
Counting in trees

Helmut Seidl1

Thomas Schwentick2

Anca Muscholl3

1 Institut für Informatik, I2
TU München
Germany

2 Lehrstuhl Informatik I
Universität Dortmund
Germany

3 LaBRI
Université Bordeaux
France

Abstract

We consider automata and logics that allow to reason about nu-
merical properties of unranked trees, expressed as Presburger con-
straints. We characterize non-deterministic automata by Presburger
Monadic Second-Order logic, and deterministic automata by Pres-
burger Fixpoint logic. We show how our results can be used in order
to obtain efficient querying algorithms on XML trees.

1 Introduction

Tree automata and logics for finite trees have been considered since the
seminal work of Thatcher and Wright [38] in the late sixties, with emphasis
on ranked trees. More recently, research on semi-structured data and XML
in particular, raised new questions about unranked trees, i.e., trees where
the number of children of a node is not fixed a priori, [8, 22]. Trees in XML
are unranked, labeled, and may occur in two versions, ordered or unordered,
depending on whether the sequence of children of a node is ordered or not.

In XML schema description languages like DTDs and XML Schema, the
possible sequences of types of children elements of a node are described
by regular expressions. Thus, most of the existing theoretical work on
XML query languages has concentrated on regular tree languages. These
languages can be described by tree automata on unranked ordered trees
(also known as hedge automata) [25, 26] and a variety of other formalisms
[14, 24, 27]. In these formalisms the interaction between the children of a
node and the node itself are usually expressed in terms of a regular language.

2 H. Seidl, Th. Schwentick, A. Muscholl

Other work extended these formalisms to let them formulate (at least unary)
queries. The resulting query facilities usually have the expressive power of
Monadic Second-Order logic (MSO).

The regular framework is sufficient in many cases. But often one is inter-
ested in expressing conditions on the frequency of occurrences of elements in
the children sequence. Consider as an example a document which contains
music files shared by some peer-to-peer system as Napster, Gnutella etc. as
described in Figure 1.1

For instance, we would like to query for users who prefer jazz over pop.
Such a query can be expressed by asking for nodes labeled with “music”
that have more children labeled “jazz” than “pop”. Querying for users who
are extreme jazz fans can be expressed by requiring that the majority of the
children of a node labeled by “music” is labeled by “jazz”.

One way of formulating such queries, is to extend the MSO logic by for-
mulas of Presburger arithmetics constraining the children of a node (Pres-
burger constraints for short). In this new Presburger MSO logic (PMSO)
the first query can be expressed as:

x ∈ Labmusic ∧ x/ϕ1 ,

where ϕ1 is the formula

ϕ1 ≡ #Labjazz ≥ #Labpop .

Here, #Labjazz and #Labpop denote the numbers of children labeled with
jazz and pop, respectively. For the second query we replace ϕ1 by ϕ2,
where ϕ2 is the formula:

ϕ2 ≡ #Labjazz ≥ #Labpop + #Labfrench + #Labclassic .

As an operational counterpart of the extended logic we study bottom-up tree
automata that are enhanced by Presburger constraints. Transitions from
the children of a node to the node itself may depend on the frequencies of
states at the children via a Presburger arithmetic condition, i.e., a formula
involving addition.

We start our investigation by considering automata that only use Pres-
burger constraints, i.e., automata that disregard the order of the children of
a node and only use cardinalities of states. Technically speaking, we study
in this part automata on unordered trees. It turns out that these automata
are very well-behaved. They define a class of tree languages with very reg-
ular properties like various closure properties and equivalence with PMSO

1 It should be noted that in a realistic setting the type of music would likely be repre-
sented by an attribute and not by a separate tag for each type. But, of course, for the
purpose of query processing we can interpret a tag with attribute jazz as a tag jazz.

Counting in trees 3

<doc>

<user>

<name> ... </name>

...

<music>

<jazz>

<album> Always let me go </album>

<artist> Keith Jarrett </artist>

<year> 2002 </year>

<time> 3310 </time>

<price> 42 </price>

</jazz>

<french>

<tit> Aux enfants de la chance </tit>

<artist> Serge Gainsbourg </artist>

<album> Serge Gainsbourg, vol. 3 </album>

<time> 247 </time>

<price> 16 </price>

</french>

<classic>

<tit> The Seven Gates of Jerusalem </tit>

<comp> Krzystof Penderecki </comp>

<recorded> 1999 </recorded>

<time> 3510 </time>

<price> 43 </price>

</classic>

<jazz>

<album> Kind of Blue </album>

<artist> Miles Davis </artist>

<year> 1997 </year>

<time> 3325 </time>

<price> 29 </price>

</jazz>

</music>

<video>

...

</video>

<images>

...

</images>

</user>

</doc>

Figure 1. An example document containing information about music files
downloaded by users.

4 H. Seidl, Th. Schwentick, A. Muscholl

logic. Further, these automata allow for effective static analysis. Emptiness
and universality are decidable, and from any non-deterministic automaton
an equivalent deterministic automaton can be constructed. Last but not
least, they allow to define a class of (unary) queries the evaluation of which
has linear time data complexity.

Next, we study automata that are allowed to combine Presburger con-
straints with the common regular language constraints (Presburger tree au-
tomata, PTA). It turns out that they have less desirable properties. Al-
though emptiness of PTA can still be decided, universality (whether an
automaton accepts all trees) becomes undecidable. As we show that the
non-deterministic PTA can be characterized by existential PMSO logic, we
can conclude that PMSO logic is undecidable. Nevertheless, the combined
complexity of these automata is NP-complete, whereas the data complexity
is polynomial time.

Often however, and in particular in our example, some parts of a doc-
ument can be considered as textual representations of information records.
This means that inside certain elements, the ordering is not significant.
We therefore investigate automata on mixed document trees, i.e., in which
element tags either identify their content as ordered or as unordered. We
further assume that, as in our example, numerical constraints are only appli-
cable to such unordered element contents. Under these assumptions, we get
the same kind of nice behavior as in the totally unordered case, mentioned
above.

An alternative for the querying formalism enhanced by Presburger con-
straints is to replace the MSO logic by fixpoint logic. This Presburger
fixpoint logic turns out to be decidable (EXPTIME-complete), and its
combined complexity is polynomial time. Moreover, this logic has the same
expressive power as deterministic PTA.

This paper is an extended version of [35, 36].

Overview. In Section 2 we define some basic Presburger logic notions. Sec-
tion 3 studies unordered Presburger tree automata and logic. Section 4
studies basic algorithmic properties of Boolean combinations of regular ex-
pressions and Presburger conditions. In Section 5, ordered Presburger tree
automata and logic are considered. Section 6 takes a quick look at the case
where some unordered parts of a tree allow for Presburger constraints and
the others for regular expressions. Section 7 studies Presburger fixpoint
logic and its relation with Presburger tree automata. Finally, Section 8
shows how our framework can be used to express unary queries.

Related work. Unordered document trees are closely related to the gener-
alization of feature trees considered by Niehren and Podelski in [28] where
they study the (classical) notion of recognizability and give a characteriza-

Counting in trees 5

tion of this notion by means of feature automata. No counting constraints
are considered. A detailed study of automata over unranked trees has been
initiated by Brüggeman-Klein, Murata and Wood [3].

Query languages for unordered trees have been proposed by Cardelli and
Ghelli [5, 4, 6, 7] (and their co-workers). Their approach is based on first-
order logic and fixpoint operators. An extension to numerical constraints
has been proposed by Dal Zilio et al. [9]. Kupferman, Sattler and Vardi
study a µ-calculus with graded modalities where one can express, e.g., that
a node has at least n successors satisfying a given property [18]. The num-
bers n there, however, are hard-coded into the formula. Orderings on the
successors is not considered. Klaedtke and Ruess consider automata on the
unlabeled infinite binary tree, which have an accepting condition depending
on a global Presburger constraint [17].

Our notion of tree automata with combined Presburger and regular con-
straints has been introduced independently by Dal Zilio and Lugiez in [21].
In the latter paper, the authors also propose a modal logic for XML doc-
uments, called Sheaves logic. This logic allows to reason about numerical
properties of the contents of elements but still lacks recursion, i.e., fixpoint
operators. On the automata side they obtain comparable results concern-
ing closure properties, membership tests and decidability of emptiness. Al-
though no precise characterization is given, the Sheaves logic is strictly less
powerful than the automata model. Recently, Demri and Lugiez proposed
the extended modal logic EXML, which uses regular and Presburger con-
straints on the sequence of children (still without recursion) [10]. The logic
EXML is shown to contain the Sheaves logic and to have an EXPSPACE
satisfiability problem.

2 Preliminaries on Presburger Logic

Presburger logic is first-order logic with addition and the ordering relation
over N. It can express various decision questions such as solvability of sys-
tems of linear equations, integer programming, or verification questions.
The decidability of Presburger logic was established by Presburger [33] by
quantifier elimination. A doubly exponential non-deterministic lower bound
was shown in [12]. Later, the precise complexity was shown to be LinA-

TIME 22O(n)

, namely doubly exponential alternating time with a linear
number of alternations, [1]. A long line of research was devoted to the
analysis of various decision procedures for this logic, based on quantifier
elimination and automata. For instance, from a formula in prenex normal
form one can construct automata of triply exponential size [16].

For complexity reasons it is quite common to consider either quantifier-
free or existential Presburger formulas, since their satisfiability is in NP.
Both use linear terms with integer coefficients, i.e., built according to the

6 H. Seidl, Th. Schwentick, A. Muscholl

syntax (with x a variable which is interpreted over N):

t ::= 0 | 1 | ±x | t1 + t2 .

Quantifier-free Presburger formulas are defined as the closure of atomic
formulas of kind t = 0 and t ≡ 0 (mod d) (with t a term and d ∈ N a
constant) under the Boolean connectives. Existential Presburger formulas
are defined as the closure of atomic formulas of kind t = 0 under the positive
connectives ∨,∧ and existential quantification.

It is well known that each Presburger formula can be transformed into
an equivalent quantifier-free formula [33]. In one more step, such a formula
can be transformed into an existential formula in normal form, that is,
into a formula of the form ∃x1, . . . , xk

∨m
i=1 ϕi, where each disjunct ϕi is a

conjunction of equations t = 0 with t a linear term (with integer coefficients):

Proposition 2.1. Every quantifier-free Presburger formula ϕ has an equiv-
alent formula in existential normal form. This formula has at most expo-
nentially many disjuncts, each of at most linear size (in |ϕ|).

Proof. Let ϕ be a quantifier-free Presburger formula. First we bring it
into disjunctive normal form (DNF). Then we replace atomic and negated
atomic formulas by equations, if necessary by introducing new existentially
quantified variables. More precisely,

• t < c can be replaced by ∃y1(t+ 1 + y1 = c),

• t 6= c by ∃y2(t+ y2 + 1 = c ∨ t− y2 − 1 = c),

• t ≡ c (mod d) by ∃y3(t− dy3 = c ∨ t+ dy3 = c), and

• t 6≡ c (mod d) by

∃y4, y5(t−dy4−y5 = 0 ∨ t+dy4−y5 = 0)∧(0 ≤ y5 < c ∨ c < y5 < d) .

The resulting formula needs not to be in DNF yet, but it is free of negations
and can be easily transformed into existential normal form. Note first that
the DNF is of exponential size, but each disjunct contains at most |ϕ| atoms.
After replacing the atoms by equations, each conjunction is transformed
into DNF. The size of each resulting disjunct is still linear, and the overall
number of disjuncts remains exponential. q.e.d.

