq
b−→

d1
q

ch(f) ch(a)−→ d2
q in DO. Thus, stateq(w) = d2

q = stateOq (χ(w)) and
stater(w) = (d2

q , ε) = (stateOq (χ(w)), ε), which shows the claim about
states. The run on χ(w) in DO exists by the definition of χ(w) from
χ(w′).

�

Lemma 3.20 If w ∈ slow r(D) and run(w) is maximal in D, then run(χ(w))
is maximal in DO.

Proof. Recall first that run(χ(w)) is not maximal only if for some
finite prefix x of χ(w), run(x) can be extended by some action a (and the
processes in dom(a) do not appear anymore in the remaining suffix of χ(w)).
From the definition of χ(w) it follows that it suffices to consider prefixes of
χ(w) of the form χ(u), where w = uv with u finite. By Lemma 3.19 we
note first that such an a cannot be on processes other than q or r, since
statep(u) = stateOp (χ(u)) for all p 6= q, r.

We consider the remaining cases, and assume u = y0x0a1 · · · akykxk:

1. Assume that χ(u) can be extended by some b ∈ Σloc
r in DO, and

let dq = stateOq (χ(y0x0a1 · · · ak)), d′q = stateOq (χ(y0x0a1 · · · akyk)), so

d′q
xkb−→ in DOq . By Lemma 3.19 we have stater(u) = (dq, xk) and by

Property (*), the sr- and f -components of πO(dq) and πO(d′q) are the

same. Since DO is covering, this means that dq
xkb−→, hence there is a

run on ubv in D so w was not maximal.

21

2. Assume that χ(u) can be extended by some b ∈ Σq \Σr and recall from
Lemma 3.19 that stateq(u) = dq, where dq = stateOq (χ(y0x0a1 · · · akyk)).
Consider u1 = y0x0a1 · · · akykb and assume that b is q-local (the case

of a communication with p 6= r is similar). We have dq
xk−→ d′q

b−→ in

DO from some d′q, and we want to show that dq
b−→ d′′q for some d′′q .

But this holds since DO is covering and the sq components of πO(dq)
and πO(d′q) are the same. So the run of w in Dq was not maximal,
since there is a run on ubv in D.

3. Assume that χ(u) can be extended by some b ∈ Σq ∩ Σr. Recall
from Lemma 3.19 that stateq(u) = d′q and stater(u) = (dq, xk), where
dq = stateOq (χ(y0x0a1 · · · ak)) and d′q = stateOq (χ(y0x0a1 · · · akyk)). We

have that stateOq (χ(u)) = d1
q where d′q

xk−→ d1
q , and d1

q
b−→ d2

q . Ac-

cording to the definition of D, there is a transition (d′q, (dq, xk))
b−→

(ts(d2
q), (ts(d2

q), ε)) in D, so that the run on w was not maximal.

Note that a run on χ(u) cannot be extended by actions of the form ch(a)
or ch(f), since DO is covering. So the above four cases exhaust all the
possibilities. �

Lemma 3.21 If DO is a correct covering controller for AO, then D is a
correct covering controller for A.

Proof. By Lemma 3.18 it is enough to show that for all w ∈ slow r(D),
run(w) satisfies Corr . By Lemmas 3.19 and 3.20 the run on χ(w) exists and
is maximal. Since DO is correct this run satisfies CorrO.

Consider a maximal run in D, labelled by some w ∈ slow r(D). It is of
one of the forms

y0x0a1 · · · akykxkak+1 . . . or y0x0a1 · · · akxkyω

where ai ∈ Σq ∩ Σr, xi ∈ (Σloc
r)∗, yi ∈ (Σ \ Σr)

∗, and yω ∈ (Σ \ Σr)
ω

By Lemma 3.19 runp(w) and runOp (χ(w)) are the same for p 6= q, r. Since
for such p also the correctness conditions of A and AO are the same, and
since runOp (χ(w)) satisfies CorrOp , so does runp(w).

Considering runq(w), Lemma 3.19 gives us stateq(y0x0a1 · · · akyk) =
stateq(y0x0a1 · · · akykxk) = stateOq (χ(y0x0a1 · · · akyk)) for every k. More-
over, theAq-component does not change when going from πO(χ(y0x0a1 · · · akyk))
to πO(χ(y0x0a1 · · · akykxk)). Thus, π(runq(w)) is equal to the projection on
Aq of πO(runq(χ(w))), so runq(w) satisfies Corr q.

