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ABSTRACT
A query against a database behind a site like Napster may
search, e.g., for all users who have downloaded more jazz ti-
tles than pop music titles. In order to express such queries,
we extend classical monadic second-order logic by Presburger
predicates which pose numerical restrictions on the chil-
dren (content) of an element node and provide a precise
automata-theoretic characterization. While the existential
fragment of the resulting logic is decidable, it turns out that
satisfiability of the full logic is undecidable. Decidable sat-
isfiability and a querying algorithm even with linear data
complexity can be obtained if numerical constraints are only
applied to those contents of elements where ordering is ir-
relevant. Finally, it is sketched how these techniques can be
extended also to answer questions like, e.g., whether the to-
tal price of the jazz music downloaded so far exceeds a user’s
budget.

Keywords: Querying XML documents, monadic second
order logic, Presburger arithmetic, automata.

1. INTRODUCTION
Monadic Second-Order Logic has been identified as an im-

portant logic in the theory of XML schema and query lan-
guages. It captures the class of regular tree languages which
is basically the class of XML documents that can be speci-
fied by a type definition in XML Schema. It has also been
used to prove decidability of the type checking problem for
an important part of XSLT transformations [18]. However,
most of the work investigated MSO logic as a basis for XML
querying. It turned out that it defines a very robust class
of queries with a lot of equivalent characterizations by other
query mechanisms like attributed grammars [23], automata
[20, 1, 21] and datalog [12]. Although MSO logic is a robust
and powerful query language it can not express all kinds
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of queries one might be interested in. For instance, queries
in the cited papers are not allowed to compare data values
that are located at different nodes of a tree (see [22] for a
step in that direction). Also, there are no means to compute
with data values or to count and compare the numbers of
occurrences of different types of nodes.

In this paper, we therefore investigate in how far MSO-
based querying can be extended to also allow for reasoning
about numerical properties of XML documents. As an ex-
ample consider a document containing music files shared by
some peer-to-peer system as Napster, Gnutella etc. as ex-
posed in Figure 1.1

For instance, we would like to query for users who prefer
jazz over pop. Such a query can be expressed by asking
for nodes labeled with “music” that have more sons labeled
“jazz” than “pop”. Querying for users who are extreme jazz
fans can be expressed by requiring that the majority of the
sons of a node labeled by “music” is labeled by “jazz”.

In order to formulate such queries, we extend Monadic
Second Order (MSO) Logic by Presburger arithmetic for-
mulas constraining the children of a node (Presburger con-
straints for short). In this new Presburger MSO Logic, the
first query can be expressed as:

x ∈ Labmusic ∧ x/φ1

where φ1 is the formula

φ1 ≡ [Labjazz] ≥ [Labpop]

Here, [Labjazz] and [Labpop] denote the numbers of children
labeled with jazz and pop, respectively. For the second
query we replace φ1 by φ2, where φ2 is the formula:

φ2 ≡ [Labjazz] ≥ [Labpop] + [Labfrench] + [Labclassic]

Explicity enumerating all flavors of music different from
jazz may be awkward. Instead, we perhaps prefer to define
an auxiliary predicate X by:

∀x. (x ∈ X) ↔ ¬(x ∈ Labjazz)

and then replace the formula φ2 with:

φ′
2 ≡ [Labjazz] ≥ [X]

As an operational counterpart of the extended logic we study
bottom-up tree automata that are enhanced by Presburger

1It should be noted that in a realistic setting the type of
music would likely be represented by an attribute and not by
a separate tag for each type. But, of course, for the purpose
of query processing we can interpret a tag with attribute
jazz as a tag jazz.



<doc>
<user>
<name> ... </name>
...
<music>
<jazz>
<album> Always let me go </album>
<artist> Keith Jarrett </artist>
<year> 2002 </year>
<time> 3310 </time>
<price> 240 </price>
</jazz>
<pop>
<tit> Just my imagination</tit>
<artist> The Cranberries </artist>
<year> 2002 </year>
<album> Stars </album>
<time> 220 </time>
<price> 20 </price>
</pop>
<french>
<tit> Aux enfants de la chance </tit>
<artist> Serge Gainsbourg </artist>
<album> Serge Gainsbourg, vol. 3 </album>
<time> 247 </time>
<price> 16 </price>
</french>
<classic>
<tit> The Seven Gates of Jerusalem </tit>
<comp> Krzystof Penderecki </comp>
<recorded> 1999 </recorded>
<time> 3510 </time>
<price> 262 </price>
</classic>
<jazz>
<album> Kind of Blue </album>
<artist> Miles Davis </artist>
<year> 1997 </year>
<time> 3325 </time>
<price> 220 </price>
</jazz>

</music>
<video>

...
</video>
<images>

...
</images>

</user>
</doc>

Figure 1: An example document containing infor-

mation about music files downloaded by users.

constraints. Transitions from the children of a node to the
node itself may depend on the frequencies of states at the
children via a Presburger arithmetic condition, i.e., a for-
mula involving addition.

We start our investigation by considering automata that
only use Presburger constraints, i.e., automata that disre-
gard the order of the children of a node and only use car-
dinalities of states. Technically speaking, we study in this
part automata on unordered trees. It turns out that these
automata are very well-behaved. They define a class of
trees with very regular properties like various closure prop-
erties and equivalence with Presburger MSO logic. Further,
these automata allow for effective static analysis. Empti-
ness and universality are decidable, from a nondeterministic
automaton an equivalent deterministic automaton can be
constructed. Last but not least, they allow to define a class
of (unary) queries the evaluation of which has linear time
data complexity.

Next, we study automata that are allowed to combine
Presburger constraints with the common regular language
constraints. It turns out that this leads to automata with
less desirable properties. Although emptiness of such au-
tomata can still be decided, universality (whether an au-
tomaton accepts all trees) becomes undecidable. As we
show that the nondeterministic automata of this type can
be characterized by existential MSO logic we can conclude
that MSO logic which takes into account the order of chil-
dren becomes undecidable. Nevertheless, the word problem
for these automata is decidable in polynomial time.

Often, however, and in particular in our example, some
parts of a document can be considered as textual repre-
sentations of information records. This means that inside
certain elements, the ordering is not significant. We there-
fore investigate automata on mixed document trees, i.e., in
which element tags either identify their content as ordered
or as unordered. We further assume that, as in our example,
numerical constraints only are applicable to such unordered
element contents. Under these assumptions, we get the same
kind of nice behavior as in the totally unordered case, men-
tioned above.

In many cases, one might not only be interested in car-
dinalities of tags but also in conditions to be fulfilled by
the numbers that occur in a document. We sketch how our
approach can also be used in this setting.
Related Work. Unordered document trees are closely re-
lated to the generalization of feature trees considered by
Niehren and Podelski in [24] where they study the (classi-
cal) notion of recognizability and give a characterization of
this notion by means of feature automata. No counting con-
straints are considered. Query languages for unordered trees
have been proposed by Cardelli and Ghelli [5, 4, 6, 7] (and
their co-workers). Their approach is based on first-order
logic and fixpoint operators. Neither unbounded numerical
values nor automata-theoretic characterizations or complex-
ity issues are taken into account. Kupferman, Sattler and
Vardi study a µ-calculus with graded modalities where one
can express, e.g., that a node has at least n successors satify-
ing a certain property [14]. The numbers n there, however,
are hard-coded into the formula. Klaedtke and Ruess con-
sider automata on the unlabeled infinite binary tree, that
have an accepting condition depending on one global Pres-
burger formula [13].