Remark 2.2. Satisfiability of existential Presburger formulas is easily seen
to be NP-complete. The upper bound is obtained by assuming w.l.o.g. that
such a formula is in prenex form ∃x1, . . . , xk ψ, with ψ a positive Boolean
combination of equations t = 0, with t a linear term. It suffices to guess
then a disjunct of the DNF of ψ, and test in NP whether a conjunction of
such equations is satisfiable.

Counting in trees 7

Given a formula ϕ and an assignment σ mapping the variables of ϕ to
numbers, we write σ |= ϕ if ϕ holds for σ (in the obvious sense) and call
σ a solution of ϕ. It is well known that the set of solutions of any given
Presburger formula is a semi-linear set [13]. A semi-linear set is a finite
union of linear sets, i.e., sets of the form {c̄+

∑m
i=1 xip̄i | xi ∈ N}, where c̄

and the p̄i are vectors from Nk for a given k.
The Parikh image of a word w ∈ Σ∗ is the assignment σ ∈ NΣ with

σ(a) being the number of occurrences of the letter a in w, for each a ∈ Σ.
Accordingly, the Parikh image of a set L ⊆ Σ∗ is the set of Parikh images
of w ∈ L.

Given the alphabet Σ, T (Σ) stands for the set of ordered, unranked trees
over Σ. A tree t ∈ T (Σ) with root label a and subtrees t1, . . . , tn will be
denoted as t = a〈t1, . . . , tn〉.

3 Unordered Presburger Tree Automata

In this section we start with tree automata and logics that are unordered,
i.e., they consider only the vertical parent-child order, but not the order
between siblings. Technically speaking, we work on unordered trees, as
considered for instance in [2, 9, 4, 5].

Given a finite set Q, we will consider a canonical set YQ of variables
which are associated with the elements in Q. So, we define:

YQ = {#q | q ∈ Q} .

An unordered Presburger tree automaton (u-PTA for short) is given by a
tuple A = (Q,Σ, δ, F) where:

• Q is a finite set of states,

• F ⊆ Q is the subset of accepting states,

• Σ is the finite alphabet of tree labels, and

• δ maps pairs (q, a) of states and labels to quantifier-free Presburger
formulas with variables only from the set YQ.

Informally, u-PTA are bottom-up tree automata, with transitions controlled
by quantifier-free Presburger formulas. A formula ϕ = δ(q, a) represents the
pre-condition on the children of a node labeled by a for the transition into
state q, where the value of the variable #p represents the number of children
that are in state p. Formally, we introduce a satisfaction relation t |=A q
between trees t ∈ T (Σ) and states q which is defined as follows. Assume
that t = a〈t1, . . . , tn〉, where a is the the label of the root, and t1, . . . , tn are
the subtrees of the root, and let δ(q, a) = ϕ. Then t |=A q if {1, . . . , n} can
be partitioned into |Q| subsets Ip of cardinalities np (p ∈ Q), such that:

8 H. Seidl, Th. Schwentick, A. Muscholl

• ti |=A p for all i ∈ Ip,

• {#p 7→ np | p ∈ Q} |= ϕ.

The language L(A) of trees which are accepted by A is

L(A) = {t ∈ T (Σ) | ∃ f ∈ F : t |=A f} .

As an example, consider the language of trees with labels in {a, b}, such
that the internal nodes are all labeled by a and have at most as many
subtrees with a b-leaf as ones without. A u-PTA for this language has
two states, say q0 and q1, where state q0 means that there is no b-leaf in
the subtree, and state q1 the converse. The transition relation is defined
by δ(q0, a) = (#q1 = 0), δ(q0, b) = false, δ(q1, a) = (#q0 ≥ #q1 > 0) and
δ(q1, b) = leaf. Here, we use the Presburger constraint leaf = (

∑
i=0,1 #qi =

0), which is satisfied precisely at leaf nodes.
Note that u-PTA are defined as non-deterministic automata. A u-PTA

A = (Q,Σ, δ, F) is called deterministic if for every a ∈ Σ and every tuple
(np)p∈Q ∈ NQ, there is at most one state q ∈ Q such that

{#p 7→ np | p ∈ Q} |= δ(q, a) .

Remark 3.1. It is not too hard to verify whether a given u-PTA is deter-
ministic. The precise complexity is NP-complete, since it amounts to check
the satisfiability of quantifier-free Presburger formulas. The lower bound
can be obtained by an obvious reduction from Integer Linear Programming
(ILP).

3.1 Closure and decidability results

The results of this section show that u-PTA enjoy several desirable proper-
ties, such as determinization and reasonable complexity.

Theorem 3.2. The non-emptiness problem for u-PTA is NP-complete.

Proof. Consider a u-PTA A = (Q,Σ, δ, F). Let us call a state q ∈ Q
reachable iff there is a tree t with t |=A q. The algorithm guesses some final
state q ∈ F , and checks that q is reachable. To this end, the algorithm
guesses some k ≤ |Q| and a sequence q1, . . . , qk of states with qk = q, and
checks that, for each 1 ≤ j ≤ k, the following formula is satisfiable: ∧

p∈Q\{qi|i<j}

#p = 0

 ∧(∨
a∈Σ

δ(qj , a)

)
.

Since each check can be done non-deterministically in polynomial time, the
overall complexity is NP. Moreover, NP-hardness is again an immediate
consequence of ILP, thus we conclude that non-emptiness of u-PTA is NP-
complete. q.e.d.

Counting in trees 9

We show next that u-PTA are effectively closed under the Boolean op-
erations (union, intersection and complement). In particular, we give a
determinization construction for u-PTA.

Theorem 3.3. u-PTA are effectively closed under the Boolean operations
and under renaming2.

Proof. Closure under union and renaming is immediate. For intersection,
assume that we are given automata Ai = (Qi,Σ, δi, Fi), i = 1, 2. W.l.o.g. we
assume that Q1 ∩ Q2 = ∅. We proceed analogously to the standard con-
struction of the product automaton for ordinary automata. Thus, we define
the automatonA = (Q,Σ, δ, F) as follows. We set Q = Q1×Q2, F = F1×F2

and define δ(〈q1, q2〉, a) by the formula below, where δ̃1 and δ̃2, resp., are
obtained from δ1, δ2, resp., by replacing all variables #p by xp (p ∈ Q1∪Q2):

E

p1∈Q1

xp1 .

E

p2∈Q2

xp2 . δ̃1(q1, a) ∧ δ̃2(q2, a) ∧ ∧
p1∈Q1

∑
p2∈Q2

#〈p1, p2〉 = xp1

 ∧
 ∧
p2∈Q2

∑
p1∈Q1

#〈p1, p2〉 = xp2

 .

In addition, we use above the notation
E

i∈I xi, for some index set I, to

denote the existential quantification over all variables xi (i ∈ I). This is
done for convenience only, since the above formula can be rewritten directly
as a quantifier-free Presburger formula. It is easy to see that t |=A 〈q1, q2〉
iff t |=A1

q1 and t |=A2
q2. Thus, L(A) = L(A1) ∩ L(A2), which completes

the proof.
For closure under complement it suffices to know that u-PTA can be

determinized, which is shown in the proposition below. q.e.d.

Proposition 3.4. For every u-PTA A, a deterministic u-PTA A′ can be
constructed such that L(A) = L(A′).

Proof. The proof idea is similar to the power set construction for ordinary
finite automata. Let A = (Q,Σ, δ, F) and A′ = (Q′,Σ, δ′, F ′), where Q′ =
2Q and F ′ = {B ⊆ Q | F ∩B 6= ∅}. For each B ⊆ Q, δ′(B, a) is a formula
with free variables from YQ′ . It is given by:∧

q∈B
ψq,a

 ∧
 ∧
q∈Q\B

¬ψq,a

 .

Here, the formula ψq,a should be true iff q is a potential successor state. In
order to specify ψq,a, we refer to the auxiliary variables xp (p ∈ Q), and also

2 A renaming is a letter-to-letter morphism.

10 H. Seidl, Th. Schwentick, A. Muscholl

to auxiliary variables x〈B,p〉 (B ⊆ Q, p ∈ B). The variable x〈B,p〉 is meant
to count all those children resulting in the state set B in A′, for which we
choose state p ∈ B w.r.t. the A-run. Using these auxiliary variables, ψq,a is

defined below, with δ̃(q, a) as the formula δ(q, a) where each variable #p is
replaced by xp:

E

p∈Q
xp .

E

p∈B⊆Q
x〈B,p〉 . δ̃(q, a) ∧ ∧
B⊆Q

∑
p∈B

x〈B,p〉 = #B

 ∧
∧
p∈Q

∑
p∈B⊆Q

x〈B,p〉 = xp

 .

The transitions of the subset automaton can be transformed into quantifier-
free formulas by quantifier elimination. q.e.d.

As a corollary of Proposition 3.4, we also obtain:

Corollary 3.5. The universality problem for u-PTA is decidable.

The complexity upper bound for the universality problem that follows from
Proposition 3.4 is 2-NEXPTIME. Note first that the transition formulas
δ′(B, a) can be written as ∃x̄∀ȳ ψ(x̄, ȳ), with ψ quantifier-free. Using quan-
tifier elimination we can first make ∀ȳ ψ(x̄, ȳ) quantifier-free, then rewrite
δ′(B, a) as an existential Presburger formula. The first step is exponential
in the size of the universal quantifier block (see e.g. [16]), hence we obtain
an existential formula of doubly exponential size, for which satisfiability can
be checked in 2-NEXPTIME.

Proposition 3.6. The combined complexity of u-PTA Model Checking is
NP-complete. If the u-PTA is deterministic, the complexity is polynomial
time. The data complexity is linear in the size of the input tree.

Proof. Assume we are given a u-PTA A and a tree t. We guess for each
node of t a state of A, and then check that the run is accepting: For each
node we compute the Parikh image of the children states (note the entries
have values ≤ |t|). Then we need to check that the Presburger formulas are
locally satisfied, for each node. Thus, the evaluation of all formulas at a
node requires time O(|A| · |t|) (using numbers in unary representation).

NP-hardness follows by a reduction from 0-1 ILP, where we ask whether
a system S of linear equations Ax̄ = b̄ has a 0-1 solution, i.e. one with x̄ ∈
{0, 1}m. GivenA and b̄, we define a u-PTA with state space {p1, . . . , pm, p, f},
final state f and transition relation δ(p, a) = δ(pi, a) = leaf for all i, and
δ(f, c) = (ϕ ∧ #f = 0), where ϕ is the conjunction of all equations in S
(with xi replaced by #pi) and of 0 ≤ #pi ≤ 1 for all i. Clearly, the tree t

Counting in trees 11

of depth 1 with root labeled c and m leaves labeled a satisfies t |=A f iff S
has a 0-1 solution.

If A is deterministic, then the tree can be evaluated in a bottom-up
traversal in time O(|t| · |A|). The data complexity follows immediately,
using Proposition 3.4. q.e.d.