It remains to consider runr(w). By Lemma 3.19 we have stater(y0x0a1 · · · akykxk) =
(dq, xk) with dq = stateOq (χ(y0x0a1 · · · ak)), for every k. Recall that π(dq, x)

was defined as the Ar-component of πO(d′q), where dq
x−→ d′q in DO. As-

sume first that w is of the form y0x0a1 · · · akykxkak+1 Observe that

22

π(runr(w)) is equal to the projection onAr of πO(runOq (χ(w))), thus runr(w)
satisfies Corr r because runOr (χ(w)) satisfies Corr r. Let now w be of the form
y0x0a1 · · · akxkyω. Since run(w) is maximal we have that stater(w) ∈ Tr,
again because runOr (χ(w)) satisfies Corr r.

�

4 Short automata

In this section we justify our restriction to r-short automata. Recall that
we have assumed that all controllable actions are local.We consider a tree
architecture with a leaf process r and its parent q. In this section we want
to simplify the r-component of A. We will show that we can assume that
the r-component is short (cf. Definition 3.2).

The first simplification step is to assume that the correctness condition
on r is a parity condition. That is, it is given by a rank function Ωr : Sr → N
and the set of terminal states Tr. We can assume this since every regular
language of infinite sequences can be recognized by a deterministic parity
automaton. So if the correctness condition of Ar is not parity, it suffices
to take the product of Ar and a deterministic parity automaton recognizing
the correctness condition of Ar.

The second simplification is to assume that the automaton A is r-aware
with respect to the parity condition on r. This means that the state of r
determines the biggest rank that has been seen since the last communication
of r with q. It is easy to transform an automaton to an r-aware one.

Recall that an automaton A is r-short if there is a bound on the number
of r-actions it can do without doing a communication with q. The goal of
this section is essentially to show that we can reduce the control problem to
the problem for r-short automata.

Recall that if C is a covering controller forA (cf. Definition 3.3)then there
is a function π : {Cp}p∈P → {Sp}p∈P, mapping each Cp to Sp and respecting

the transition relation: if cdom(b)
b−→ c′dom(b) then π(cdom(b))

b−→ π(c′dom(b)).

Definition 4.1 (r-memoryless controller) A covering controller C for
A is r-memoryless if for every pair of states cr 6= c′r of Cr:

if there is a path on local r-actions from cr to c′r then π(cr) 6=
π(c′r).

Intuitively, a controller can be seen as a strategy, and r-memoryless
means that it does not allow the controlled automaton to go twice through
the same r-state between two consecutive communication actions of r and
q.

23

Lemma 4.2 Fix an r-aware automaton A with a parity correctness condi-
tion for process r. If there is a correct controller for A then there is also
one that is covering and r-memoryless.

Before proving the lemma we will state some preparatory definitions and
facts.

By Lemma 3.5 we can assume that we have a covering controller for A.
We will see in the following how to convert this covering controller to an
r-memoryless one. Let us fix an arbitrary linear order on the set Cr of states
of the automaton Cr. Let C↓locr denote the graph obtained from Cr by taking
Cr as set of vertices and the transitions on local r-actions as edges. Since
C is a covering controller, every sequence of actions in C can be performed
in the controlled plant. Since C is correct for A, every infinite sequence of
local r-actions in the controlled plant satisfies the parity condition. We can
lift this parity condition directly to C thanks to the fact that C is covering.
We obtain that every infinite path in C↓locr satisfies the parity condition.

Before proceeding it will be convenient to recall some facts about par-
ity games, in particular the notion of signature (or progress measure) [18].

We consider C↓locr as a parity game. Suppose that it uses priorities from
{1, . . . , d}. A signature is a d-tuple of natural numbers, that is, an element

of Nd. We will be interested in assignments of signatures to states of C↓locr ,
that is in functions sig : Cr → Nd. Signatures are ordered lexicographically.
We write sig(c) ≥ sig(c′) if the signature assigned to c is lexicographically
bigger or equal to that of c′. For i ∈ {1, . . . , d} we write sig(c) ≥i sig(c′) if
the signature of c truncated to the first i positions is lexicographically bigger
or equal to the signature of c′ truncated to the first i positions. For a fixed
assignment of signatures sig and two states c, c′ of Cr we write c Bsig c

′ if

sig(c) ≥Ω(c) sig(c′) and the inequality is strict if Ω(c) is odd.