Extending the construction in [15], Lugiez and Dal Zilio



have independently proposed automata models which are re-
lated to ours [16, 17]. The model closest to our investigations
is studied in [17]: it essentially equals our second automaton
model which allows to combine regular and Presburger con-
straints freely. For this model, Lugiez and Dal Zilio obtain
comparable results concerning closure properties, member-
ship tests and decidability of emptiness. In order to express
properties of trees, they consider a modal logic similar in
spirit to the proposal of Cardelli and Ghelli but without
fixpoint operators or explicit quantification (outside Pres-
burger sub-formulas). Although no precise characterization
is given, their logic is strictly less powerful than the given
automata model.

Our paper is organized as follows. We start in section
2 with the completely unordered case. Thus, we formally
introduce Presburger tree automata running on unordered
trees which can deal with numerical properties expressed
by Presburger formulas. We study Presburger MSO logic.
Then we extend the approach to ordered trees in section 3.
In section 4, we study mixed trees. Finally, we sketch the
treatment of numbers explicitly mentioned in a document
in section 5.

2. UNORDERED TREES
In this section, we exemplify our techniques for the special

case of unordered trees which seems of interest also in its own
right.

For a base set A, let
�A denote the set of all multi-sets

over A. An individual finite multi-set m which consists of
the sequence of elements a1, . . . , ak, ai ∈ A (not necessarily
distinct), is denoted by:

m = {a1, . . . , ak}

or:

m =
�
a∈A

va · {a}

where va ∈
�

is the multiplicity of the element a in the
sequence. Note that multiplicities can also be 0. The set
m is finite iff all but finitely many va are 0. In particular,
the multiset union of two multisets m1,m2 is denoted by
m1 +m2. Also, we write a ∈ m if a occurs in m with non-
zero multiplicity.

Let Σ denote a finite alphabet. Given the above notion of
multisets, we define the set UΣ of unordered trees t (u-trees
for short) over Σ by the following grammar:

t :: = a{t1, . . . , tk} (a ∈ Σ, k ≥ 0)

Presburger formulas φ are defined by the following grammar:

φ :: = x = n | x+ y = z
| φ1 ∧ φ2 | ¬φ | ∃x.φ

where x, y, z are variables and n ∈
�

is a constant. As usual,
we use abbreviations like x ≤ z for ∃ y. x+y = z, 2x+y = z
for (∃ t. x+x = t∧ t+y = z), false for ∃x. x < 0, φ1 ∨φ2 for
¬(¬φ1 ∧ ¬φ2) and ∀x.φ for ¬∃x.¬φ. For a formula φ and
an assignment ρ of (a superset of) the free variables of φ to
naturals, we define the satisfaction relation ρ |= φ by:

ρ |= x = n iff ρ(x) = n
ρ |= x + y = z iff ρ(x) + ρ(y) = ρ(z)
ρ |= φ1 ∧ φ2 iff ρ |= φ1 and also ρ |= φ2

ρ |= ¬φ iff ρ 6|= φ
ρ |= ∃x.φ iff ρ ⊕ {x 7→ n} |= φ for some n ∈ �

In particular, a formula φ is satisfiable iff there is an assign-
ment ρ such that ρ |= φ. It is well-known that satisfiability
of Presburger arithmetic is decidable in doubly exponential
space. For complexity results of corresponding decision pro-
cedures, we refer to [9, 8, 2]. Note that the set of vectors
v satisfying a Presburger formula with free variables is a
semi-linear set which can be effectively computed [10, 11].
Recall that a semi-linear set is a finite union of linear sets,
i.e., sets of the form

{c̄+

k�
i=0

xip̄i | xi ∈
�
}

where c̄ and the p̄i are vectors over
�
. Presburger formulas

φ can be compiled into finite automata Aφ running on the
binary representations of these vectors. The automaton Aφ

checks whether a given tuple is contained in the semi-linear
set corresponding to φ. Practical verification tools based
on such automata are studied, e.g., by Wolper and Boigelot
[28].

Given a finite setQ (of states), we will consider a canonical
set YQ of variables which are indexed by the elements in Q.
So, we define:

YQ = {yq | q ∈ Q}

Presburger automata
A Presburger u-tree automaton is given by the tuple A =
(Q,Σ, δ, F ) where:

• Q is a finite set of states,

• F ⊆ Q is the subset of accepting states,

• Σ is the finite alphabet of tree labels, and

• δ maps pairs (q, a) of states and labels to Presburger
formulas with free variables from the set YQ.

The formula φ = δ(q, a) represents the pre-condition on the
children of a node labeled by a for the transition into state
q where the possible values of the variable yp represent the
admissible multiplicities of the state p on the children. As an
example, consider the formula ψ = ∃ z. yp + 2z = yq. This
formula expresses that the number yq of sons labeled by the
state q is at least as big as yp, the respective number for state
p, and that the difference is even. Formally, we introduce
a satisfaction relation t |=A q between u-trees t and states
q which is defined as follows. Assume that t = aS (i.e., S
is the – possibly empty – multiset of u-subtrees of the root
a) and δ(q, a) = φ. Then t |=A q iff there are multisets of
u-trees Sp of cardinalities np, p ∈ Q, such that:

• S =�p∈Q
Sp;

• t′ |=A p for all t′ ∈ Sp (p ∈ Q);

• {yp 7→ np | p ∈ Q} |= φ.

The language L(A) of u-trees which is accepted by the au-
tomaton A then is given by:

L(A) = {t ∈ UΣ | ∃ f ∈ F : t |=A f}

Note that Presburger automata are non-deterministic. We
will view them as bottom-up automata in the following. In
order to get an idea how these automata work, consider the
language L of all u-trees over {a, b} where the internal nodes



are all labeled with a and have at most as many u-subtrees
with a b-leaf as without. One example u-tree t from this
language is depicted in fig. 2. An automaton for L needs

aa b b

a

a

a

a

Figure 2: An example u-tree t from L.

two states, say 0 and 1 where the transition function δ can
be represented in the table:

δ a b

0 y1 = 0 false

1 y0 ≥ y1 > 0 y0 + y1 = 0

The state 0 is assumed by all u-trees without b leaves while
the state 1 is only assumed by u-trees containing b leaves.
Figure 3 shows a run of the automaton on t, i.e., an as-
signment mapping the nodes (u-subtree occurrences) of t to
states such that the pre-conditions in δ are locally satisfied
at every node. In particular, we have: t |= 1.

a

a

b ba
01 10

0

a
1

a
0

a
1

Figure 3: An example run on the example u-tree t.