3.2 Unordered Presburger logic

Unordered Presburger MSO logic (u-PMSO for short) is defined by extend-
ing monadic second-order logic (MSO) with Presburger predicates over the
children of a node. As for u-PTA, the logic does not provide an order-
ing relation on siblings. A u-PMSO formula ϕ is given by the following
grammar:

ϕ :: = y ∈ Laba | y ∈ Y | Child(y, y′) | y/ψ |
ϕ1 ∧ ϕ2 | ¬ϕ | ∃ y. ϕ | ∃Y. ϕ

ψ :: = t1 = t2 | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ∃x. ψ1

t :: = 0 | 1 | ±x | t1 + t2 | #Y

where a ∈ Σ, y, y′ are first-order variables, Y is a second-order variable, and
x is from a designated set of Presburger variables. The predicates y ∈ Laba
and Child(y, y′) are interpreted as usual, i.e. y is labeled by a, resp. y′ is
a child of y. The formula ψ in y/ψ is a quantifier-free Presburger formula.
The interpretation of y/ψ is that the children of y satisfy the Presburger
constraint ψ. A term #Y inside ψ is interpreted as the number of those
children which are contained in Y . As usual, we write t |= ϕ, if t satisfies
the (closed) u-PMSO formula ϕ.

Remark 3.7. We also allow derived predicates such as equality between
variables such as y1 = y2, or Y1 = Y2, or equations Y = {y1}. Note that
the child predicate Child(y, y′) is redundant, since it can be expressed as:

∃Y. (Y = {y′} ∧ y/(#Y = 1)) .

A tree language L ⊆ T (Σ) is u-PMSO-definable if there is a closed formula
ϕ such that L = {t | t |= ϕ}.

Theorem 3.8 below states that u-PMSO-definable languages are precisely
characterized by unordered Presburger tree automata. The proof is anal-
ogous to the corresponding result for ordinary tree automata (over ranked
trees) [38], and uses in particular Theorem 3.3.

Theorem 3.8. A set of unranked trees is accepted by some u-PTA if and
only if it is definable in u-PMSO.

12 H. Seidl, Th. Schwentick, A. Muscholl

4 Regular Expressions and Presburger Formulas

The automata considered in the next section, as well as the associated logics,
use pre-conditions on the children of a node in form of Boolean combina-
tions of regular expressions and Presburger formulas. A basic question is
then the satisfiability of such conditions. Since the Parikh image of a reg-
ular language (and even context-free language, [32]) is semilinear, deciding
emptiness can be reduced to computing the Parikh image of the regular
expressions involved.

In [36] we showed that even for an NFA, an existential Presburger for-
mula which describes the Parikh image of the corresponding language can
be computed in linear time. Later, this result was extended to context-free
grammars in [39] (see also [11] for a related approach).

Theorem 4.1. [39] Given a context-free grammar G, an existential Pres-
burger formula for the Parikh image of L(G) can be computed in linear
time.

A Presburger regular expression over Σ is a Boolean combination of regu-
lar expressions over Σ and quantifier-free Presburger formulas with variables
only from the canonical set YΣ = {#a | a ∈ Σ}.

Given a string w ∈ Σ∗ and a Presburger regular expression ϕ we define
in the obvious way whether w matches ϕ (denoted as w |= ϕ). For example,
if ϕ = a(a + b)∗ ∧ (#a = #b), then w |= ϕ iff w contains only a’s and b’s,
begins with an a and contains as many a’s as b’s. A Presburger regular
expression ϕ is satisfiable if there exists some w with w |= ϕ. Before we
show how to decide satisfiability for such expressions, we need the following
property:

Proposition 4.2. Let A be a (non-deterministic) finite word automaton
with n states and input alphabet of size k. Then the Parikh image of L(A)
is a union of linear sets {c̄+

∑m
i=1 xi · p̄i | xi ∈ N} where each component of

each vector p̄j ∈ Nk is at most n, and each component of c̄ is at most n2.
In particular, if the size of the alphabet is k, then the number m of

occurring period vectors is at most (n+ 1)k.

Proof. The proof is based on the following simple observation: any (accept-
ing) path π of A can be decomposed successively into loops of length at
most n, and one (accepting) path of length at most n2, that contains every
state occurring in π. Thus, we define each set of vectors c̄, p̄j ∈ Nk by
associating c̄ with an accepting path λ0 of length at most n2 and each p̄i
with a loop λi of length at most n, in such a way that the λj , 0 ≤ j ≤ m,
can be combined to a (accepting) path in A. Specifically, it suffices to fix
for each j the set of states that occur in λj in such a way that ∪mj=0λj is
connected. q.e.d.

Counting in trees 13

Proposition 4.3. The satisfiability problem for Presburger regular expres-
sions is PSPACE-complete.

Proof. The lower bound is immediate, since it is already PSPACE-hard to
decide whether a given set of regular expressions has a non-empty intersec-
tion or whether the complement of a single regular expression is non-empty
[37].

For the upper bound let ϕ be a Presburger regular expression of size n.
First of all, we can assume w.l.o.g. that negations are used only as linear or
modular inequations, or in form of negated regular expressions. The given
expression ϕ is satisfiable iff some of the disjuncts in the DNF of ϕ is so. We
can guess such a disjunct ψ in linear time. The formula ψ is a conjunction of
regular expressions, negated regular expressions, linear (in)equations t = 0,
t 6= 0 and modular (in)equations t ≡ 0 (mod d), t 6≡ 0 (mod d).

We first show that ψ is satisfiable iff there exists some word w of ex-
ponential length with w |= ψ. Since the regular expressions in ψ all occur
in ϕ, the sum of their sizes is at most n. The minimal automaton of each
such (possibly negated) regular expression e (resp., ¬e) is of size 2|e|, hence
the minimal automaton Aψ of the intersection of all positive and negated
regular expressions is of size 2n .

By Proposition 4.2, the Parikh image of L(Aψ) is a union of linear sets

{c̄+

h∑
i=1

xip̄i | xi ∈ N}, where h = O(2n·|Σ|) = O(2n
2

) (as |Σ| ≤ n) and the

entries of the vectors c̄, p̄i are at most O(2n).
Now, a word w ∈ Σ∗ satisfies ψ iff its Parikh image is in one of these

linear sets and additionally fulfills the remaining (Presburger) constraints.
This can be expressed by adding, for each a ∈ Σ, the following equation:

#a = c̄(a) +

h∑
i=1

xi · p̄i(a) .

Let m be the number of Presburger constraints in ψ. By Proposition 2.1,
the conjunction of these constraints is equivalent to a formula in existential
normal form, with disjuncts of size O(m). Thus, one has to check whether
the Parikh image of w satisfies a system of M = O(m) + |Σ| ≤ O(n)

equations with at most N = |Σ|+O(m+ 2n
2

) = O(n+ 2n
2

) variables, and
coefficients of values bounded by k = 2n. By a result of Papadimitriou [31]
such a system has a solution with numbers bounded by

N · (M · k + 1)2M+4 = (O(n+ 2n
2

)) · (O(n) · 2n + 1)O(n) = 2O(n2) .

This shows that if some w |= ψ exists, then there is some with length 2O(n2).

14 H. Seidl, Th. Schwentick, A. Muscholl

It remains to describe how to check the existence of w as above. We
simply guess w symbol by symbol. For each regular expression e or ¬e in ψ,
we compute the set of states that can be reached in the non-deterministic
automaton Ae for e when reading w. Further, for each a ∈ Σ we count how
often a occurs in w. All this can be done in polynomial space without storing
w. A counter keeps track of the length of w. In the end, it can be checked
whether the Parikh image of w satisfies all Presburger constraints. q.e.d.

As Presburger regular expressions are closed under negation we immediately
conclude that also universality is PSPACE-complete.

5 Presburger Tree Automata

In many applications, e.g., where documents are automatically generated
from databases as textual representations of querying results, the element
ordering on the children does not matter. In other applications, though,
which are more related to classical document processing, this ordering is
crucial. In this section, we extend our framework to automata and logics
that take the sibling order into account. Naturally, we use then Presburger
regular expressions as pre-conditions on children sequences.

We define a Presburger tree automaton for unranked trees (PTA for
short) as a tuple A = (Q,Σ, δ, F) where:

• Q is a finite set of states;

• F ⊆ Q is the subset of accepting states;

• δ maps pairs (q, a) of states and labels from Σ to Presburger regular
expressions over Q.

Accordingly, we introduce an extended satisfaction relation between trees t
and states q by defining for t = a〈t1 . . . tl〉 and δ(q, a) = ϕ, t |=A q iff there
are states p1, . . . , pl ∈ Q such that tj |=A pj for all j and p1 · · · pl |= ϕ. The
language L(A) ⊆ T (Σ) which is accepted by the automaton A is given by:

L(A) = {t ∈ T (Σ) | ∃ f ∈ F : t |=A f} .

A PTA A is called deterministic if for all a ∈ Σ and all w ∈ Q∗, we have
w |= δ(q, a) for at most one q ∈ Q.

Using Proposition 4.3, we obtain with a similar proof as for Theorem
3.2:

Theorem 5.1. The emptiness problem for PTA is PSPACE-complete.

Next we turn to the complexity of such automata.

Counting in trees 15

Theorem 5.2. 1. The combined complexity of PTA Model Checking is
NP-complete. If the PTA A is deterministic, it is O(n · |A|), where n
is the size of the input tree.

2. The data complexity of PTA is polynomial, O(nk+1). The degree k
of the polynomial is the number of states of the PTA.

Proof. Let A be a PTA with state set Q and t a tree. A non-deterministic
algorithm guesses a run of A on t and checks the consistency at each node.
Each consistency check amounts (1) to testing membership of a string w ∈
Q∗ of size |t| for at most |A| many regular languages, represented by regular
expressions (possibly negated), and (2) to evaluating at most |A| (quantifier-
free) Presburger formulas on its Parikh image. All these checks can be done
deterministically, in time O(|t| · |A|). If A is deterministic, we perform the
computation bottom-up deterministically. The NP lower bound for non-
deterministic PTA follows already from the u-PTA case.

Towards (2.), suppose now that the PTA A is fixed and let Q be its set
of states. We perform a bottom-up traversal of the input tree t, computing
for each subtree t′ the set of states R = {p | t′ |=A p} ⊆ Q. Assume that
t′ = a〈t1, . . . , tm〉 and Ri = {p | ti |= p} have been already computed.
Moreover, we can suppose that the Presburger regular expressions used in
A are disjunctions of conjuncts ei ∧ πi where for each ei a deterministic
automaton Bi is given, and each πi is a Presburger formula. Then we may
check for each ei ∧ πi separately whether it is verified by t1, . . . , tm.

To this end, let us now consider one conjunct e∧ π, where the language
of e is described by the finite automaton B with set of states P . Let the
sets V (i, s), 0 ≤ i ≤ m, s ∈ P , contain all assignments v : YQ → {0, . . . , i}
verifying the following condition: there exists a sequence of states α =
r1 · · · ri with rj ∈ Rj for j = 1, . . . , i and with Parikh image v, such that
state s can be reached from an initial state of B by reading α. Finally, let
V be the union of all sets V (m, f) where f is a final state of B. Once V is
computed, it simply remains to check whether v |= π for some v ∈ V . Thus,
assuming that the automaton A is of constant size, we spend O((m+ 1)|Q|)
time on the computation of the set of all successor states at the root of
t′. Hence we can conclude that the overall runtime on a tree of size n is
O(n|Q|+1). q.e.d.

PTA do not share the pleasant properties with u-PTA. In particular, it is a
direct consequence of the following result that there is no determinization
algorithm for PTA.

Theorem 5.3. The universality problem for PTA is undecidable.

Proof. The proof is a reduction from the accepting problem for 2-counter
Minsky machines [23]. Given such an automaton A with state set Q we

16 H. Seidl, Th. Schwentick, A. Muscholl

construct a PTA B such that A does not accept the empty input if and only
if B accepts all trees over the alphabetQ∪{#, $, a, b}. In the construction we
will concentrate on trees of depth 1 with frontier (i.e., leaf labels read from
left to right) from Qa∗b∗(#Qa∗b∗)∗. The root is labeled by $. It is easy to
construct a tree automaton (without Presburger constraints) which accepts
all trees that are not of this special form. The union of this automaton with
the automaton B′ to be constructed in the remainder of the proof will be
the automaton B we are looking for.

