
Model checking CTL

! How to check whether state graph TS satisfies CTL

formula Φ̂?
! convert the formula Φ̂ into the equivalent Φ in ENF
! compute recursively the set Sat(Φ) = { q ∈ S | q |= Φ }
! TS |= Φ if and only if each initial state of TS belongs to

Sat(Φ)

! Recursive bottom-up computation of Sat(Φ):
! consider the parse-tree of Φ
! start to compute Sat(ai ), for all leaves in the tree
! then go one level up in the tree and determine Sat(·) for

these nodes

e.g.,: Sat(Ψ1 ∧ Ψ2︸ ︷︷ ︸
node at level i

) = Sat( Ψ1︸︷︷︸
node at

level i−1

) ∩ Sat( Ψ2︸︷︷︸
node at

level i−1

)

! then go one level up and determine Sat(·) of these nodes
! and so on....... until the root is treated, i.e., Sat(Φ) is

computed

Example

∧ Sat(Φ)

EXSat(Ψ) EU Sat(Ψ′)

a

b EG Sat(Ψ′′)

¬

c

Φ = EX a︸︷︷︸
Ψ

∧ E (b U EG¬c)︸ ︷︷ ︸
Ψ′′

︸ ︷︷ ︸
Ψ′

.



Basic algorithm

Require: finite transition system TS with states S and initial states I,
and CTL formula Φ (both over AP)

Ensure: TS |= Φ

{compute the sets Sat(Φ) = { q ∈ S | q |= Φ }}
for all i ≤ |Φ | do

for all Ψ ∈ Sub(Φ) with |Ψ | = i do
compute Sat(Ψ) from Sat(Ψ′) {for maximal proper
Ψ′ ∈ Sub(Ψ)}

end for
end for
return I ⊆ Sat(Φ)

Characterization of Sat (1)

For all CTL formulas Φ,Ψ over AP it holds:

Sat(true) = S

Sat(a) = {q ∈ S | a ∈ L(q) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = S \ Sat(Φ)

Sat(EXΦ) = {q ∈ S | Post(q) ∩ Sat(Φ) ̸= ∅ }

for a given finite transition system with states S



Characterization of Sat (2)

Sat(E (ΦUΨ)) is the smallest subset T of S, such that:
(1) Sat(Ψ) ⊆ T and

(2) (q ∈ Sat(Φ) and Post(q) ∩ T ̸= ∅) ⇒ q ∈ T

! We show that for any T that satisfies (1) and (2),
we have Sat(E (ΦUΨ)) ⊆ T .

! Let s ∈ Sat(E (ΦUΨ)).

! If s ∈ Sat(Ψ), then, by (1), s ∈ T .

! Otherwise, there exists a path π = s0s1s2 . . .
starting in s = s0 such that π |= ΦUΨ.

! Let n > 0 such that sn |= Ψ and si |= Φ for all 0 ≤ i < n.

! sn ∈ T by (1), because sn ∈ Sat(Ψ).

! sn−1 ∈ T by (2), because sn ∈ Post(sn−1) ∩ T and sn−1 ∈ Sat(Φ).

! . . .

! s = s0 ∈ T by (2), because s1 ∈ Post(s0) ∩ T and s0 ∈ Sat(Φ).

Characterization of Sat (3)

Sat(EGΦ) is the largest subset T of S, such that:
(3) T ⊆ Sat(Φ) and

(4) q ∈ T implies Post(q) ∩ T ̸= ∅

! We show that for any T that satisfies (3) and (4),
we have T ⊆ Sat(EGΦ).

! Let s ∈ T . We construct a path π = s0s1s2 . . . as follows:

! s0 = s
! Since s0 ∈ T , we find, by (4), a state s1 ∈ Post(s0) ∩ T .
! Since s1 ∈ T , we find, by (4), a state s2 ∈ Post(s1) ∩ T .
! . . ..

! By (3), we have si ∈ T ⊆ Sat(Φ). Hence, s ∈ Sat(EGΦ).



Computing Sat(E (ΦUΨ)) (1)

Sat(E (ΦUΨ)) is the smallest set T ⊆ Q such that:
(1) Sat(Ψ) ⊆ T and (2) (q ∈ Sat(Φ) and Post(q) ∩ T ̸= ∅) ⇒ q ∈ T

! This suggests to compute Sat(E (ΦUΨ)) iteratively:

T0 = Sat(Ψ) and Ti+1 = Ti ∪ { q ∈ Sat(Φ) | Post(q)∩Ti ̸= ∅ }

! Ti = states that can reach a Ψ-state in at most i steps via a
Φ-path

! By induction on j it follows:

T0 ⊆ T1 ⊆ . . . ⊆ Tj ⊆ Tj+1 ⊆ . . . ⊆ Sat(E (ΦUΨ))

Computing Sat(E (ΦUΨ)) (2)

! TS is finite, so for some j ≥ 0 we have:
Tj = Tj+1 = Tj+2 = . . .

! Therefore: Tj = Tj ∪ {q ∈ Sat(Φ) | Post(q) ∩ Tj ̸= ∅ }
! Hence: {q ∈ Sat(Φ) | Post(q) ∩ Tj ̸= ∅ } ⊆ Tj

! hence, Tj satisfies (2), i.e.,
(q ∈ Sat(Φ) and Post(q) ∩ Tj ̸= ∅) ⇒ q ∈ Tj

! further, Sat(Ψ) = T0 ⊆ Tj so, Tj satisfies (1), i.e.
Sat(Ψ) ⊆ Tj

! As Sat(E (ΦUΨ)) is the smallest set satisfying (1) and (2),
Sat(E (ΦUΨ)) ⊆ Tj and thus Sat(E (ΦUΨ)) = Tj .