The main result of this section is:

Theorem 1. Emptiness for Presburger u-tree automata
is decidable.

Proof. Consider a Presburger u-tree automaton A =
(Q,Σ, δ, F ). Let us call a state q ∈ Q reachable iff there
is a u-tree t with t |=A q. As for finite automata on ordered
trees, we successively determine the set R of reachable states
by:

R = �
j≥0

R(j)

where R(0) = ∅. For j > 0, q ∈ R(j) iff the following formula
is satisfiable:�� �

p∈Q\R(j−1)

yp = 0�	∧ 
�
a∈Σ

δ(q, a)�
Since satisfiability of Presburger formulas is decidable, the
sets R(j) are effectively computable. By induction on j, we
prove:

Claim: For every j ≥ 0, q ∈ R(j) iff there is a u-tree t of
depth at most j − 1 such that t |=A q.

In particular, the sequence of sets R(j), j ≥ 0, is (not nec-

essarily strictly) increasing. Moreover, R(j) = R(j+k) for ev-

ery k ≥ 0 whenever R(j) = R(j+1). Accordingly, R = R(n)

with n denoting the number of states |Q|. Therefore, the
set of all reachable states is computable. Since L(A) is
non-empty iff some state f ∈ F is reachable, we conclude
that emptiness for Presburger u-tree automata is decidable.
Given that all Presburger formulas φ in δ have already been
compiled into automata Aφ (which now are part of the in-
put), the emptiness test even runs in quadratic time.

Closure Properties
Let UΣ denote the set of languages that can be accepted by
Presburger u-tree automata. We show next that UΣ is closed
under the Boolean operations union, intersection and com-
plement. In particular, we define the notion of deterministic
Presburger u-tree automata and construct for every Pres-
burger u-tree automaton an equivalent deterministic one.

Theorem 2. The family of languages UΣ is effectively
closed under:

1. union,

2. intersection,

3. complementation.

Proof. Here, we only consider the two latter operations.
For the construction of an automaton for the intersection,
assume that we are given automata Ai = (Qi,Σ, δi, Fi),
i = 1, 2. W.l.o.g. we assume that Q1 ∩ Q2 = ∅. We pro-
ceed analogously to the standard construction of the product
automaton for ordinary automata. Thus, we define the au-
tomaton A = (Q,Σ, δ, F ) as follows. We set Q = Q1 × Q2

and F = F1 × F2 and define δ(q1q2, a) by the formula:

E

p1∈Q1

yp1 .

E

p2∈Q2

yp2 . δ1(q1, a) ∧ δ2(q2, a) ∧


�
p1∈Q1

�
p2∈Q2

yp1p2 = yp1�∧ 
�
p2∈Q2

�
p1∈Q1

yp1p2 = yp2�
Here, we used the auxiliary variables yp1 , p1 ∈ Q1 and yp2 , p2 ∈
Q2. Moreover, we introduced the general auxiliary notation:

E

i∈I

yi .

(I some index set) to denote the existential quantification
over all variables yi, i ∈ I. The intuition behind this formula
is quite simple: the pair of states q1q2 should be satisfiable
iff each of the states q1 and q2 are. Thus, we construct the
precondition for q1q2 and a on sequences α from (Q1 ×Q2)

∗

as the conjunction of the preconditions for q1 and q2 on
the projections of α onto the first and second components,
respectively. The frequency yp1 of the state p1 ∈ Q1 in the
first projection then is given by: �p2∈Q2

yp1p2 = yp1 .
Using the analogous formula also for yp2 , p2 ∈ Q2, we arrive
at the stated formula. Accordingly, it is easy to prove that

t |=A q1q2 iff t |=A1 q1 and t |=A2 q2

Thus, L(A) = L(A1)∩L(A2) which completes the proof.



In order to prove closure under complement, we intro-
duce the notion of deterministic automata. A Presburger
automaton A = (Q,Σ, δ, F ) is called deterministic iff for ev-
ery a ∈ Σ and every multiset of states m =�p∈Q np · {p},
the following holds:

• {yp 7→ np | p ∈ Q} |= δ(q, a) for some state q ∈ Q;

• {yp 7→ np | p ∈ Q} |= δ(qi, a) for i = 1, 2 implies
q1 = q2.

We can construct for the automaton A a Presburger for-
mula testA such that A is deterministic iff testA is satisfiable.
Therefore we have:

Proposition 1. It is decidable whether or not a Pres-
burger u-tree automaton is deterministic.

Given a deterministic Presburger u-tree automaton A =
(Q,Σ, δ, F ), we can construct the complement automaton
Ā = (Q,Σ, δ,Q\F ) simply by exchanging the accepting and
non-accepting states, and we have:

Proposition 2. L(Ā) = UΣ\L(A).

Therefore, it remains to construct for every Presburger
u-tree automaton an equivalent deterministic Presburger u-
tree automaton.

Theorem 3. For every Presburger u-tree automaton A =
(Q,Σ, δ, F ), a deterministic Presburger u-tree automaton A′

can be constructed such that L(A) = L(A′).

Proof. The proof idea is similar to related constructions
for ordinary finite automata. Let A′ = (Q′,Σ, δ′, F ′) where
Q′ = 2Q and F ′ = {B ⊆ Q | F ∩B 6= ∅} where δ′(B, a) is a
formula with free variables from YQ′ . It is given by:


�
q∈B

ψq,a�∧

���
q∈Q\B

¬ψq,a�	
Here, the formula ψq,a should be true iff q is a possible
successor state. In order to specify ψq,a, we refer to the
auxiliary variables yp, p ∈ Q, and also to auxiliary variables
yB,p, B ⊆ Q, p ∈ B. The variable yB,p is meant to count all
those children resulting in the state set B which are assigned
to the state p ∈ B. Using these auxiliary variables, ψq,a is
defined as:

E

p∈Q

yp . δ(q, a) ∧

E

p∈B⊆Q

yB,p.���
B⊆Q

�
p∈B

yB,p = yB�	∧

���
p∈Q

�
p∈B⊆Q

yB,p = yp�	
As corollaries of theorem 3, we also obtain:

Corollary 3. Universality for Presburger u-tree automata
is decidable.

Corollary 4. 1. Given a fixed deterministic Presburger
u-tree automaton A and some state q of A, it is decid-
able in linear time for a u-tree t whether or not t |=A q.

2. In particular, the word problem for Presburger u-tree
automata is decidable in linear time.

Proof. Assume we are given a Presburger u-tree au-
tomaton A with transition function δ. By theorem 3, we
can w.l.o.g. assume that A is deterministic. Also assume
that all formulas φ in δ have been compiled into finite au-
tomata Aφ running on tuples of of (binary) representations
of the numbers. Let n > 0 denote the size of the input u-
tree t. By a bottom-up traversal over t, we can determine
for every u-subtree t′ of t and every state p of A whether or
not t′ |=A p. In total, this amounts to O(n) tests of asser-
tions ρ |= φ for formulas φ occurring in δ where ρ(x) ≤ n
for all x in the domain of ρ. The binary representations of
the ρ(x) altogether have size at most O(n). Therefore, the
automata Aφ can verify the assertions ρ |= φ in time O(n).
We conclude that the overall complexity is O(n).