The PTA B′ checks whether the frontier does not encode an accepting
computation of the counter automaton A. Here, a configuration of A with
state q and counter contents n1 and n2, respectively, is encoded by the
string qan1bn2 and configurations are separated by #. The automaton B′
checks whether one of the following cases arises:

• the frontier does not start with q0#, where q0 is the initial state of A,
or

• the frontier does not end with a string of the form #qa∗b∗, where q is
an accepting state of A, or

• there are two successive configurations that are not consistent with
the transition function of A.

We only describe how the latter case can be checked, as the first two
cases are straightforward. The idea is that B′ simply marks two consecutive
configurations. A regular constraint can check that two such configurations
are correctly marked, whereas a Presburger constraint ensures that the two
configurations are indeed inconsistent with the transition function of A.

Formally, the state set of B′ equals Q ∪ {#, a, a′, b, b′, ?}. On each leaf
the automaton can enter state ?. Further, it can enter state # on all leaves
labeled #, and state q on all leaves with label q ∈ Q. For leaves with label
a (b, resp.) it can also enter state a or a′ (b or b′, resp.)

The automaton B′ enters an accepting state at the root if both conditions
below hold:

• the states on the frontier form the sequence ?∗#qa∗b∗#q′a′
∗
b′
∗
#?∗

with q, q′ ∈ Q, and

• the numbers of occurrences of a, b, a′, b′ are not consistent with respect
to q, q′ and the transition function of A.

The first condition above is simply a regular constraint. The second
one can be expressed by a conjunction of Presburger constraints, over all
possible transitions of A leading from state q to state q′. For instance,
for a transition that increases the first counter and leaves the second one

Counting in trees 17

unchanged, the Presburger constraint requires that either the number of a′

is not equal to the number of a plus 1, or the numbers of b and b′ are not
equal. q.e.d.

5.1 Presburger MSO logic

Unordered Presburger MSO logic as defined in Section 3.2 is readily ex-
tended to take into account the sibling order, by adding the atomic predicate
Next(y, y′), with the meaning that y′ is a right sibling of y. We denote this
logic as PMSO. We now characterize Presburger tree automata by means
of existential PMSO logic.

Theorem 5.4. A set of unranked trees is accepted by a PTA if and only
if it can be described by a PMSO formula of the form ∃X1 . . . ∃Xk. ϕ where
ϕ contains no second-order quantifier.

Proof. Let A be a PTA with state set Q and transition relation δ. Without
loss of generality we can assume that all Presburger regular expressions used
in δ are disjunctions of expressions ei ∧ πi, where ei is a regular expression
over Q, and πi is a quantifier-free Presburger formula. Furthermore, let, for
each i, a finite automaton Bi for L(ei) be given. From Büchi’s Theorem it
follows that each automaton Bi is equivalent to an existential MSO formula
ψi = ∃Y1 . . . ∃Yl. ϕi. Hence, we can construct a formula ψ = ∃X1 · · · ∃Xk. ϕ
in which some of the variables Xi are used to encode the states that A
assumes and the remaining variables are those of the formulas ψi. The
first-order part ϕ of ψ describes the consistency of the states between nodes
of the input tree and their children, and uses the formulas ϕi.

For the converse we show first that every PMSO formula ψ containing
no second-order quantifier can be evaluated by a deterministic PTA. The
result is then immediate as a non-deterministic automaton can guess, for
each node, those sets of X1, . . . , Xk in which the node is contained. The
proof proceeds by induction on the structure of ψ. The only case which is
not entirely straightforward is the case of a formula ψ = ∃x. ϕ(x). Let, by
induction, A be an automaton over the alphabet Σ ∪ (Σ × {x}) for ϕ(x).
I.e., A accepts all trees t which have exactly one node v with a symbol (a, x)
from Σ × {x} such that ϕ holds on t, if x is bound to v and the label of v
is replaced by a.

Let Q be the set of states of A. We construct a deterministic PTA A′
for ψ as follows. The state set of A′ is Q × 2Q. The intuitive meaning
of a state 〈q,X〉 at a node v is the following. First, if x does not occur
in the subtree rooted at v, then A assumes state q at v. Second, X is
the set of states A can take if for one node of the subtree at v its label
a is replaced by (a, x). We explain how the transitions of A′ are defined.
The mapping δ′(〈q,X〉, a) is described by a Presburger regular expression

18 H. Seidl, Th. Schwentick, A. Muscholl

eq,a ∧ eX,a, where eq,a is obtained from δ(q, a) by replacing each occurrence
of a state r ∈ Q in a regular expression by

⋃
S⊆Q〈r, S〉 and each occurrence

of #r in a Presburger formula by
∑
S⊆Q #〈r, S〉. The Presburger regular

expression eX,a is of the form
∧
p∈X(e1

p,a∨ e2
p,a)∧

∧
p 6∈X ¬(e1

p,a∨ e2
p,a). Here,

e1
p,a expresses that A takes state p at v if the label of v is (a, x). Likewise,
e2
p,a expresses that A takes state p at v (labeled by a) if the label b of some

node below v is replaced by (b, x). The expression e1
p,a is obtained from

δ(p, (a, x)) in an analogous fashion as eq,a was obtained from δ(q, a).
It remains to describe the construction of e2

p,a. The expression e2
p,a is

obtained as a disjunction
∨
r∈Q

∨
r′∈S⊆Q

δ(p, a)r,r′,S . Here, for each choice of

S ⊆ Q, r ∈ Q and r′ ∈ S, the Presburger regular expression δ(p, a)r,r′,S is
satisfied by a sequence 〈q1, S1〉 · · · 〈qm, Sm〉, qi ∈ Q, Si ⊆ Q, iff there is some
i ≤ m with qi = r, Si = S and δ(p, a) is satisfied by q1 · · · qi−1r

′qi+1 · · · qm.
The expression δ(p, a)r,r′,S is defined by replacing in δ(p, a) each regular

expression e by er,r′,S , and each Presburger formula π by πr,r′,S . We get
πr,r′,S as the conjunction of #〈r, S〉 > 0 and the formula which is obtained
from π by replacing #q, for each q ∈ Q with

•
∑
S′⊆Q

#〈q, S′〉, if q 6∈ {r, r′} or q = r = r′,

• (
∑
S′⊆Q

#〈q, S′〉)− 1, if q = r and r 6= r′, and

• (
∑
S′⊆Q

#〈q, S′〉) + 1, if q = r′ and r 6= r′.

The language L of a regular expression er,r′,S is given as:

L = {〈q1, S1〉 · · · 〈qm, Sm〉 | ∃ i : 〈qi, Si〉 = 〈r, S〉 ∧
q1 · · · qi−1r

′qi+1 · · · qn ∈ L(e)} .

q.e.d.

Theorem 5.4 shows that existential PMSO logic is decidable. On the other
hand we immediately obtain from Theorem 5.3:

Corollary 5.5. Satisfiability of PMSO formulas is undecidable.

6 Mixed Automata

In the previous section we have seen that in general we cannot expect de-
cidability for all PMSO. Instead, we can restrict ourselves to automata and
logics that work in a mixed mode, either pure regular or pure Presburger,

Counting in trees 19

depending on the tag. Formally, we work on mixed trees, where the label
of a node tells whether the ordering of its children matters or not. Recall
from the introduction that this restriction naturally reflects a division of
documents into parts which are made up from data records whose orderings
are irrelevant and formatting parts where the ordering is significant. This
classification is formalized by partitioning the finite alphabet Σ into subsets
Σ = Σ0 + Σ1 where Σ0 and Σ1 consist of all labels of nodes with unordered
and ordered children, respectively. Mixed trees in our sense correspond to
terms with one associative symbol (for accumulating the ordered contents)
and one associative and commutative symbol (for accumulating multi-sets).
Languages of such trees, e.g., have been studied by Lugiez [19, 20] and
Ohsaki [29, 30]. Note, however, that our formalism is slightly more specific
as we rule out sequences of trees where unordered sections occur dispersed
between ordered ones. Instead, the significance of order is already deter-
mined by the label of the parent node.

Mixed Presburger tree automata now subsume the ability of unordered
Presburger automata to check Presburger formulas, as well as the ability
of hedge automata to check containment in a regular set. Formally, δ(q, a)
is a quantifier-free Presburger formula if a ∈ Σ0, respectively a regular
expression if a ∈ Σ1. We call such an automaton a mixed PTA. Similarly to
Theorem 3.2, we obtain:

Corollary 6.1. The emptiness problem for mixed PTA is NP-complete.

It turns out that the family of languages accepted by mixed PTA enjoys the
same good closure properties as u-PTA. The proof of the theorem below
follows the lines of Proposition 3.4 and is omitted:

Theorem 6.2. Mixed PTA are effectively closed under the Boolean opera-
tions. In particular, for every mixed PTA an equivalent deterministic mixed
PTA can be constructed.

As for unordered and general PTA, respectively, we succeed to give a logical
characterization of our automata model also in the mixed case. For that we
use mixed PMSO logic, in which Presburger (regular, resp.) constraints can
be applied only to the children of a node labeled with some element from Σ0

(Σ1, resp.). We therefore speak here of mixed PMSO-definable languages
and queries. More formally, in a mixed PMSO-formula an atom Next(y, y′)
is allowed in a subformula ϕ occurring in a context Child(x, y)∧y ∈ Laba∧ϕ,
where a ∈ Σ1. Likewise a formula y/ψ is allowed in a subformula ϕ occurring
in a context y ∈ Laba ∧ ϕ, where a ∈ Σ0. Mixed PMSO-definable queries
are what we have considered in the introduction, by considering e.g. that
the label music belongs to Σ0. We obtain:

20 H. Seidl, Th. Schwentick, A. Muscholl

Theorem 6.3. A set of unranked trees is accepted by some mixed PTA iff
it is mixed PMSO-definable.

We conclude that satisfiability of mixed PMSO-logic is decidable.

7 Presburger Fixpoint Logic

As an alternative to monadic second-order logic, we consider in this section
the extension of fixpoint logics with regular and Presburger constraints on
children of nodes. Our fixpoint formulas ϕ are thus constructed according
to the following grammar:

ϕ :: = > | x | µx. ϕ
| ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

| a〈F 〉 | ∗〈F 〉
F :: = e | π .

Here, “∗” denotes an arbitrary node label, and F denotes a generic pre-
condition on the children of a node. Such a pre-condition is either a regular
expression e over letters ϕ, possibly negated, or a quantifier-free Presburger
formula π with free variables #ϕ, denoting the number of children satisfying
ϕ (with ϕ a fixpoint formula).