We say that an assignment of signatures sig : Cr → Nd is consistent if for
every edge (c, c′) of C↓locr we have c Bsig c

′. We now recall a fact that holds

for every finite parity game, but we specialize them to C↓locr .
Fact. Every path of C↓locr satisfies the parity condition iff there is a consistent
assignment of signatures to states of C↓locr .

After these preparations we can define for every state cr of Cr its repre-
sentative state in Cr, denoted rep(cr), as the unique state c′r satisfying the
following conditions:

1. π(cr) = π(c′r) and c′r is reachable from cr;

2. for every c′′r with π(cr) = π(c′′r): if c′′r is reachable from c′r then it
belongs to the same SCC as c′r;

3. among all states satisfying points (1) and (2) above we choose the
smallest one in our fixed arbitrary ordering among those with smallest

24

possible signature. So we order first on the signature and then on the
fixed arbitrary ordering.

Remark 4.3 For every c′r reachable in C↓locr from rep(cr): if π(c′r) = π(cr)
then rep(c′r) = rep(cr). Indeed, by conditions (1) and (2) above rep(c′r) and
rep(cr) must be in the same SCC. But then, the representative is uniquely
determined by signature and ordering.

We define now Cmr from Cr by redirecting every transition on a local r-
action to representatives: if the transition goes to a state cr we make it go
to rep(cr). Of course, Cm is still covering and Remark 4.3 implies that it is
r-memoryless.

Remark 4.4 If we have a transition cr
b−→ c′r in Cmr then there is a sequence

z ∈ Σloc
r of local r-actions and some state c′′r such that cr

b−→ c′′r
z−→ c′r in

Cr.

Remark 4.4 allows to map paths in Cmr into paths in Cr. Consider a state
c1 of Cmr and a finite sequence x ∈ (Σloc

r)∗ such that x = b1 · · · bk labels some

path from c1 in Cmr , say u = c1
b1−→ c2

b2−→ c3 · · ·
bk−→ ck+1. Remark 4.4 gives

us a sequence rep−1(c1, x) = b1z1b2z2 . . . bkzk, and a corresponding path in

Cr: c1
b1z1−→ c2

b2z2−→ c3 . . .
bkzk−→ ck+1, for some zi ∈ (Σloc

r)∗. In particular the
two paths end in the same state. Of course rep−1(c1, x) is defined similarly
for infinite sequences x.

Proof of Lemma 4.2. We are ready to show that Cm obtained from
C by replacing Cr with Cmr satisfies the parity condition. For this take a
maximal run and suppose towards a contradiction that it does not satisfy
the parity condition.

If on this run there are infinitely many communications between q and
r then there is an equivalent run whose labelling has the form:

u = y0x0a1y1x1a2 . . . (1)

where ai ∈ Σq ∩ Σr, xi ∈ (Σloc
r)∗, and yi ∈ (Σ \ Σr)

∗. Here two runs are
equivalent means that the projections of the two runs on every process are
identical. In particular, if two runs are equivalent and one of them satisfies
the correctness condition then so does the other.

Let cir = stateC
m

r (y0x0a1 · · · ai) be the state of Cmr reached on the prefix
of u up to ai. Let x′i = rep−1(cir, xi). We get that the sequence

u′ = y0x
′
0a1y1x

′
1a2 . . . (2)

is a labelling of a maximal run in C. The projections on processes other
than r are the same for u and u′. It remains to see if the parity condition

25

on r is satisfied. We have cir
xi−→ ci+1

r in Cmr and cir
x′i−→ ci+1

r in Cr. Since
we lifted priorities to C and Cm (being both covering), the r-awareness of A
lifts to C and Cm, so the same maximal rank is seen when reading xi and
x′i. This shows that the parity condition on r is satisfied on the run of Cm
on u, since it is satisfied by the run of C on u′.

Consider now a maximal run with finitely many communications between
q and r. There is an equivalent one labeled by a sequence of the form:

u = y0x0a1y1x1a2 · · · akykxk (3)

where yk and xk are potentially infinite. Since we have only modified the
r-component of the controller, it must be xk that does not satisfy the parity
condition on r.