Querying Unordered Trees
Now we consider Presburger automata as a facility to com-
pute unary queries, i.e., to select a set of nodes in an un-
ordered tree. Whether a node is selected is specified by an
automaton A and a set T of states of A. The node v is in
the output, if there is an accepting computation of A that
obtains a state from T at v. We will see in the next sub-
section that this simple mechanism can compute all (unary)
queries definable in (Presburger) MSO logic.

Let • denote a fresh symbol (not in Σ). An unordered
context (u-context for short) is a u-tree c ∈ UΣ∪{•} which
contains exactly one occurrence of • at a leaf (the hole). Let
c[t1] denote the u-tree which is obtained from c by substi-
tuting • with t1 (i.e., filling the hole). Note that for a given
u-tree t, the set C(t) of contexts c such that t = c[t1] for
suitable u-subtrees t1 is in one-to-one correspondence with
the set of nodes of t. Therefore, in the following we will no
longer distinguish between contexts c ∈ C(t) and nodes of t.

A (unary) query is a mapping µ from u-trees to subsets
of nodes. The nodes in µ(t) are also called matches. In the
following, we present a class of queries which is definable by
means of Presburger u-tree automata. For this, we extend
the definition of |=A to contexts by defining c, p |=A q,
(p, q ∈ Q) iff c |=Ap,• q where Ap,• = (Q,Σ ∪ {•}, δp,•, F ) is
obtained from A by extending Σ with • and defining:

δp,•(q
′, a) = ��δ(q′, a) if a ∈ Σ�

p′∈Q
yp′ = 0 if a = • ∧ q′ = p

false if a = • ∧ q′ 6= p

Thus, the automaton Ap,• behaves like A but additionally
lets the hole satisfy p. Obviously, we have:

Proposition 5. Let A = (Q,Σ, δ, F ) be a Presburger u-
tree automaton and t = c[t1] for a context c and t, t1 ∈ UΣ.
Then t |=A q iff t1 |=A p and c, p |=A q for some p ∈ Q.

A (unary) Presburger pattern is a property of u-subtrees
within u-trees. We define this property by means of a pair
〈A, T 〉 where A = (Q,Σ, δ, F ) is a Presburger u-tree automa-
ton and T ⊆ Q is a set of states. Let t ∈ UΣ. A u-context
c ∈ C(t) is a match of the pattern 〈A, T 〉 in t iff t = c[t1]
where t1 |=A q and c, q |=A f for some q ∈ T and f ∈ F .
We get:

Theorem 4. The set of matches of a fixed Presburger
pattern 〈A, T 〉 in a u-tree t ∈ UΣ of size n is computable
in time O(n).



Proof. Let A = (Q,Σ, δ, F ). We proceed in two passes
over the input u-tree t of size n > 0. In the first pass, we
determine for every u-subtree t1 of t the set:

B(t1) = {p ∈ Q | t1 |=A p}

Let A′ denote the deterministic automaton as constructed
in the proof of theorem 3. Then we know that for every
t′ ∈ UΣ, t′ |=A′ B iff B = {p ∈ Q | t′ |=A p}. Therefore, the
sets B(t1) can be determined by one bottom-up run of A′ on
t. According to corollary 4, this first pass can be performed
in time O(n).

In the second pass, we determine for each u-context c ∈
C(t), the set:

D(c) = {p ∈ B(t1) | ∃f ∈ F : c, p |=A f}

where t1 is the u-subtree of t with t = c[t1]. Given the sets
D(c), the matches of the pattern are determined as the set
of all u-contexts c where T ∩D(c) 6= ∅.

In order to determine the sets D(c), we proceed topdown
over t. Assume that we are given a u-context c in t where
t = c[aS] for some a ∈ Σ and multi-set S containing a
u-subtree t1, i.e., S = {t1} + S′. Then we may proceed
from the father node c to the son c1 which is defined as the
context c1 = c[a({•}+S′)]. Remark that now t = c1[t1]. Let
B1 = B(t1). Assume that we have already determined the
value D(c) and now want to determine the corresponding
set for c1. For B ⊆ Q, let nB denote the number of u-
trees t′ ∈ S such that t′ |=A′ B. Let ρ denote the variable
environment defined by:

{yB 7→ nB | B ⊆ Q}

We claim:

D(c1) = {q1 ∈ B(t1) | ρ |=
�

q∈D(c)

ψq,q1}

where the formula ψq,q1 is given by:

E

p∈Q

yp . δ(q, a) ∧

E

p∈B⊆Q

yB,p . yB1,q1 > 0 ∧���
B⊆Q

�
p∈B

yB,p = yB�	∧ 
�
p∈Q

�
B,p∈B

yB,p = yp�
Intuitively, formula ψq,q1 expresses that there is an assign-
ment mapping the children t′ to states q ∈ B(t′) such that
t1 receives q1 and the pre-condition δ(q, a) is satisfied. Since
satisfiability of Presburger formulas is decidable, we con-
clude that the sets D(c) are computable. In total, our algo-
rithm amounts to O(n) tests of assertions ρ |= φ for formulas
φ which only depend on the automaton A and variable en-
vironments ρ where ρ(x) ≤ n for all x in the domain of ρ.
As in the proof of corollary 4, we compile the formulas φ
into finite automata Aφ running on the tuple of binary rep-
resentations of the numbers ρ(x). Note that we can cluster
together all subtrees t1 of c which agree in their sets B(t1)
of reachable states. We conclude that the total length of
the numbers ρ(x) can be bounded by O(n). Therefore, the
overall complexity of the second pass is linear as well. This
completes the proof.

Presburger MSO Logic for Unordered Trees
We define unordered Presburger MSO (PMSO) logic by ex-
tending MSO logic with Presburger predicates on children.

As we consider unordered trees only, the logic does not pro-
vide an ordering relation on brothers. More precisely, a
PMSO formula f is given by the following grammar:

f :: = y < y′ | y ∈ S | y/p
| f1 ∧ f2 | ¬f | ∃ y. f | ∃Y. f

S :: = Y | Laba

p :: = t1 = t2 | t1 + t2 = t3
| p1 ∧ p2 | ¬p | ∃x. p

t :: = [S] | x | n

where y < y′ expresses that y is the father of y′, x is from
a designated set of Presburger variables, and the formulas p
of y/p are Presburger-closed, i.e., do not contain free occur-
rences of variables x. Intuitively, the assertion y/p means
that the children of y satisfy the constraint p where a term
[S] inside p is interpreted as the number of those children
which are contained in S.

As usual, we also allow derived predicates such as equality
between variables such as y1 = y2 or Y1 = Y2 or equations
Y = {y1}.