In the following, we assume throughout that ϕ is a formula where all
bound variables are distinct. Let Φ denote the set of all subformulas of ϕ.
We consider assertions t : ψ, with t ∈ T (Σ), ψ ∈ Φ. We write ` t : ψ either
if ψ ≡ > (every tree satisfies >) or if the assertion t : ψ can be derived from
valid assertions by means of the following rules:

t : ψ µx.ψ ∈ Φ
t : x

t : ψ µx.ψ ∈ Φ
t : µx.ψ

t : ψ1 t : ψ2

t : ψ1 ∧ ψ2

t : ψi
t : ψ1 ∨ ψ2

u : F
a〈u〉 : a〈F 〉

u : F
a〈u〉 : ∗〈F 〉

Thus, besides assertions t : ψ, t ∈ T (Σ), we additionally need auxiliary
assertions u : F where u is a sequence of trees and F is either a regular
expression or a Presburger formula. A sequence u = t1, . . . , tk satisfies a
regular pre-condition e iff there are formulas ψ1, . . . , ψk such that ti : ψi
and the sequence of formulas ψ1 · · ·ψk is contained in the regular language
L(e) described by e. In case of a Presburger formula π, we first collect for
every formula ψ occurring in π the number nψ of children ti satisfying ψ.
Then u satisfies π iff the resulting assignment σ = {#ψ 7→ nψ | ψ ∈ Φ}

Counting in trees 21

satisfies σ |= π. Thus we have the rules:

ti : ψi (i = 1, . . . , k) ψ1 · · ·ψk ∈ L(e)
t1, . . . , tk : e

σ |= π where σ(#ψ) = |{i | ti : ψ}|
t1, . . . , tk : π

Note that according to this rule for Presburger formulas, the same tree ti
may be counted several times, once for every ψ such that ti : ψ.

A proof of an assertion t : ψ consists of all rule applications to derive
this assertion. In particular this means for t = a〈t1, . . . , tk〉 and ψ = a〈π〉,
π a Presburger formula, that a proof of t : ψ contains for every i = 1, . . . , k,
and every ψ′ occurring in π a subproof of ` ti : ψ′ – whenever it exists.
Moreover, we silently assume that a proof always has tree-like structure.
Thus, we may have several copies of a subproof for distinct occurrences of
the same subtree within t.

Finally, the language denoted by the formula ϕ is given by:

L(ϕ) = {t ∈ T (Σ) | ` t : ϕ} .

In particular, L(>) = T (Σ) and L(µx. x) = ∅. Using the convenient
abbreviation “ ” for >∗, i.e., an arbitrary sequence of trees, we may write
µx. (a〈 〉∨∗〈 x 〉) for the set of all trees with at least one inner node labeled
a. Note that our fixpoint expressions do not provide an explicit notion
of negation. However, we always can construct an equivalent expression
with guarded fixpoints (see, e.g., [34]). The free variable x occurs only
guarded inside the formula ϕ if x occurs as a free variable only within
the scope of elements a or ∗. The variable x, for example, occurs only
guarded inside the formula a〈 x 〉 ∨ y while y does not. It turns out that
guarded fixpoints are unique. More precisely, if x occurs only guarded in
ϕ, then µx. ϕ is semantically equivalent to νx.ϕ. Once greatest fixpoints
are available, complementation is easy since then we can push negations
inward. For example, we have: t : ¬(µx. ϕ(x)) iff t : νx.¬ϕ(¬x).

In the subsequent proofs we will use the following notion. For a subset
B ⊆ Φ of subformulas of ϕ, define the closure cl(B) as the least superset
B′ of B such that:

• > ∈ B′;

• If ϕ1 ∈ B′ and ϕ2 ∈ B′ then also ϕ1∧ϕ2 ∈ B′, whenever ϕ1∧ϕ2 ∈ Φ;

• If ϕ1 ∈ B′ or ϕ2 ∈ B′ then also ϕ1 ∨ ϕ2 ∈ B′, whenever ϕ1 ∨ ϕ2 ∈ Φ;

• If ϕ′ ∈ B′ then µx.ϕ′ ∈ B′ and x ∈ B′, whenever µx.ϕ′ ∈ Φ.

22 H. Seidl, Th. Schwentick, A. Muscholl

Intuitively, the closure of a set B of subformulas contains precisely the
subformulas which are implied by the formulas in B through the proof rules
for fixpoint formulas. In particular, consider a given fixpoint formula, a tree
t and let B be the set of all subformulas ψ of type a〈F 〉 and ∗〈F 〉 with t : ψ.
Then, cl(B) is the set of all subformulas ψ with t : ψ.

Theorem 7.1. A set of trees is accepted by some deterministic PTA if and
only if it satisfies some Presburger fixpoint formula.

Proof. Let ϕ be a Presburger fixpoint formula. We assume for simplicity
that all regular expressions in ϕ are unnegated. We construct a PTA A as
follows. Let Ψ denote the set of all subformulas of ϕ of the form a〈F 〉 or
∗〈F 〉. The set Q of states of A is given as the set of all subsets B ⊆ Ψ. The
set T of accepting states consists of all subsets B such that ϕ ∈ cl(B), i.e.,
whose closure contains the initial formula ϕ.

Given a state B ∈ Q and a ∈ Σ, we determine the pre-condition δ(B, a)
as

δ(B, a) =
∧
ψ∈B ∆(ψ, a) ∧

∧
ψ∈Ψ\B ¬∆(ψ, a)

where:
∆(a〈F 〉, a) = F̄
∆(∗〈F 〉, a) = F̄
∆(b〈F 〉, a) = false if a 6= b

where F̄ is constructed as follows. For a regular expression e, we obtain ē
from e by substituting B1 + · · · + Bm for every occurrence of a formula ψ
if {B1, . . . , Bm} is the set of all states B such that ψ ∈ cl(B). For a Pres-
burger formula π, let π̄ be obtained from π by substituting

∑
ψ′∈cl(B) #B

for every occurrence of the free variable #ψ′. By construction, the resulting
automaton is deterministic. We show for trees t, t1, . . . , tk:

(1) t |=A B iff cl(B) = {ψ ∈ Φ | ` t : ψ};

(2) ` t1, . . . , tk : e iff ti |=A Bi, 1 ≤ i ≤ k, such that B1 · · ·Bk ∈ L(ē);

(3) ` t1, . . . , tk : π iff ti |=A Bi, 1 ≤ i ≤ k, such that the Parikh image of
B1 · · ·Bk satisfies π̄.

In particular, item (1) above implies that L(ϕ) = L(A).
The three claims above are shown inductively. Items (2) and (3) above

are immediate for k = 0. For k > 0 they follow from the definition of ē and
π̄, together with item (1). Suppose now that t = a〈t1, . . . , tk〉, k ≥ 0. Then
t |=A B iff ti |=A Bi for some Bi, 1 ≤ i ≤ k, such that:

• B1 · · ·Bk ∈ L(ē) iff a〈e〉 or ∗〈e〉 is in B,

Counting in trees 23

• the Parikh image of B1 · · ·Bk satisfies π̄ iff a〈π〉 or ∗〈π〉 is in B.

By induction, cl(Bi) = {ψ | ` ti : ψ} for all i. Using items (2) and (3) we
infer that a〈F 〉 or ∗〈F 〉 is in B iff ` t1, . . . , tk : F , for all pre-conditions F .
By the definition of cl(B) this is equivalent to cl(B) = {ψ | ` t : ψ}.

For the reverse implication, consider a deterministic PTAA = (Q,Σ, δ, F).
W.l.o.g. we may assume that every pre-condition is a disjunction of con-
junctions of regular expressions and Presburger formulas. We introduce
one variable xq for every state q ∈ Q. For these variables, we construct an
equation system SA:

xq = ϕq , q ∈ Q

where the right-hand sides are defined as fixpoint expressions, but without
allowing the µ operator. The semantics of such equation systems is an
extension of the semantics for fixpoint expressions. The only addition is the
rule:

t : ϕ
t : x

for every equation x = ϕ. Thus, whenever a tree satisfies the right-hand
side of an equation, then it also satisfies the variable to the left. The right-
hand side ϕq for xq in the equation system SA is constructed from δ(q, a),
a ∈ Σ, by:

ϕq =
∨
a∈Σ

[δ(q, a)]a

where the transformation [.]a takes a pre-condition and returns a fixpoint
expression (without fixpoints) as follows:

[e]a = a〈e{q 7→ xq | q ∈ Q}〉 ,
[π]a = a〈π{#q 7→ #xq | q ∈ Q}〉 ,
[ϕ1 ∨ ϕ2]a = [ϕ1]a ∨ [ϕ2]a ,
[ϕ1 ∧ ϕ2]a = [ϕ1]a ∧ [ϕ2]a .

Thus, a regular expression over states q is transformed by first substituting
the states by the corresponding variables and then putting a node a on
top. A Presburger formula is transformed by first replacing the variables
#q with #xq, and again putting a node a on top, whereas conjunctions
and disjunctions are transformed recursively. By induction on the depth of
terms t, t1, . . . , tk we prove for every q ∈ Q, a ∈ Σ and right-hand side ϕ:

(1) t |=A q iff ` t : xq;

(2) ti |=A qi for 1 ≤ i ≤ k, with q1 · · · qk |= ϕ iff ` a〈t1, . . . , tk〉 : [ϕ]a.

24 H. Seidl, Th. Schwentick, A. Muscholl

The first claim then proves the correctness of the construction.
For the proof of the claims let us first assume that ti |=A qi for all i,

and q1 · · · qk |= ϕ. We verify that for every a ∈ Σ, a〈t1, . . . , tk〉 : [ϕ]a where,
by inductive hypothesis, we may assume that ` ti : xqi for all i. If ϕ = e
is a regular expression, then by assumption, q1 · · · qk ∈ L(e). By definition,
[ϕ]a = a〈e{q 7→ xq | q ∈ Q}〉. Therefore, xq1 · · ·xqk ∈ L(e{q 7→ xq | q ∈ Q})
and hence a〈t1, . . . , tk〉 : [e]a. If ϕ = π equals a Presburger formula, then
the Parikh image of xq1 · · ·xqk satisfies π{#q 7→ #xq | q ∈ Q}. Let ρ denote
the mapping defined by ρ(#xq) = |{i | ` ti : xq}|. Since the automaton
A is deterministic, ti : xq is provable for exactly one state q. Therefore,
the number of occurrences of q in the sequence q1, . . . , qk precisely equals
ρ(#xq). We conclude that t1, . . . , tk : π{#q 7→ #xq | q ∈ Q} and therefore
also a〈t1, . . . , tk〉 : [π]a. The cases ϕ = ϕ1 ∧ ϕ2 and ϕ = ϕ1 ∨ ϕ2 are
completely standard.

For the converse direction assume a〈t1, . . . , tk〉 : [ϕ]a for some a ∈ Σ.
By inductive hypothesis for ti, we already know that there are (unique)
states qi such that ti |=A qi and therefore also ` ti : xqi , for all i. It
remains to verify that q1 · · · qk |= ϕ. If ϕ = e is a regular expression, then
xq1 · · ·xqk ∈ L(e{q 7→ xq | q ∈ Q}), thus q1 · · · qk |= ϕ. If ϕ = π equals
a Presburger formula, then [ϕ]a = a〈π{#q 7→ #xq | q ∈ Q}〉. Since by
assumption, a〈t1, . . . , tk〉 : [ϕ]a, we obtain ρ |= π{#q 7→ #xq | q ∈ Q} for
the assignment ρ(#xq) = |{i | ` ti : xq}|, q ∈ Q. Since A is deterministic,
ρ(#xq) equals the number of occurrences of q in the sequence q1, . . . , qk.
Therefore, q1 · · · qk |= π. The case where ϕ = ϕ1 ∨ ϕ2 or ϕ = ϕ1 ∧ ϕ2 are
dealt with recursively.