Suppose first that xk = b1b2 · · · is infinite. Take the run c1
b1−→ c2

b2−→
c3 . . . in Cmr , where c1 = stateC

m

r (y0x0a1 · · · ak). We have a run c1
b1−→

c′2
x2−→ c2

b2−→ c′3
x3−→ c3 · · · in Cr, where rep(c′i) = ci and xi ∈ (Σloc

r)∗ is
the accessibility path, as given by Remark 4.4. We have ci Bsig c

′
i+1 for all

i = 1, 2, . . . because there is an edge from ci to c′i+1 in C↓locr . Recall that
ci = rep(c′i). The definition of representatives implies that either sig(c′i) ≥
sig(ci) or ci is in a strictly lower SCC than c′i. Since lowering a component
can happen only finitely many times we have sig(c′i) ≥ sig(ci) for all i bigger
than some n. We get ci Bsig ci+1 for i > n which implies that xk satisfies
the parity condition. A contradiction.

If xk is finite then we define the sequence u′ = y0x
′
0a1y1x

′
1a2 · · · akykx′k

in L(C), as in the first case. Since u was maximal in Cm, we have that u′ is
maximal in C (if r can do an action in u′, the same can be done in u, since u
and u′ end in the same state). Thus the r-state reached in A by u belongs
to Tr, since this holds already for u′. We get again a contradiction.

We will use Lemma 4.2 to reduce the control problem to that for r-short
automata.

Given A we define a r-short automaton As. All its components will be
the same but for the component r. The states Ssr of r will be sequences
w ∈ S+

r of states of Ar without repetitions, plus two new states >,⊥. For a

local transition s′r
b−→ s′′r in Ar we have in Asr transitions:

ws′r
b−→ws′rs′′r if ws′rs

′′
r a sequence without repetitions

ws′r
b−→> if s′′r appears in w and the resulting loop is even

ws′r
b−→⊥ if s′′r appears in w and the resulting loop is odd

There are also communication transitions between q and r:

(sq, ws
′
r)

b−→ (s′q, s
′′
r) if (sq, s

′
r)

b−→ (s′q, s
′′
r) in A

26

Notice that w disappears in communication transitions. The parity condi-
tion for As is also rather straightforward: it is the same for the components
other than r, and for Ar it is

• Ωs(wsr) = Ω(sr),

• Tsr = {>} ∪ {wsr : sr ∈ Tr}.

Lemma 4.5 The length of every sequence of local actions of process r in
As is bounded by the number of states of Ar.

Theorem 4.6 There is a correct covering controller for A iff there is one
for As.

Proof. Consider the implication from left to right. Let C be a correct cover-
ing controller for A. By Lemma 4.2 we can assume that it is r-memoryless.
We show that C is also a covering correct controller for As. We will concen-
trate on correctness, since the covering part follows by examination of the
definitions.

Let us take some maximal run runs(u) of As×C, and suppose by con-
tradiction that it does not satisfy the parity condition of As. By definition
run(u) is a run of A×C, but it may not be maximal. We have by construc-
tion of As that statesp (u) = statep(u) for p 6= r and that stater(u) is the

last element of statesr (u). (Recall that statesp (u), statep(u) denote the state

reached on u by As × C and A× C, resp.)
Suppose that run(u) is not a maximal run of A × C. We will extend it

to a maximal run run(u). If run(u) ended in ⊥ in the r-component of As
then we could extend run(u) to a run of A × C not satisfying the parity
condition (here we use that C is memoryless, so the odd loop in A exists
also into one in A× C). So the only other possibility is that run(u) ends in
>. In this case it is possible to extend run(u) to a complete run of A×C by
adding the even loop in the r-component. This makes r satisfy the parity
condition. Let run(u) be the resulting run.

Now observe that if a parity condition for some process p 6= r is violated
on u then on u the same condition is violated. If it is violated on r then the
only remaining possibility is that there are finitely many r-actions in u, and
the state reached on u is wsr with sr 6∈ Tr. But then u is a maximal run of
A× C and is not well terminated on r either, a contradiction.

For implication from right to left we take a covering controller Cs for
As and construct a controller C for A. The controller C will be obtained
by modifying the r-component of Cs. The states of Cr will be sequences
of states of Csr . They will be of bounded length. We will have that if
cs1 · · · c

s
k is a state of Cr then πs(csk) is the state s1 · · · sk of Asr , where

πs(csj) = s1 · · · sj , for j = 1, . . . , k. Moreover, we define π(cs1 · · · c
s
k) = sk.

The transitions of Cr are

27

• wcs b−→ wcsds if cs
b−→ ds in Csr and πs(ds) 6= >.

• cs1 · · · c
s
k

b−→ cs1 · · · c
s
j if csk

b−→ cs in Csr , πs(cs) = > and j is such

that πs(csk) is s1 · · · sk with sk
b−→ sj in A.