Remark 1. The MSO predicate y < y1 is expressible by
means of the new form of atomic predicates, namely by:

∃ Y. Y = {y1} ∧ y/([Y ] = 1)

In order to define a satisfiability relation “|=”, we view an
u-tree t ∈ UΣ as the structure t = 〈D, (Laba)a∈Σ, <〉 where
D is the underlying set of nodes, Laba is the subset of nodes
labeled with a, and “<” is the father relation. The satisfac-
tion relation

t, ρ, σ |= φ

for the structure t together with valuations ρ, σ (for the sets
of free set variables and free individuum variables, respec-
tively) is inductively defined as follows:

t, ρ, σ |= y < y′ iff σ(y) < σ(y′) holds in t
t, ρ, σ |= y ∈ Laba iff σ(y) ∈ Laba holds in t
t, ρ, σ |= y ∈ Y iff σ(y) ∈ ρ(Y )
t, ρ, σ |= y/p iff m |= p where

m [Laba] = #{v ∈ D | σ(y) < v, v ∈ Laba}
m [Y ] = #{v ∈ D | σ(y) < v, v ∈ ρ(Y )}

t, ρ, σ |= f1 ∧ f2 iff t, ρ, σ |= f1 and t, ρ, σ |= f2
t, ρ, σ |= ¬f iff t, ρ, σ 6|= f
t, ρ, σ |= ∃ y. f iff t, ρ, σ ⊕ {y 7→ v} |= f for some v ∈ D
t, ρ, σ |= ∃ Y. f iff t, ρ⊕ {Y 7→ R}, σ |= f for some R ⊆ D

If the formula f is closed, we also write: t |= f instead
of t, ∅, ∅ |= f .

A language L ⊆ UΣ is unordered PMSO-definable iff there
is a closed formula φ such that L = {t | t |= φ}.

Theorem 5 states that unordered PMSO-definable lan-
guages are precisely characterized by Presburger u-tree au-
tomata.

Theorem 5. For a language L ⊆ UΣ the following two
statements are equivalent:

1. L is unordered PMSO-definable;

2. L = L(A) for some Presburger u-tree automaton A.

The proof is analogous to the proof of the corresponding
result for MSO-logic and tree automata over ordered trees.



[3] Let us turn to the characterization of queries. An un-
ordered PMSO-pattern is an unordered PMSO formula φ
with at most one free variable y. A match of φ in t is given
by a node v such that

t, ∅, {y 7→ v} |= φ

A query µ is unordered PMSO-definable iff there is an un-
ordered PMSO-pattern φ such that for every t, µ(t) is the
set of all matches of φ in t.

Theorem 6. For a query µ the following two statements
are equivalent:

1. µ is unordered PMSO-definable;

2. µ is definable by a Presburger pattern 〈A, T 〉 for some
Presburger u-tree automaton A.

3. EXTENSION TO ORDERED TREES
In many applications, e.g., where documents are automat-

ically generated from databases as textual representations
of querying results, the element ordering on the children
does not matter. In other applications, though, which are
more related to classical document processing the ordering
matters, and we envision applications where document trees
contain both ordered and unordered regions. In this section,
we therefore extend our framework to ordered trees.

Obviously, every ordered sequence 〈t1, . . . , tn〉 can be
considered as (one representation of) the unordered sequence
{t1, . . . , tn} consisting of the same elements. In particu-
lar, every ordered tree can be considered as (one representa-
tion of) an unordered tree as well. Accordingly, Presburger
MSO logic as defined for unordered trees in section 2 is read-
ily extended to ordered trees by adding the atomic predicate
”y is left sibling of y′” (denoted by: y ; y′) and correspond-
ingly adjusting the definition of the satisfaction relation |=.
Let us therefore see in how far Presburger u-tree automata
can also be extended to ordered trees (which we simply call
trees for short). As the children of a node form an ordered
sequence, we now need a more general pre-condition than
just a Presburger formula for the number of occurrences of
states. Let Q be an alphabet (of states). A Presburger
regular expression over Q is a Boolean combination of regu-
lar expressions over Q and Presburger formulas having free
variables only from the canonical set YQ.

Given a string w and a Presburger regular expression φ
we define in the obvious way whether w ∈ Q∗ matches φ
(i.e., w |= φ). So for example, if φ equals

p (p | q)∗ ∧ (yp = yq)

then w |= φ iff w contains only p’s and q’s, begins with a p
and contains equally many occurrences of p and q.

Lemma 6. It is decidable whether for a Presburger regular
expression φ there is a string w such that w |= φ.

Proof. Let φ be a Presburger regular expression. First
of all, φ can be transformed into disjunctive normal form�

i

�
j
φij , where each φij is either a regular expression or a

Presburger formula. By combining regular expressions and
Presburger formulas, respectively, we arrive at an expression
of the form

�
i
(ei ∧πi), where each ei is a regular expression

and each πi is a Presburger formula. Clearly, φ is satisfiable
by a string if and only if at least one disjunct ei ∧ πi is. To

check satisfiability for the conjunction of a regular expres-
sion e and a Presburger formula π we compute a Presburger
formula πe which describes the Parikh images of words in
L(e), the language defined by e. Here, the Parikh image of
a word w over some alphabet Q assigns the number of oc-
currences of q in w to each q ∈ Q [27]. An expression e ∧ π
is satisfiable if and only if the Presburger formula πe ∧ π is
satisfiable and we are done.

The complexity of the described decision procedure cru-
cially depends on the complexity of constructing the formula
πe. Constructions based on semi-linear sets may produce
rather long formulas [10, 11, 27]. It is an interesting ques-
tion whether efficient constructions are possible. As Pres-
burger regular expressions are closed under negation we im-
mediately conclude that also universality is decidable, i.e.,
whether an expression matches all strings.

Lemma 6 encourages us to generalize the notion of Pres-
burger tree automata. Thus, we define a Presburger tree au-
tomaton for ordered trees as a tuple A = (Q,Σ, δ, F ) where:

• Q is a finite set of states;

• F ⊆ Q is the subset of accepting states;

• δ maps pairs (q, a) of states and labels from Σ to Pres-
burger regular expressions φ over Q.

Accordingly, we introduce an extended satisfaction relation
between ordered trees t and states q by defining for t =
a〈t1 . . . tl〉 and δ(q, a) = φ, t |=A q iff there are states
p1, . . . , pl ∈ Q such that tj |=A pj for all j and p1 . . . pl |= φ.
The language L(A) ⊆ TΣ which is accepted by the automa-
ton A then is given by:

L(A) = {t ∈ TΣ | ∃ f ∈ F : t |=A f}

We obtain:

Theorem 7. Emptiness for Presburger tree automata is
decidable.

Proof. Follows almost immediately from lemma 6.

Next we show that membership and hence, also query-
ing for a fixed Presburger tree automaton can be solved in
polynomial time.

Theorem 8. Given a fixed Presburger tree automaton A
and some state q of A, it is decidable in polynomial time for
a tree t whether or not t |=A q.