To the equation system SA we then apply Gaussian elimination. Thus,
we take any equation xq = ϕq where ϕq possibly contains free occurrences
of xq, and replace it by xq = µxq. ϕq. Then we replace all free occurrences
of xq in all other right-hand sides ϕq′ , q

′ 6= q, with the new fixpoint formula
µxq.ϕq. The resulting system still is equivalent to the original one but does
no longer contain free occurrences of xq in right-hand sides. We iteratively
perform this step for every state q. Eventually, we arrive for each q ∈ Q at
an equation xq = ϕ̄q where ϕ̄q is a closed fixpoint expression which denotes
the set {t ∈ T (Σ) | t |=A q}. Thus, the desired fixpoint formula ϕA can be
chosen as:

ϕA =
∨
q∈F

ϕ̄q .

q.e.d.

In the remainder of this section we turn to the complexity of Presburger fix-
point logic. Concerning satisfiability, Theorem 7.1 provides an EXPSPACE
upper bound. The theorem below shows that this can be improved to EX-
PTIME, which is as good as we can hope for, since satisfiability of fixpoint

Counting in trees 25

formulas (without Presburger conditions) over binary trees is EXPTIME-
complete (a similar result holds for model-checking µ-calculus against push-
down graphs, [40]).

Theorem 7.2. The satisfiability problem for Presburger fixpoint formulas
is EXPTIME-complete.

Proof. The lower bound is obtained, e.g., by encoding the accepting runs of
an alternating polynomial space Turing machine through a binary tree.

It remains to prove the exponential upper bound. Let ϕ be a Presburger
fixpoint formula. We denote by Ψ the set of its subformulas of type a〈F 〉
or ∗〈F 〉, and by Φ the set of all subformulas.

We call a subset B ⊆ Ψ obtainable if there is a tree t such that, for each
ψ ∈ Ψ, ` t : ψ if and only if ψ ∈ B. In this case, we call t a witness for B
and denote t by t(B).

We compute in an inductive fashion the set of all obtainable sets B ⊆ Ψ.
First, we compute the set X0 of sets that are obtainable by some one-node
tree t. Given Xi, we let Xi+1 be the set of sets that are in Xi or are
obtainable by a tree consisting of a root the subtrees of which are witnesses
for the sets in Xi. As this process is monotonic it ends after at most 2|Ψ|

iterations, i.e., an exponential number of steps.

It therefore suffices to prove that each step takes no more than expo-
nential time as well, actually we will need here only polynomial space.

Let X denote a set of obtainable subsets of Ψ. We show that, given the
fixpoint formula ϕ of size n and a set B ⊆ Ψ it can be checked in space
polynomial in n whether B is obtainable by a tree with subtrees which are
witnesses for sets in X. Of course, X is not part of the input, since it might
be of exponential size. We can imagine X as stored on a separate tape, and
our PSPACE algorithm will access non-deterministically this tape.

A set B is only obtainable if there is some symbol a such that all formulas
in B are either of the form a〈F 〉 or ∗〈F 〉. Accordingly, we must check
whether there exists a sequence of sets w = B1 . . . Bh with Bi ∈ X for all
i, such that the tree t = a〈t(B1), · · · , t(Bh)〉 makes all formulas in B true
and all others false.

Consider first a formula of type a〈e〉 (∗〈e〉, resp.), with e regular ex-
pression. By the definition of the closure of sets of formulas from Ψ, it is
immediate that t satisfies a〈e〉 (∗〈e〉, resp.) iff w ∈ L(ē), where ē is obtained
from e by replacing every formula ψ with the disjunction of all B′ ∈ X with
ψ ∈ cl(B′). Likewise for a〈¬e〉 (∗〈¬e〉, resp.).

For formulas a〈π〉, ∗〈π〉, with π Presburger formula, we first need the
following definition. Let H denote the mapping which takes an assignment

26 H. Seidl, Th. Schwentick, A. Muscholl

σ : X → N and computes an assignment τ : Φ→ N by

τ(ψ) =
∑

B′∈X with ψ∈cl(B′)

σ(B′) .

The tree t = a〈t(B1), · · · , t(Bh)〉 (with w = B1 . . . Bh) satisfies the formula
a〈π〉 (∗〈π〉, resp.) iffH(Par(w)) satisfies π, where Par(w) denotes the Parikh
vector of w ∈ X∗. The reader should recall here that with the fixpoint
semantics a subtree can be counted several times, once for each formula it
satisfies.

As in the proof of Proposition 4.3, we will show the following:

Claim 7.3. If there exists a string which simultaneously verifies all formulas
of type a〈F 〉 or ∗〈F 〉 in B, and falsifies all such formulas outside B, then
there exists one whose length is bounded by 2p(n) for some polynomial p.

We first show how the statement of the theorem follows from this claim. We
successively guess subsets B′ ⊆ X (in polynomial space). For each such B′,
we simulate the evaluations of the non-deterministic automata correspond-
ing to all regular expressions e occurring in a〈F 〉 ∈ Ψ or ∗〈F 〉 ∈ Ψ. Of
course, in order to do so, we need to check each time whether a subformula
ϕ′ ∈ Φ is in cl(B′). All these simulations are done in PSPACE. During
this process, we maintain an occurrence vector τ indexed by subformulas
ϕ′ ∈ Φ. Whenever a set B′ is processed, we increment in τ the values of
all ϕ′ contained in cl(B′). Since each letter B′ may have incremented each
entry of τ at most by 1, the assignment τ can always be represented in
polynomial space. Once we have guessed a sequence of length at most 2p(n)

verifying the formulas a〈e〉 ∈ B and ∗〈e〉 ∈ B and invalidating those outside
B, we verify that τ satisfies the formula

(
∧

a〈π〉∈B∨∗〈π〉∈B

π) ∧ (
∧

a〈π〉6∈B∧∗〈π〉6∈B

¬π) .

The latter can be done in polynomial time (recall that each Presburger
formula π is quantifier-free). This algorithm uses only space polynomial in
n, therefore it can be executed in deterministic exponential time — which
we wanted to prove.

It remains to show the claim above. Recall first that we defined the
regular expressions ē over the alphabet X by replacing each subformula
ϕ′ of ϕ by the disjunction of all B′ ∈ X with ϕ′ ∈ cl(B′). Now, we first
construct an automaton B for the intersection of the regular expressions ē
(resp. ¬ē) occurring in formulas from B. This automaton has at most 2n

states, and its alphabet is of size 2n. By Proposition 4.2, the Parikh image
of the accepted language is a finite union Par(L(B)) = L1∪· · ·∪Lm of linear

Counting in trees 27

sets Lr of the form {c̄ +
∑h
i=1 xi · p̄i | xi ≥ 0}, where the entries of each

vector c̄, p̄j are bounded by 2n — whereas their number h ≤ (2n+1)2n

might
be doubly exponentially large. Recall however, that for the satisfiability
of the Presburger formulas π occurring in formulas a〈π〉, ∗〈π〉 contained
in B, we are not interested in the Parikh image Par(L(B)) of the words
accepted by B itself, but in the image of Par(L(B)) under H. By definition,
H(Par(L(B))) = H(L1) ∪ · · · ∪ H(Lm). Moreover, for every linear set of

the form L = {c̄ +
∑h
i=1 xi · p̄i | xi ≥ 0}, the image H(L) is given by

H(L) = {τ0 +
∑h
i=1 xi · τi | xi ≥ 0} where τ0 = H(c̄), τj = H(p̄j), j =

1, . . . , h. This implies that each component in a vector τj is obtained by
the sum of at most 2n entries of the vectors c̄, p̄j . Therefore, all entries of
the τj are bounded by 2n · 2n = 22n. The crucial point is that the vectors
τj now only have at most n entries (instead of 2n for c̄, p̄j). Accordingly,

only (22n)n = 22n2

of the τj can be distinct and therefore necessary to
describe H(L). Thus, now we may proceed along the same lines as in the
proof of Proposition 4.3. A linear set L contained in the Parikh image
Par(L(B)) of B gives rise to a linear set H(L) contained in H(Par(L(B))),

which in turn gives rise to at most n extra equations in 22n2

variables with
coefficients bounded by 22n. These are to be added to O(n) many equations
obtained from the Presburger formulas from B. That is, as in Proposition
4.3 we consider a disjunct of the DNF of each formula π occurring in some
Presburger formula form B (resp., with ¬π occurring outside B), and we
eliminate inequations and modulo equations using Proposition 2.1. Once
again applying Papadimitriou’s estimation [31], we obtain that the entries
of a minimal solution τ ∈ H(Par(L(B))) ∩ S, with

S = (
∧

a〈π〉∈B∨∗〈π〉∈B

π) ∧ (
∧

a〈π〉6∈B∧∗〈π〉6∈B

¬π)

are bounded by 2O(n2). Clearly, we have τ ∈ H(Par(L(B))) ∩ S iff there
is some string w ∈ L(B) such that H(Par(w)) satisfies S. Recall that by
construction, > is contained in cl(B′) for every subset B′ ⊆ Ψ. Therefore,
H(Par(w))(>) precisely equals the length of w. Thus, the upper bound on
the entries of τ proves the desired upper bound on the length of a shortest
witness w and thus the claim. q.e.d.

We finish this section with the following

Proposition 7.4. Given a tree t and a Presburger fixpoint formula ϕ, it
can be checked in time O(|t| · |ϕ|2) whether t |= ϕ.

Proof. We compute bottom-up the set of subformulas of ϕ that are satisfied
by each subtree. For each subtree t′ = a〈t1, . . . , tk〉 we simulate first the

28 H. Seidl, Th. Schwentick, A. Muscholl

NFA corresponding to regular expressions e (¬e, resp.) occurring in pre-
conditions a〈. . .〉 and ∗〈. . .〉, by keeping the set of reachable states of the
NFA. Since each NFA is of size at most |ϕ|, each such simulation costs
at most O(k · |ϕ|2). For Presburger constraints a〈π〉, ∗〈π〉 we just need to
count how many children satisfy a given subformula occurring in π, which
can be done in O(k · |ϕ|), and to evaluate linear (in)equations and modular
(in)equations. The last check is done in O(|ϕ|2). Finally, we compute cl(B)
in O(|ϕ|), with B ⊆ Ψ the set of all a〈F 〉 or ∗〈F 〉 satisfied by a〈t1, . . . , tk〉.

q.e.d.

8 Querying Unranked Trees

Presburger automata or logics can be used as a facility to express unary
queries, i.e., to select a set of nodes in a document tree. We start this
section with automata-based queries, and consider in Subsection 8.1 queries
based on fixpoint logics, which exhibit a much better complexity than PTA-
based queries.

With automata-based querying, a tree node is selected via an automa-
ton A and a set T of states of A. The node v is in the output, if there
is an accepting computation of A that obtains a state from T at v. By
the equivalence between Presburger automata and Presburger MSO logic
(Thms. 3.8, 5.4, 7.1), this simple mechanism allows to express all (unary)
queries definable in Presburger MSO logic.

Let • denote a fresh symbol (not in Σ). A context is defined as usual, as
a tree c ∈ T (Σ ∪ {•}) which contains exactly one occurrence of • at a leaf
(the hole). Let c[t′] denote the tree which is obtained from c by substituting
• with t′ (i.e., filling the hole). Note that for a given tree t, the set C(t)
of contexts c such that t = c[t′] for suitable subtrees t′ is in one-to-one
correspondence with the set of nodes of t. Therefore, in the following we
will no longer distinguish between contexts c ∈ C(t) and nodes of t.