Notice that since Cs satisfies the parity condition ⊥ cannot be reached.
Observation 1: The construction of C guarantees that every sequence

of local r-actions x of C has a corresponding (possibly shorter) sequence x′

of Cs. If the sequence in Cs starts in s1 and finishes in s2 then the sequence
in C starts also in s1, but now considered as a sequence of length 1, and
finishes in a sequence ending in s2. Since A is r-aware and C and Cs are
both covering, this means that the maximal rank seen on both sequences is
the same.

We need to show that all maximal runs of A × C satisfy the parity
condition. For contradiction suppose that run(u) does not.

If there are infinitely many communications between q and r on u then
we write it as

u = y0x0a1y1x1a2 . . . (4)

where ai ∈ Σq ∩ Σr, xi ∈ (Σloc
r)∗, and yi ∈ (Σ \ Σr)

∗. Now for every xi,
Observation 1 gives x′i so that the maximal ranks on xi and x′i are the same,
so for

u′ = y0x
′
0a1y1x

′
1a2 . . . (5)

run(u′) is a maximal run of Cs. This gives a run violating the parity con-
dition of Cs.

If there are finitely many communications between q and r on u then we
write it as

u = y0x0a1y1x1a2 . . . akykxk (6)

where yk and xk are potentially infinite. The only complicated case is when
xk is infinite. We need to show that the run of Cr on xk satisfies the parity
condition. Recall that the states of Cr are sequences of states of Csr . More-
over the length of this sequences is bounded. Take the shortest sequence
appearing infinitely often in xk. The biggest rank seen between consecutive
appearances of this sequence is even, since the path can be decomposed into
(several) even loops of A. �

The following corollary may be interesting for the analysis of the com-
plexity.

Corollary 4.7 In the r-short plant As the r-controller may be chosen mem-
oryless since there are no infinite local r-plays.

Remark 4.8 We claim that the complexity of the reduction from A to AO
is polynomial in the size of Aq and simply exponential in the size of Aq. The
reason is as follows. States of Asr are simple paths (i.e., without repetition

28

of states) of Ar. When going from A to AO, the states of AOq contain r-local
strategies f : (Sr)

∗ → Σsys
r . Putting things together, in f we deal with paths

of Asr (mapping them to Σsys
r). But the latter can be written more succinctly

as paths of Ar.

5 Controlling distributed programs

We sketch in this section an application of our main result to the control
of multi-threaded Boolean programs with atomic read-write-modify instruc-
tions. The schema is the following. We introduce a process for every vari-
able. An access to a shared variable can be modelled by a synchronisation.
This way from a program we obtain a Zielonka automaton. We then find a
controller for the automaton, and implement rendez-vous from the controller
using the read-write-modify instructions we are given.

We consider as an example multi-threaded programs using the compare-
and-swap (CAS) instruction. This instruction has 3 parameters: CAS(x:
variable; old, new : int). Its effect is to return the value of x and at the
same time set the value of x to new but only if the value of x was old. This
operation is more general than the compare-and-set instruction, that returns
a single bit telling whether the value has changed. It is easier to deal with
the more powerful instruction since usually there is no difficulty to encode
the semantics of an instruction as a rendez-vous of a Zielonka automaton,
but it is more challenging to encode a rendez-vous by read-write instructions.

Let us see how to model a multi-threaded boolean program with CAS
instructions by a Zielonka automaton. Each thread t is represented by a
process, say Pt. Each shared variable x is modelled by a process Px, the
state of which represents the value of x. The access of thread t to variable x
via a CAS operation corresponds to a shared transition of Pt and Px. Shared
transitions are labelled CASt,x(i, k), taking as parameters the thread name
t, the variable name x and two values i, k:

〈i, s〉 CASt,x(i,k)−→ 〈k, s′〉 and 〈i, s〉 CASt,x(j,k)−→ 〈i, s′〉 , if j 6= i .

where we use the notation 〈i, s〉 for the pair of states of Px and Pt.
LetA be the Zielonka automaton corresponding to a given program using

CAS instructions. We can apply Theorem 3.1 to A if (i) every variable is ei-
ther local or shared by two threads, and (ii) the communication architecture
given by processes Pt, Px, is acyclic. If A is controllable then Theorem 3.1
gives us a correct covering controller C. It is a Zielonka automaton and we
need to translate it back into a multi-threaded program. In the new pro-
gram, each shared variable takes as values the states of the Px-component
of C. There is also an additional local variable ct for each thread t, contain-
ing the state of the Pt-component of C. Observe also that in our setting,

29

all actions involving processes associated with variables, are uncontrollable.
Thus, the Px-component of the controller C forbids no action.