Proof. Let Q be the states set of A. We perform a
bottom-up traversal of the input tree t, computing for each
subtree t′ the set of states R = {p | t′ |= p} ⊆ Q. Assume
that t′ = a〈t1 . . . tn〉 andRi = {p | ti |= p} have been already
computed. Moreover, we can suppose that the Presburger
regular expressions used in A are disjunctions of conjuncts
ei ∧ πi where each ei is a regular expression and πi is a
Presburger formula. Then we may check for each ei ∧ πi

separately whether it is verified by t1 . . . tn. So now consider
one conjunct e∧π. With e, we associate an equivalent finite
automaton B with set of states P . Then we successively
compute the sets V (i, s), 1 ≤ i ≤ n, s ∈ P , of assignments
v : YQ → {1, . . . , i} verifying the following condition: there
exists a sequence of states α = r1 · · · ri with rk ∈ Rk for
k = 1, . . . , i and with Parikh image v, such that state s can



be reached from an initial state of B by reading α. Finally,
we consider the union V of all sets V (n, f) where f is a final
state of B. Now it simply remains to check whether v |= π
for any v ∈ V . Thus, assuming that the automaton A is of
constant size, we spend time O(n|Q|+1) on the computation
of the set of all successor states at the root node of t1. Hence,
the overall runtime on a tree of size m is O(m|Q|+1).

Clearly, the upper complexity bound in theorem 8 is not as
encouraging as one might have wished. It remains an inter-
esting question, though, whether practical examples indeed
exhibit this worst-case behavior. A generally better upper
bound, however, can be obtained for deterministic automata
where membership is decidable in linear time [17]. Gener-
alizing the notion of a u-context from section 2, we define a
context as a tree c ∈ TΣ∪{•} that contains exactly one oc-
currence of the fresh symbol •. Accordingly, we generalize
the definition of |=A to contexts by defining c, p |=A q,
(p, q ∈ Q), iff c |=Ap,• q where Ap,• = (Q,Σ ∪ {•}, δp,•, F )
is the automaton obtained from A by extending Σ with •
and extending δ to δp,• where δp,•(q

′, a) = δ(q′, a) whenever
a ∈ Σ and

δp,•(q
′, •) = �ε if q′ = p

∅ if q′ 6= p

A (monadic) Presburger pattern now is a property of sub-
trees within trees. We define this property by means of a
pair 〈A, T 〉 where A = (Q,Σ, δ, F ) is a Presburger tree au-
tomaton and T ⊆ Q is a set of states. Let t ∈ TΣ. A context
c ∈ C(t) is a match of the pattern 〈A, T 〉 in t iff t = c[t1]
where t1 |=A q and c, q |= f for some q ∈ T and f ∈ F . We
have:

Theorem 9. The set of matches of a fixed Presburger
pattern 〈A, T 〉 in a tree t ∈ TΣ of size n is computable in
polynomial time.

Proof. Assume we have marked the root node of one
subtree t1 of t. Assume further that we have modified A in
such a way that the marked node always receives a state in
T . Then the modified tree is accepted iff t1 is a match. Since
there are only n different nodes to be marked, the theorem
follows from theorem 8.

We now characterize Presburger tree automata by means
of a fragment of ordered Presburger MSO logic.

Theorem 10. A set of ordered trees is accepted by a Pres-
burger tree automaton if and only if it can be described by
an ordered PMSO formula of the form ∃X1 . . . ∃Xk. ϕ where
ϕ is first-order.

Proof. only-if: Let A be a Presburger tree automaton
and δ the transition relation of A. Without loss of gen-
erality we can assume that all Presburger regular expres-
sions used in A are disjunctions of expressions e ∧ π, where
e is a regular expression and π is a Presburger formula.
From Büchi’s Theorem it follows that each regular expres-
sion e can be expressed by an existential MSO formula ψe =
∃Y1 . . . ∃Yl. ϕe (on strings). Hence, we can construct a for-
mula ψ = ∃X1 . . .Xk. ϕ in which some of the variables Xi

are used to encode the states that A assumes and the re-
maining variables are those of the formulas ψe. The first-
order part ϕ of ψ describes the consistency of the states
between nodes of the input tree and their children by using
the formulas ϕe.

if: We show first that every first-order ordered PMSO
formula ψ can be evaluated by a deterministic Presburger
tree automaton. The result is then immediate as a non-
deterministic automaton can guess, for each node, those sets
of X1, . . . ,Xk in which the node is contained. The proof
proceeds by induction on the structure of ψ. The only case
which is not entirely straightforward is the case of a formula
ψ = ∃x. ϕ(x). Let, by induction, A be an automaton over
the alphabet Σ∪ (Σ×{x}) for ϕ(x). I.e., A accepts all trees
t which have exactly one node v with a symbol (a, x) from
Σ × {x} such that ϕ holds on t, if x is bound to v and the
label of v is replaced by a.

Let Q be the set of states of A. We construct a deter-
ministic Presburger tree automaton A1 for ψ as follows.
The state set of A1 is Q × 2Q. The intuitive meaning of
a state (q,X) at a node v is the following. If x did not
occur in the subtree rooted at v, then A would take state
q at v. X is the set of states A can take if for one node
of the subtree at v a label a is replaced by (a, x). We
explain how the mappings δ1((q,X), a) of A1 are defined.
δ1((q,X), a) is described by a Presburger regular expres-
sion eq ∧ eX , where eq is obtained from δ(q, a) by replacing
each occurrence of a state r ∈ Q in a regular expression by�

S⊆Q(r, S) and each occurrence of yr in a Presburger for-

mula by
�

S⊆Q

y(r,S). The Presburger regular expression eX

is of the form
�

p∈X
(e1p ∨ e2p) ∧

�
p 6∈X

¬(e1p ∨ e2p). Here, e1p
expresses that A would take state p at v if the label of v
was (a, x). Likewise, e2p expresses that A would take state p
at v if the label b of a suitable node below v was replaced
by (b, x). Therefore, e1p is obtained from δ(p, (a, x)) in an
analogous fashion as eq was obtained from δ(q, a).

It remains to describe the construction of e2p. Let δ(p, a)
be a disjunction of conjuncts of the form e ∧ π where e is
a regular expression and π is a Presburger formula. The
expression e2p is obtained by replacing each e ∧ π with a

disjunction
�

r∈Q

�
r′∈S⊆Q

(er,r′,S∧πr,r′,S). Here, for each choice

of S ⊆ Q, r ∈ Q and r′ ∈ S, the expression er,r′,S ∧πr,r′,S is
satisfied by a sequence (q1, S1) · · · (qm, Sm), qi ∈ Q, Si ⊆ Q,
if there is some i ≤ m with qi = r, Si = S and e ∧ π holds
for the string q1 · · · qi−1r

′qi+1 · · · qm.
We get πr,r′,S as the conjunction of (y(r,S) > 0) and the

formula which is obtained from π by replacing yq, for each
q ∈ Q with

•
�

S′⊆Q

y(q,S′), if q 6∈ {r, r′} or q = r = r′,

• (
�

S′⊆Q

y(q,S′)) − 1, if q = r and r 6= r′, and

• (
�

S′⊆Q

y(q,S′)) + 1, if q = r′ and r 6= r′.