A (unary) query is a mapping R from trees to subsets of nodes. The
nodes in R(t) are also called matches. In the following, we present a class
of queries which is definable by means of (unordered, mixed) PTA. For
this, we extend the definition of |=A to contexts by defining c, p |=A q,
(p, q ∈ Q) iff c |=Ap,• q where Ap,• = (Q,Σ ∪ {•}, δp,•, F) is obtained from
A by extending Σ with • and defining:

δp,•(q
′, a) =

 δ(q′, a) if a ∈ Σ
leaf if a = • ∧ q′ = p
false if a = • ∧ q′ 6= p

.

Thus, the automaton Ap,• behaves like A but additionally labels the hole
by p. We have:

Counting in trees 29

Proposition 8.1. Let A = (Q,Σ, δ, F) be a PTA and t = c[t′] for a context
c and t, t′ ∈ T (Σ). Then t |=A q iff t′ |=A p and c, p |=A q for some p ∈ Q.

A (unary) Presburger pattern is a property of nodes of trees from T (Σ).
We define this property by means of a pair 〈A, T 〉 where A = (Q,Σ, δ, F)
is a PTA (resp., a u-PTA or mixed PTA) and T ⊆ Q is a set of states.
Let t ∈ T (Σ). A context c ∈ C(t) is a match of the pattern 〈A, T 〉 in t iff
t = c[t′] where t′ |=A q and c, q |=A f for some q ∈ T and f ∈ F .

We consider first mixed queries, with unordered ones as a special case.
Whenever we speak about the complexity of the querying problem below,
we mean the complexity of the following decision problem: given a query
R, a tree t and a node v of t, is v ∈ R(t)?

Theorem 8.2. Let A be mixed PTA. The set of matches of a fixed Pres-
burger pattern 〈A, T 〉, in a tree t ∈ T (Σ) of size n is computable in time
O(n). If the pattern is part of the input, the joint query complexity is
NP-complete.

Proof. Let A = (Q,Σ, δ, F). We proceed in two passes over the input tree
t. In the first pass, we determine for every subtree t′ of t the set of states:

B(t′) = {p ∈ Q | t′ |=A p} .

LetA′ denote the deterministic automaton constructed from the mixed PTA
A as in the proof of Theorem 6.2. Then we know that for every t′ ∈ T (Σ),
t′ |=A′ B iff B = {p ∈ Q | t′ |=A p}. Therefore, the sets B(t′) (over all
subtrees t′) can be determined by one bottom-up run of A′ on t. According
to Proposition 3.6, this first pass can be performed in linear time.

In the second pass, we determine for each context c ∈ C(t) with t = c[t′],
the set of states:

D(c) = {p ∈ B(t′) | ∃f ∈ F : c, p |=A f} .

Given the sets D(c), the matches of the pattern are determined as the set
of all contexts c where T ∩D(c) 6= ∅.

In order to determine the sets D(c), we proceed top-down over t. For
the root context c we set D(c) = B(t) ∩ F . Assume that we are given a
context c in t where t = c[a〈t1, . . . , tk〉] for some a ∈ Σ and subtrees ti.
Then we may proceed from the father node c to the son ci which is defined
as the context ci = c[a〈t1, . . . , ti−1, •, . . . , tk〉]. Remark that now t = ci[ti].
Let Bi = B(ti). Assume that we have already determined the value D(c)
and now want to determine the corresponding set for ci.

Suppose first that the tag a is unordered, a ∈ Σ0. For B ⊆ Q, let nB
denote the number of trees tj , 1 ≤ j ≤ k, such that tj |=A′ B. Let ρ denote
the variable environment defined by:

{xB 7→ nB | B ⊆ Q} .

30 H. Seidl, Th. Schwentick, A. Muscholl

We claim:
D(ci) = {q′ ∈ B(ti) | ρ |=

∨
q∈D(c)

ψq,q′}

where the formula ψq,q′ is given by:

E

p∈Q
#p .

E

p∈B⊆Q
x〈B,p〉 . δ(q, a) ∧ x〈Bi,q′〉 > 0 ∧ ∧
B⊆Q

∑
p∈B

x〈B,p〉 = xB

 ∧
∧
p∈Q

∑
B,p∈B

x〈B,p〉 = #p

 .

Intuitively, formula ψq,q′ expresses that there is an assignment mapping the
children tj to states q ∈ B(tj) such that ti receives q′ and the Presburger
pre-condition δ(q, a) is satisfied. Since satisfiability of Presburger formulas
is decidable, we conclude that the sets D(ci) are computable.

The total complexity of our algorithm in this part consists, for each
node v labeled in Σ0, in a test of an assertion ρ |= ϕ. Here, the formula ϕ
only depends on the fixed automaton A, and the variable environment ρ is
such that ρ(x〈B,p〉) ≤ k for all x〈B,p〉 in the domain of ρ, with k denoting
the number of children of v. Each formula ϕ can be transformed into a
quantifier-free formula, which is evaluated in time O(k) on numbers in unary
representation. Since the sum of all k is bounded by n, the total complexity
is in O(n).

In the case where a ∈ Σ1 we have:

D(ci) =
⋃
{Dq(i) | q ∈ D(c)} where

Dq(i) = {pi ∈ Bi | ∀j 6= i ∃pj ∈ Bj : p1 . . . pk ∈ δ(q, a)} .

Given a (non-deterministic) finite automaton B for δ(q, a), all sets Dq(i),
i = 1, . . . , k, can be computed in time O(k) as follows: by one left-to-right
pass we compute at each position the set of reachable states of B; in a
second, right-to-left pass we compute at each position the set of states from
which we can reach a final state of B. With this information we compute
all sets Dq(i) in a final pass in O(k).

Therefore, the overall complexity of the second pass is linear as well.
This completes the proof in the case where the pattern is fixed.

For the joint complexity, consider first the upper bound. The first pass
can be done deterministically in polynomial time, by computing bottom-up
the reachable states at each node. For the top-down pass, we solve at each
node an existential Presburger formula, which is done in NP. The lower
bound follows from Proposition 3.6. q.e.d.

As a special case of the querying algorithm in the proof of Theorem 8.2,
we obtain a linear time querying algorithm for (fixed) queries on classical
ordered trees (i.e., trees with Σ0 = ∅).

Counting in trees 31

We now consider ordered queries, i.e., queries stated as Presburger pat-
terns 〈A, T 〉 where A is a PTA.

Theorem 8.3. The set of matches of a fixed Presburger pattern 〈A, T 〉,
with A PTA, in a tree from T (Σ) is computable in polynomial time. If the
pattern is part of the input, the joint query complexity is NP-complete.

Proof. Assume we have marked the root node of one subtree t′ of t. Assume
further that we have modified A in such a way that the marked node always
receives a state in T . Then the modified tree is accepted iff t′ is a match.
Since there are only n different nodes to be marked, the theorem follows
from Theorem 5.2.

For the joint query complexity we can implement easily the 2-pass ap-
proach of Theorem 8.2 in NP. The lower bound follows from the combined
complexity of PTA. q.e.d.

Let us turn to queries specified through Presburger MSO. A mixed PMSO-
pattern is a mixed PMSO formula ϕ with at most one free variable y. A
match of ϕ in t at a node v means that t together with the assignment of
v to the free variable y satisfies ϕ. A query R is mixed PMSO-definable iff
there is a mixed PMSO-pattern ϕ such that for every t, R(t) is the set of
all matches of ϕ in t. Replacing mixed PMSO by existential PMSO, we get
existential PMSO-definable queries.

Theorem 8.4. For a query R the following statements hold:

1. R is mixed PMSO-definable iff R is definable by a Presburger pattern
〈A, T 〉 for some mixed PTA A.

2. R is existential PMSO-definable iff R is definable by a Presburger
pattern 〈A, T 〉 for some PTA A.

As compared to PTA-based queries, it is worth noting that the joint query
complexity of mixed PMSO-definable and existential PMSO-definable queries
is PSPACE-complete. Both arguments for the upper and the lower bound
use that alternating polynomial time is equivalent to PSPACE.

8.1 Presburger fixpoint queries

In this section we focus on unary queries expressed in Presburger fixpoint
logic. Compared to PTA, fixpoint logic allows for very efficient algorithms
– linear time for fixed queries and polynomial time for the joint query com-
plexity.

In order to get an intuition about the expressive power of Presburger
fixpoint logic, consider the example document shown in Figure 2. There we
might first ask for all elements (tree nodes) containing “Bartoli”. A sec-
ond query could ask for elements containing “Bartoli” and having at least

32 H. Seidl, Th. Schwentick, A. Muscholl

<music> ...

<classical> ...

<opera>

<title> The Salieri Album </title>

<composer> Bartoli </composer>

<review> ... </review>

<review> ... </review>

<review> ... </review>

</opera>

<opera>

<title> The No. 1 Opera Album </title>

<composer> Puccini ; Verdi </composer>

<performer> Bartoli ; Pavarotti </name> </performer>

<review> ... </review>

</opera> ...

</classical> ...

</music>

<dvd> ...

<music dvd>

<opera>

<title> Rossini - La Cenerentola </title>

<performer> Bartoli </performer>

<review> ... </review>

<review> ... </review>

</opera> ...

</music dvd>

</dvd>

Figure 2. Part of a document with music items.

three reviews. In the fixpoint Presburger logic we can express that a tree
contains a node satisfying a given property, without knowing at which depth
this node occurs. For instance, the formula ϕ1 = ∗〈 Bartoli 〉 describes
all nodes containing “Bartoli”. Note that in order to take properties of
text contents into account, it (conceptually) suffices to consider each text as
a tag. We are not interested in the class of all these documents t, however,
but for each such t in the subdocuments which satisfy the specific formula
ϕ1. Documents containing elements with the property ϕ1 are described by
the expression: µ x.(∗〈 x 〉 ∨ ϕ1). In order to indicate the subformula cor-
responding to the requested subdocuments, we introduce the extra marker
“•”. Thus, we specify the query as ψ1 = µx.(∗〈 x 〉 ∨ (• ∧ ϕ1)). Accord-
ingly for the second query, we describe the set of all elements containing at

Counting in trees 33

least three reviews by: ϕ2 = ∗〈#review ≥ 3〉. The query formula then can
be formulated as:

ψ2 = µx.(∗〈 x 〉 ∨ (• ∧ ϕ1 ∧ ϕ2)) .

In order to obtain a query language, we formally extend the language of
Presburger fixpoint expressions by one extra case:

ϕ ::= . . . | • |

Accordingly, we add new axioms ` t : • for all trees t. A match t′ of a
formula ϕ containing a subformula • is a proof for t : ϕ containing the fact
t′ : •. We want to construct an algorithm to determine for a fixed query
formula ϕ, all matches inside a document tree t. We first observe that we can
determine in time O(|t|) for every subtree t′ of t the set of all subformulas ψ
of ϕ such that ` t′ : ψ. For that, we can do as in Proposition 7.4 a bottom-
up pass on t. In order to deal with the special symbol • occurring in ϕ, we
extend the notion of closure of states by adding the formula •. The rest of
the construction is unchanged. Let then S(t′) denote the set of subformulas
ψ of type a〈F 〉, ∗〈F 〉 such that t′ : ψ. By construction, ψ ∈ cl(S(t′)) iff
` t′ : ψ, for every subformula ψ of ϕ.