! Hence:
T0 ! T1 ! T2 ! . . . ! Tj = Tj+1 = . . . = Sat(E (ΦUΨ))



Computing Sat(E (ΦUΨ)) (3)

Require: finite transition system with states S CTL-formula E (ΦUΨ)
Ensure: Sat(E (ΦUΨ)) = { q ∈ S | q |= E (ΦUΨ) }

V := Sat(Ψ); {V administers states q with q |= E (ΦUΨ)}

T := V ; {T contains the already visited states q with q |= E (ΦUΨ)}
while V ̸= ∅ do

let q′ ∈ V ;
V := V \ { q′ };
for all q ∈ Pre(q′) do

if q ∈ Sat(Φ) \ T then V := V ∪ { q };T := T ∪ { q }; endif
end for

end while
return T

Computing Sat(EGΦ)
V := S \ Sat(Φ); {V contains any not visited q′ with q′ ̸|= E GΦ}

T := Sat(Φ); {T contains any q for which q |= E GΦ has not yet been disproven}

for all q ∈ Sat(Φ) do c[q] := |Post(q) |; od {initialize array c}

while V ̸= ∅ do
{loop invariant: c[q] = |Post(q) ∩ (T ∪ V ) |}
let q′ ∈ V ; {q′ ̸|= Φ}
V := V \ { q′ }; {q′ has been considered}
for all q ∈ Pre(q′) do

if q ∈ T then
c[q] := c[q]− 1; {update counter c[q] for predecessor q of q′}
if c[q] = 0 then

T := T \ { q }; V := V ∪ { q }; {q does not have any successor in T }
end if

end if
end for

end while
return T



Alternative algorithm for Sat(EGΦ)

1. Consider only state q if q |= Φ, otherwise eliminate q
! change states to S′ = Sat(Φ),

2. Determine all non-trivial strongly connected components in
TS[Φ]

! non-trivial SCC = maximal, connected subgraph with at
least one edge

⇒ any state in such SCC satisfies EGΦ

3. q |= EGΦ is equivalent to “some SCC is reachable from q”
! this search can be done in a backward manner

Time complexity

For transition system TS with N states and M edges,

and CTL formula Φ, the CTL model-checking problem TS |= Φ

can be determined in time O(|Φ |·(N + M))



Model-checking LTL versus CTL

! Let TS be a transition system with N states and M edges
! Model-checking LTL-formula Φ has time-complexity

O((N+M)·2|Φ |)
! linear in the state space of the system model
! exponential in the length of the formula

! Model-checking CTL-formula Φ has time-complexity
O((N+M)·|Φ |)

! linear in the state space of the system model and the
formula

! Is model-checking CTL more efficient?

Hamiltonian path problem

⇒ LTL-formulae can be exponentially shorter than their
CTL-equivalent

v1 v2 v3 v4

w

{ p3 }{ p0 }
{ p1 } { p2 }

{ q }

! Existence of Hamiltonian path in LTL:∧
i

(
pi ∧ (pi → ¬pi)

)

! In CTL, all possible (= 4!) routes need to be encoded



Equivalence of LTL and CTL formulas

CTL-formula Φ and LTL-formula ϕ (both over AP) are
equivalent, denoted Φ ≡ ϕ, if for any transition system TS (over

AP):
TS |= Φ if and only if TS |= ϕ

Examples (1)

CTL-formula A G A F a and LTL-formula G F a are equivalent.



Examples (2)

AF AG a is not equivalent to F G a

s0 s2s1

Examples (3)

F (a ∧ X a) is not equivalent to AF (a ∧ AX a)

{ a }

∅

s0

s3

s4

s1s2

{ a } { a }∅



LTL and CTL are incomparable

! Some LTL-formulas cannot be expressed in CTL, e.g.,
! F G a
! F (a ∧ X a)

! Some CTL-formulas cannot be expressed in LTL, e.g.,
! AF AG a
! AF (a ∧ AX a)
! AG EF a

⇒ Cannot be expressed = there does not exist an equivalent
formula

Example

The CTL-formula AG EF a cannot be expressed in LTL

! Proof by contradiction: assume ϕ ≡ AG EF a; let:

TS′
TS ∅{ a }

s s′

∅

s

! TS |= AG EF a, and thus, by assumption, TS |= ϕ

! Paths(TS′) ⊆ Paths(TS), thus TS′ |= ϕ

! But TS′ ̸|= AG EF a, because path sω ̸|= G EF a



Comparing LTL and CTL

Let Φ be a CTL-formula, and ϕ the LTL-formula obtained by
eliminating all path quantifiers in Φ. Then: [Clarke & Draghicescu]

Φ ≡ ϕ or there does not exist any LTL-formula that is equivalent to Φ

Proof

Suppose Φ ≡ ψ for some LTL formula ψ.
Assume w.l.o.g. that TS is an infinite tree.

TS |= ψ

iff for all paths π in TS, π satisfies ψ

iff for all paths π in TS, the transition system TSπ with the
single path π satisfies ψ

iff for all paths π in TS, TSπ satisfies Φ (because Φ ≡ ψ)

iff for all paths π in TS, TSπ satisfies ϕ (because there is only
a single path)

iff for all paths π in TS, π satisfies ϕ

iff TS |= ϕ