The language to be described by er,r′,S is given as:

L = {(q1, S1) . . . (qm, Sm) | ∃ i :

(qi, Si) = (r, S) ∧ q1 . . . qi−1r′qi+1 . . . qn ∈ L(e)}

Clearly, if L(e) is regular, then L is regular as well and
hence can be described by a regular expression.

Theorem 10 is interesting in its own right. It implies
that we can answer all existential ordered Presburger MSO



queries with polynomial data complexity. In particular,
all monadic first-order queries can be answered. On the
other hand, it turns out that in general it is impossible to
tell whether a given (non-deterministic) Presburger tree au-
tomaton accepts all ordered trees.

Theorem 11. Universality for Presburger tree automata
is undecidable.

Proof. The proof is a reduction from the Halting Prob-
lem for 2-counter-automata with empty input [19]. Given
such an automaton A with state set Q we construct a Pres-
burger tree automaton A1 such that A does not halt on
the empty input if and only if A1 accepts all trees over the
alphabet Q∪{#, $, a, b}. In the construction we will concen-
trate on trees of a special shape. They are of depth 2 and
nodes on the first level (between the root and the leaves)
have exactly one child. I.e., the trees are balanced and only
the root might have more than one child. The pattern of
the labels of the leaves, from left to right, is of the form
rQa

∗b∗(#rQa
∗b∗)∗, where rQ = q0| · · · |qk represents the set

of states of A. The root is labeled with $. All nodes of level
1 are labeled by #. It is easy to construct a Presburger
tree automaton2 A2 which accepts all trees that are not of
this special form. The union of A2 with the automaton A3

to be constructed in the remainder of the proof will be the
automaton A1 we are looking for.
A3 checks whether the leaf string of the input tree does not

encode an accepting computation of the counter automaton
A. Here, a configuration of A with state q and counter
contents n1 and n2, respectively, is encoded by the string
qan1bn2 and configurations are separated by #. A3 checks
whether

• this string does not start with q0#, where q0 is the
initial state of A,

• this string does not end by a string of the form #qa∗b∗,
where q is an accepting state of A, or

• there are two successive configurations that are not
consistent with the transition function of A.

We only describe how the latter can be checked, as the first
two tasks are straightforward. To this end, the state set of
A3 equals Q∪ {q#, qa, q

′
a, qb, q

′
b, q?}. In the first stage, when

moving from the leaves to nodes of level 1 the automaton
can enter state q? from each state on the leaves. Further, it
can enter state q# from all leaves labeled # and state q, for
each leaf with label q ∈ Q. For leaves with label a it enters
state qa or q′a. Accordingly, it may enter qb or q′b from b.

It enters an accepting state if

• the string of states of the nodes of the first level is of
the form q∗?q#qq

∗
aq

∗
b q#q

′q∗a′q∗b′q#q
∗
? with q, q′ ∈ Q, and

• the numbers of the states qa, qb, q
′
a, q

′
b are not consis-

tent with respect to q, q′ and the transition function
of A.

This can be expressed by a disjunction over all possible pairs
(q, q′) ∈ Q×Q. Each disjunct consists of a regular expression
expressing the first condition and a Presburger formula for
the latter condition. It should be clear that the automaton
constructed in this way has the desired properties.

2Actually, A2 does not use any Presburger formulas.

By Theorem 10, the language of ordered trees defined by a
Presburger tree automaton is definable by an ordered PMSO
formula – and so is its complement, since ordered PMSO
logic is trivially closed under complementation. Therefore,
we immediately obtain from Theorem 11:

Proposition 7. Satisfiability for ordered PMSO formu-
las is undecidable.

For a comparison, we note that the situation here dra-
matically differs from the unordered case. Since Presburger
u-tree automata are effectively closed under complement,
their universality problem is decidable.

4. MIXED TREES
In the previous section we have seen that in general we

cannot expect decidability for all ordered PMSO. Instead,
we restrict ourselves to mixed ordered/unordered document
trees In these trees, the label of a node tells whether the
ordering of its children matters or not. Recall from the
introduction that this restriction naturally reflects a divi-
sion of documents into parts which are made up from data
records whose orderings are irrelevant and formating parts
where the ordering is significant. This classification is for-
malized by partitioning the finite alphabet Σ into subsets
Σ = Σ0 + Σ1 where Σ0 and Σ1 consist of all labels of nodes
with unordered and ordered children, respectively. The set
MΣ of all mixed trees (m-trees for short) over Σ is now given
by the grammar:

t :: = a{t1, . . . , tk} (a ∈ Σ0, k ≥ 0)
| b〈t1, . . . , tk〉 (b ∈ Σ1, k ≥ 0)

Mixed trees in our sense correspond to terms with one asso-
ciative symbol “.” (for accumulating the ordered contents)
and one associative and commutative symbol “⊕” (for ac-
cumulating multi-sets). Languages of such trees, e.g., have
been studied Lugiez [15, 16] and Ohsaki [25, 26]. Note, how-
ever, that our formalism is slightly more specific as we rule
out sequences of trees where unordered sections occur dis-
persed between ordered ones. Instead, the significance of
order is already determined by the label of the ancestor.

Presburger tree automata for mixed trees now should sub-
sume the ability of Presburger automata for unordered trees
to check Presburger formulas on unordered sequences of chil-
dren as well as the ability of automata for ordered trees to
check containment in a regular set for ordered sequences.
Thus, we use Presburger conditions in transitions for labels
from Σ0 and regular expressions in transitions for labels from
Σ1 only. We call such an automaton Presburger m-tree au-
tomaton. As a corollary of theorem 7, we obtain:

Corollary 8. Emptiness for Presburger m-tree automata
is decidable.

It turns out that the family of languages accepted by Pres-
burger m-tree automata enjoys much better closure proper-
ties than Presburger automata for ordered trees. In fact,
they are not only closed under union and intersection, but
also under complement.

Theorem 12. The family of languages accepted by Pres-
burger m-tree automata is effectively closed under:

1. union,



2. intersection,

3. complementation.

The reason for closure under complement is that for Pres-
burger m-tree automata, we again have available a deter-
minization procedure:

Theorem 13. For every Presburger m-tree automaton A,
a deterministic Presburger m-tree automaton A′ can be con-
structed such that L(A) = L(A′).

We call a pair of a Presburger m-tree automaton A and
a subset T of states of A mixed Presburger pattern. We
obtain:

Theorem 14. The set of matches of a fixed mixed Pres-
burger pattern 〈A, T 〉 in a m-tree t ∈ MΣ of size n is com-
putable in time O(n).

The stated complexity is better than the corresponding
complexity for general Presburger patterns where the expo-
nent of the upper bound depended on the number of states
of the automaton. Here, the upper bound is linear.

Proof. The base idea to achieve this result is the same
as in the unordered case. Let A = (Q,Σ, δ, F ). We proceed
in two passes over the input t of size n > 0. In the first pass,
we determine for every m-subtree t1 of t the set:

B(t1) = {p ∈ Q | t1 |=A p}

Let A′ denote the deterministic automaton as constructed
in section 2. Then we know that for every t′ ∈MΣ, t |=A′ B
iff B = {p ∈ Q | t′ |=A p}. Therefore, the sets B(t1) can be
determined by one bottom-up run of A′ on t. According to
the proof of corollary 4, this can be performed in time O(n).