It remains to determine for every subtree t′ of t the subset R(t′) ⊆
cl(S(t′)) containing all those ψ which may occur in some proof of t : ϕ. Then
t′ is a match iff • ∈ R(t′). The subsets R(t′) are determined in a second
pass over the tree t, in a top-down manner. For a closed set of subformulas
B, we introduce the auxiliary function coreB which takes a subformula ψ of
ϕ and returns the set of all subformulas in B which potentially contribute
to any proof of ψ (including ψ). Let core′B(ψ) = coreB(ψ) \ {ψ}. So,
core′B(•) = core′B(>) = ∅, and

core′B(µx.ψ) = coreB(ψ) if ψ ∈ B
core′B(x) = coreB(ψ) if ψ ∈ B
core′B(ψ1 ∧ ψ2) = coreB(ψ1) ∪ coreB(ψ2)

core′B(ψ1 ∨ ψ2) =

{
coreB(ψi) if ψ3−i 6∈ B
coreB(ψ1) ∪ core(ψ2) otherwise

core′B(a〈F 〉) = ∅
core′B(∗〈F 〉) = ∅ .

Moreover, we set: coreB(R) =
⋃
ψ∈R coreB(ψ) for every R ⊆ B.

The second pass over t starts at the root of t. There, we have: R(t) =
coreB(ϕ) for B = cl(S(t)). Now assume we have already computed the
set R(t′) for the subtree t′ = a〈t1 . . . tk〉. Let R′ = R(t′) ∩ S(t′) denote
the set of subformulas in R(t′) of the form a〈F 〉 or ∗〈F 〉. Then R(ti) =⋃
ψ∈R′ Rψ(ti), where Rψ(ti) equals the set of formulas from cl(S(ti)) which

34 H. Seidl, Th. Schwentick, A. Muscholl

may have occurred in a proof of t′ : ψ. Let Bi = cl(S(ti)) be the set of all
subformulas that are valid at ti. If ψ = a〈π〉 or ψ = ∗〈π〉 for a Presburger
formula π, then we must compute the assignment to the variables of π. In
fact, all subformulas from Bi contribute to this assignment. Therefore, we
simply have Rψ(ti) = Bi in this case. On the other hand, if ψ = a〈e〉 or
ψ = ∗〈e〉 for a regular expression e, then Rψ(ti) = coreBi

(Ri) where

Ri = {ψi | ∃ψ1 . . . ψk ∈ L(e) : ∀ j : ψj ∈ Bj} .

The set Ri denotes all subformulas provable for ti which may contribute to
the validation of e. According to this definition, the sets Rψ(ti), i = 1, . . . , k
can jointly be computed by a left-to-right followed by a right-to-left pass of
a finite (string) automaton for e over the children of t′. The case of negated
regular expressions is treated analogously. Summarizing we conclude:

Theorem 8.5. Let ϕ be a fixed query in Presburger fixpoint logic. Then
the set of matches of ϕ in an input tree t can be computed in time linear in
|t|. If ϕ is part of the input, the joint query complexity is O(|ϕ|2 · |t|).

9 Conclusion

We have considered extensions of logics and automata over unranked trees
by arithmetical Presburger constraints. Our motivation comes from XML,
where one is interested in expressing properties of such trees that go be-
yond regular languages, such as numerical constraints. We showed that
fixpoint logic extended by Presburger constraints has particularly pleasant
properties, namely good expressiveness, complexity which does not increase
with the additional Presburger part, and joint querying complexity which
is polynomial.

Some of our results raise open problems. The universality problem for
u-PTA is one of them: we have a 2-NEXPTIME upper bound, and as lower
bound only EXPTIME. Another issue is the data complexity for general
PTA: can we improve the bound or is it inherently difficult (w.r.t. fixed
parameter complexity, with the size of the PTA as parameter)? Finally,
it would be interesting to see whether the automata and logics can be en-
hanced by more general arithmetical constraints, like for instance the semi-
polynomial or semi-quadratic sets considered in [15].

Acknowledgement: We thank the referee for his/her careful reading and
the various remarks and suggestions that helped improving the paper.

References

[1] L. Berman. The complexity of logical theories. Theoretical Computer
Science, 11:71–77, 1980.

Counting in trees 35

[2] I. Boneva and J.M. Talbot. Automata and logics for unranked and un-
ordered trees. In 16th Int. Conf. on Rewriting Techniques and Appli-
cations (RTA), number 3467 in LNCS, pages 500–515. Springer, 2005.

[3] A. Brüggeman-Klein, M. Murata, and D. Wood. Regular tree languages
over non-ranked alphabets, 1998. Unpublished manuscript.

[4] L. Cardelli and G. Ghelli. A query language based on the ambient
logic. In 10th European Symposium on Programming (ESOP), number
2028 in LNCS, pages 1–22. Springer, 2001.

[5] L. Cardelli and A. Gordon. Anytime, anywhere: Modal logics for mo-
bile ambients. In 27th ACM Conf. on Principles of Programming Lan-
guages (POPL), pages 365–377. ACM Press, 2000.

[6] G. Conforti, O. Ferrara, and G. Ghelli. TQL algebra and its implemen-
tation (extended abstract). In IFIP Int. Conf. on Theoretical Computer
Science (IFIP TCS), pages 422–434, 2002.

[7] G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi, and C.
Sartiani. The query language TQL. In 5th Int. Workshop on the Web
and Databases (WebDB), 2002.

[8] J. Cristau, Ch. Löding, and W. Thomas. Deterministic automata on
unranked trees. In 15th International Symposium on Fundamentals
of Computation Theory (FCT), number 3623 in LNCS, pages 68–79.
Springer, 2005.

[9] S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic you can count on.
In 31st ACM Symp. on Principles of Programming Languages (POPL),
pages 135–146. ACM Press, 2004.

[10] S. Demri and D. Lugiez. Complexity of modal logics with Presburger
constraints. Technical Report LSV-06-15, LSV, ENS Cachan, 2006.

[11] J. Esparza. Petri nets, commutative context-free grammars, and basic
parallel processes. Fundamenta Informatica, 31(1):13–25, 1997.

[12] M.J. Fischer and M.O. Rabin. Superexponential complexity of Pres-
burger arithmetic. In AMS Symp. on the Complexity of Computational
Computational Processes, pages 27–41, 1974.

[13] S. Ginsburg and E.H. Spanier. Semigroups, Presburger formulas and
languages. Pacific Journal of Mathematics, 16(2):285–296, 1966.

36 H. Seidl, Th. Schwentick, A. Muscholl

[14] G. Gottlob and C. Koch. Monadic datalog and the expressive power
of languages for web information extraction. In 20th ACM Conference
on Principles of Database Systems (PODS), pages 17–28. ACM Press,
2002.

[15] W. Karianto, A. Krieg, and W. Thomas. On intersection problems for
polynomially generated sets. In 33rd Int. Coll. on Automata, Languages
and Programming (ICALP), number 4052 in LNCS, pages 516–527.
Springer, 2006.

[16] F. Klaedtke. On the automata size for Presburger arithmetic. In 19th
Ann. IEEE Symp. on Logic in Computer Science (LICS), pages 110–
119. IEEE, 2004. Journal version in ACM Transactions on Computa-
tional Logic, to appear.

[17] F. Klaedtke and H. Ruess. Parikh automata and monadic second-
order logics with linear cardinality constraints. Technical Report 177,
Institute of CS at Freiburg University, 2002.

[18] O. Kupferman, U. Sattler, and M.Y. Vardi. The complexity of
the graded µ-calculus. In 18th Int. Conf. on Automated Deduction
(CADE), number 2392 in LNCS, pages 423–437. Springer, 2002.

[19] D. Lugiez. A good class of automata and application to inductive
theorem proving. In 25th Int. Coll. on Automata, Languages and Pro-
gramming (ICALP), number 1443 in LNCS, pages 409–420. Springer,
1998.

[20] D. Lugiez and S. Dal Zilio. Multitrees automata, Presburger’s
constraints and tree logics. Technical Report 08-2002, Laboratoire
d’Informatique Fondamentale de Marseille, 2002.

[21] D. Lugiez and S. Dal Zilio. XML schema, tree logic and sheaves au-
tomata. In 14th Int. Conf. on Rewriting Techniques and Applications
(RTA), number 2706 in LNCS, pages 246–263. Springer, 2003.

[22] W. Martens and J. Niehren. Minimizing tree automata for unranked
trees. In Database Programming Languages, 10th International Sympo-
sium (DBPL), number 3774 in LNCS, pages 232–246. Springer, 2005.

[23] M. Minsky. Recursive unsolvability of Post’s problem of tag and other
topics in the theory of Turing machines. Ann. of Math., 74:437–455,
1961.

[24] A. Neumann and H. Seidl. Locating matches of tree patterns in forests.
In Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS), number 1530 in LNCS, pages 134–145. Springer, 1998.

Counting in trees 37

[25] F. Neven. Automata, logic, and XML. In 16th International Workshop
on Computer Science Logic (CSL), number 2471 in LNCS, pages 2–26.
Springer, 2002.

[26] F. Neven and Th. Schwentick. Query automata over finite trees. The-
oretical Computer Science (TCS), 275(1-2):633–674, 2002.

[27] F. Neven and J. Van den Bussche. Expressiveness of structured doc-
ument query languages based on attribute grammars. Journal of the
ACM, 49(1):56–100, 2002.

[28] J. Niehren and A. Podelski. Feature automata and recognizable sets
of feature trees. In 4th Int. Conf. on Theory and Practice of Soft-
ware Development (TAPSOFT), number 668 in LNCS, pages 356–375.
Springer, 1993.

[29] H. Ohsaki. Beyond regularity: Equational tree automata for associa-
tive and commutative theories. In 15th International Workshop on
Computer Science Logic (CSL), number 2142 in LNCS, pages 539–553.
Springer, 2001.

[30] H. Ohsaki and T. Takai. Decidability and closure properties of equa-
tional tree languages. In 13th Int. Conf. on Rewriting Techniques and
Applications (RTA), number 2378 in LNCS, pages 114–128. Springer,
2002.

[31] Christos H. Papadimitriou. On the complexity of integer programming.
Journal of the ACM, 28(4):765–768, 1981.

[32] R. Parikh. On context-free languages. Journal of the ACM, 13(4):570–
581, 1966.

[33] M. Presburger. On the completeness of a certain system of arithmetic
of whole numbers in which addition occurs as the only operation. Hist.
Philos. Logic, 12:225–233, 1991. English translation of the original
paper from 1929.

[34] H. Seidl and A. Neumann. On guarding nested fixpoints. In Ann.
Conf. of the European Association of Logic in Computer Science (CSL),
number 1683 in LNCS, pages 484–498. Springer, 1999.

[35] H. Seidl, Th. Schwentick, and A. Muscholl. Numerical document
queries. In 22nd ACM Conference on Principles of Database Systems
(PODS), pages 155–166. ACM Press, 2003.

38 H. Seidl, Th. Schwentick, A. Muscholl

[36] H. Seidl, Th. Schwentick, A. Muscholl, and P. Habermehl. Counting
in trees for free. In 31st Int. Coll. on Automata, Languages and Pro-
gramming (ICALP), number 3142 in LNCS, pages 1136–1149. Springer,
2004.

[37] L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential
time: Preliminary report. In ACM Symposium on Theory of Computing
(STOC), pages 1–9, 1973.

[38] J.W. Thatcher and J.B. Wright. Generalized finite automata with an
application to a decision problem of second-order logic. Mathematical
Systems Theory, 2:57–82, 1968.

[39] K.N. Verma, H. Seidl, and Th. Schwentick. On the complexity of equa-
tional Horn clauses. In 20th International Conference on Automated
Deduction, number 3632 in LNCS, pages 337–352. Springer, 2005.

[40] I. Walukiewicz. Pushdown processes: Games and model-checking. In-
formation and Computation, 164(2):234–263, 2001.