The figure below shows how to simulate an action a shared between Pt

and Px, by a subprogram with CAS-instructions. Note first that given a
state q of Px, if there is some action a enabled in q that is shared by Pt and
Px, then all transitions enabled in q are a-transitions. This is due to the
fact that C is covering and A is obtained from a deterministic program. Let
(v1, q)

a−→ (v′1, q
′
1), . . . , (vk, q)

a−→ (v′k, q
′
k) be the enabled transitions in q.

We use below value 0 as a value that does not occur in the range of x in A.

if (ct = q) then {
(1) vold := CASt,x(0, 0);
(2) while (vold 6= CAS(v1, v

′
1)) and · · · and vold 6= CAS(vk, v

′
k)) do

(3) vold := CASt,x(0, 0)
(4) end-while
(5) ct := q′i where i such that vold = vi}.

Line (1) above reads the current value of x into vold. Line (2) tries to set
the value of x to a new value as required by the transition function on a. This
can fail, since another process might have changed x in the meantime. If
some test in line (2) succeeds, say for vold = vi then line (5) updates variable
ct accordingly and the result is a simulation of a transition (vi, q)

a−→ (v′i, q
′
i)

of the Zielonka automaton.
Note that we need for the above simulation of C to be faithful some fair-

ness condition preventing Pt to stay forever in the while-loop since another
process overwrites infinitely often x. This is a common situation with shared
variable programs.

References

[1] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of
controllers with partial observation. Theoretical Computer Science,
303(1):7–34, 2003.

[2] V. Diekert and G. Rozenberg, editors. The Book of Traces. World
Scientific, 1995.

[3] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Pro-
ceedings of LICS’05, pages 321–330. IEEE, 2005.

[4] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal
memory are decidable for series-parallel systems. In FSTTCS, volume
3328 of LNCS, pages 275–286. Springer, 2004.

[5] P. Gastin and N. Sznajder. Fair synthesis for asynchronous distributed
systems. ACM Transactions on Computational Logic, 2013.

30

[6] B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Asynchronous
games over tree architectures. In Proceedings of ICALP’13, 2013.

[7] S. Graf, D. Peled, and S. Quinton. Achieving distributed control
through model checking. Formal Methods in System Design, 40(2):263–
281, 2012.

[8] J. Gutierrez and G. Winskel. Borel determinacy of concurrent games.
In Proceedings of CONCUR’13, 2013.

[9] O. Kupferman and M. Vardi. Synthesizing distributed systems. In Proc.
16th IEEE Symp. on Logic in Computer Science, 2001.

[10] P. Madhusudan and P. Thiagarajan. Distributed control and synthesis
for local specifications. In ICALP’01, volume 2076 of LNCS, pages
396–407. Springer, 2001.

[11] P. Madhusudan, P. S. Thiagarajan, and S. Yang. The MSO theory of
connectedly communicating processes. In Proceedings of FSTTCS’05,
volume 3821 of LNCS, pages 201–212. Springer, 2005.

[12] A. Mazurkiewicz. Concurrent program schemes and their interpreta-
tions. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[13] P.-A. Melliès. Asynchronous games 2: The true concurrency of inno-
cence. TCS, 358(2-3):200–228, 2006.

[14] M. Mukund and M. A. Sohoni. Keeping Track of the Latest Gossip in
a Distributed System. Distributed Computing, 10(3):137–148, 1997.

[15] A. Muscholl and S. Schewe. Unlimited decidability of distributed syn-
thesis with limited missing knowledge. In Proceedings of MFCS’13,
2013.

[16] A. Pnueli and R. Rosner. Distributed reactive systems are hard to
synthesize. In 31th IEEE Symposium Foundations of Computer Science
(FOCS 1990), pages 746–757, 1990.

[17] P. J. G. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(2):81–98, 1989.

[18] I. Walukiewicz. Pushdown processes: Games and model checking. Inf.
Comput., 164(2):234–263, 2001.

[19] W. Zielonka. Notes on finite asynchronous automata. RAIRO–
Theoretical Informatics and Applications, 21:99–135, 1987.

31

	Introduction
	Control for Zielonka automata
	Zielonka automata
	Control for Zielonka automata

	Decidability for acyclic architectures
	The new plant A
	Correctness of the reduction
	From C to C

	From D to D

	Short automata
	Controlling distributed programs