In the second pass, we determine for each m-context c ∈
C(t), the set:

D(c) = {p ∈ B(t1) | ∃f ∈ F : c, p |=A f}

where t1 is the m-subtree of t with t = c[t1]. Given the sets
D(c), the matches of the pattern are determined as the set
of all m-contexts c where T ∩D(c) 6= ∅.

In order to determine the sets D(c), we again proceed
topdown over t. The crucial new construction which we
have to provide is for processing nodes with labels from Σ1.
So assume that we are given a m-context c in t where t =
c[a〈t1, . . . , tk〉] for some a ∈ Σ1 and m-trees ti. Then we may
proceed from the father node c to the son ci which is defined
as the m-context ci = c[a〈t1, . . . , ti−1, •, ti+1, . . . , tk〉]. Let
Bj = B(tj) for j = 1, . . . , k. Assume that we have already
determined the value D(c) and now want to determine the
corresponding set for ci. Obviously, we have:

D(ci) = �{Dq(i) | q ∈ D(c)} where
Dq(i) = {pi ∈ Bi | ∀j 6= i ∃pj ∈ Bj : p1 . . . pk ∈ δ1(q, a)}

Given a (non-deterministic) finite automatonAq,a for δ1(q, a),
all sets Dq(i), i = 1, . . . , k, can be computed by one left-
to-right and one right-to-left pass of Aq,a over the children
c1, . . . , ck of the current node c. We conclude that all sets
D(c) are computable. Given a fixed pattern, we furthermore
conclude that the nodes with ordered children incur compu-
tational cost O(n) only. In total, our algorithm has time
complexity O(n). This completes the proof.

Note that, as a special case of the querying algorithm in
the proof of theorem 14, we obtain a linear time querying
algorithm for classical ordered trees (i.e., trees with Σ0 = ∅).

As for unordered and ordered trees, respectively, we suc-
ceed to give a logical characterization of our automata model
also in the mixed case. For that, we use ordered PMSO
logic. Now, however, formulas are interpreted over mixed
trees only. In particular, we assume that Presburger con-
straints only can be applied to the children of a node labeled
with some element from Σ0. For a distinction, we therefore
speak now of mixed PMSO-definable languages and queries
(instead of ordered PMSO-definable ones over mixed trees).
These mixed PMSO-definable queries are what we have con-
sidered in the introduction. We obtain:

Theorem 15. For a language L ⊆MΣ the following two
statements are equivalent:

1. L is mixed PMSO-definable;

2. L = L(A) for some Presburger m-tree automaton A.

Theorem 16. For a query µ the following two statements
are equivalent:

1. µ is mixed PMSO-definable;

2. µ is definable by a Presburger pattern 〈A, T 〉 where A
is a Presburger m-tree automaton.

In particular, we conclude that satisfiability of mixed PMSO-
logic is decidable. Even more important, mixed PMSO-
queries can effectively be computed over mixed trees where
the data complexity is linear.

5. CONCLUSION AND
FURTHER EXTENSIONS

In summary, we have shown how Monadic Second Or-
der logic can be extended by Presburger constraints on chil-
dren. This extension allows to formulate properties of sub-
documents depending on numerical properties like those in
our toy example in Figure 1. Based on automata charac-
terizations, we derived algorithms which compute the set of
matches of a given monadic query in polynomial time. In
fact, for unordered or mixed trees we even obtained linear
querying algorithms.

But of course, besides reasoning about the numbers of
children with certain properties it is also interesting to com-
pute with the numbers that are explicitly mentioned in the
document. So, a user might be interested to reason about
how much music she gets for a certain amount of money or
about the total quantity of music she has downloaded. In
this section, we explain how our techniques can be extended
to handle such queries as well.

Let us first consider a query which asks for all entities
of jazz music where the price per minute is less than 10
(Cent). We assume that the numbers within the 〈time〉
tags represent the number of seconds of a piece. Hence, we
are interested in all entries where the number in the 〈time〉
tag exceeds six times the number in the 〈price〉 tag. In an
extended logic we express this as follows.

x ∈ Labjazz ∧ x/φ

where:

φ ≡ [time] > 6 · [price]



As the example shows, we refer to the number within a tag
〈time〉 by [time]. In principle, such queries can be handled
in a similar way as the queries we have considered so far.
Concerning the semantics we can simply view a tag 〈time〉
with number n as n occurrences of a tag 〈#time〉. It is
straightforward that all the decidability results go through.

The approach of viewing numbers as multiplicities works
fine for naturals (greater than 0). We can generalize it,
though, to arbitrary integer multiplicities of leaf nodes (which
are not queried themselves). Since satisfiability of Pres-
burger formulas is also decidable over�, the same techniques
can be applied.

One might suspect that dealing with numbers in deci-
mal representation as opposed to the unary representation
of multiplicities by tags results in an exponential blow-up
for query evaluation. Fortunately this is not the case. Re-
call that in the proof of Theorem 4 we evaluate Presburger
formulas by finite automata operating on the binary repre-
sentations of multiplicities. Therefore, query evaluation is
still possible in linear time.

Now let us consider a second example query. Assume that
by some transformation process from the initial document
of Figure 1 a document is created, as depicted in Figure 4
which, for each user and each music style, consists of a list
of the 〈time〉- and 〈price〉-tags.

<user>
...
<jazz>
<time> 3310 </time>
<price> 240 </price>
<time> 220 </time>
<price> 20 </price>
<time> 247 </time>
<price> 16 </price>
<time> 3510 </time>
<price> 262 </price>
<time> 3325 </time>
<price> 220 </price>
</jazz>
<pop>
...
</pop>
...

</user>

Figure 4: A transformed document containing in-

formation about time and price of music files down-

loaded by a user.

An obvious question is how queries referring to numbers
can be formulated against this document. The previous ap-
proach suggests to interpret the expression [time] as the sum
of numbers within tags 〈time〉. For instance, the set of all
users who downloaded at least 2 hours of jazz music could
be formulated as follows.

x ∈ Labuser ∧ ∃ y. x < y ∧ y ∈ Labjazz ∧ y/φ

where:

φ ≡ [time] ≥ 7200

By replacing φ with [time] > 6 · [price] we could as well
select all users who consumed jazz music with an overall
price of less than 10 Cent per minute.

Of course in a practical setting, it would be interesting to
allow aggregate functions (besides summing of values) such
as min, max or average. It is straightforward to incorpo-
rate these additional features into Presburger formulas of
automata. Concerning query evaluation the additional ef-
fort then only depends on the cost of the computation of
the aggregate functions. Determinization is still possible in
Presburger u-tree and m-tree automata. Whether Empti-
ness or Universality remain decidable depends on the spe-
cific properties of the aggregate functions.

A closer investigation of the properties of aggregate func-
tions with respect to the questions we considered here re-
mains to be carried out in future work.
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