Model checking CTL

- How to check whether state graph TS satisfies CTL formula Φ?
 - convert the formula $\hat{\Phi}$ into the equivalent Φ in ENF
 - compute <u>recursively</u> the set $Sat(\Phi) = \{ q \in S \mid q \models \Phi \}$
 - TS ⊨ Φ if and only if each initial state of TS belongs to Sat(Φ)
- Recursive bottom-up computation of Sat(Φ):
 - consider the parse-tree of Φ
 - start to compute $Sat(a_i)$, for all leaves in the tree
 - then go one level up in the tree and determine Sat(·) for these nodes

e.g.,:
$$Sat(\underbrace{\Psi_1 \land \Psi_2}_{\text{node at level }i}) = Sat(\underbrace{\Psi_1}_{\text{level }i-1}) \cap Sat(\underbrace{\Psi_2}_{\text{level }i-1})$$

- then go one level up and determine $Sat(\cdot)$ of these nodes
- and so on..... until the root is treated, i.e., Sat(Φ) is computed

Example

Basic algorithm

Require: finite transition system *TS* with states *S* and initial states *I*, and CTL formula Φ (both over *AP*) **Ensure:** $TS \models \Phi$

{compute the sets $Sat(\Phi) = \{ q \in S \mid q \models \Phi \}$ } for all $i \leq |\Phi|$ do for all $\Psi \in Sub(\Phi)$ with $|\Psi| = i$ do compute $Sat(\Psi)$ from $Sat(\Psi')$ {for maximal proper $\Psi' \in Sub(\Psi)$ } end for return $I \subseteq Sat(\Phi)$

Characterization of Sat (1)

For all CTL formulas Φ , Ψ over *AP* it holds:

for a given finite transition system with states S

Characterization of Sat (2)

Sat($\mathsf{E}(\Phi \cup \Psi)$) is the **smallest** subset *T* of *S*, such that: (1) Sat(Ψ) \subseteq *T* and (2) ($q \in$ Sat(Φ) and Post(q) \cap $T \neq \emptyset$) \Rightarrow $q \in T$

- We show that for any *T* that satisfies (1) and (2), we have Sat(E (Φ U Ψ)) ⊆ *T*.
- Let $s \in Sat(E(\Phi \cup \Psi))$.
- If $s \in Sat(\Psi)$, then, by (1), $s \in T$.
- Otherwise, there exists a path π = s₀s₁s₂... starting in s = s₀ such that π ⊨ Φ U Ψ.
- Let n > 0 such that $s_n \models \Psi$ and $s_i \models \Phi$ for all $0 \le i < n$.
- ► $s_n \in T$ by (1), because $s_n \in Sat(\Psi)$.
- ▶ $s_{n-1} \in T$ by (2), because $s_n \in Post(s_{n-1}) \cap T$ and $s_{n-1} \in Sat(\Phi)$.
- ▶ ...
- ▶ $s = s_0 \in T$ by (2), because $s_1 \in Post(s_0) \cap T$ and $s_0 \in Sat(\Phi)$.

Characterization of Sat (3)

Sat(EG Φ) is the **largest** subset *T* of *S*, such that: (3) $T \subseteq Sat(\Phi)$ and (4) $q \in T$ implies $Post(q) \cap T \neq \emptyset$

- We show that for any *T* that satisfies (3) and (4), we have *T* ⊆ Sat(EG Φ).
- Let $s \in T$. We construct a path $\pi = s_0 s_1 s_2 \dots$ as follows:
 - ► *s*₀ = *s*
 - Since $s_0 \in T$, we find, by (4), a state $s_1 \in Post(s_0) \cap T$.
 - ▶ Since $s_1 \in T$, we find, by (4), a state $s_2 \in Post(s_1) \cap T$.
 - • •
- ▶ By (3), we have $s_i \in T \subseteq Sat(\Phi)$. Hence, $s \in Sat(EG \Phi)$.

Computing $Sat(E(\Phi \cup \Psi))(1)$

 $Sat(E(\Phi \cup \Psi))$ is the smallest set $T \subseteq Q$ such that: (1) $Sat(\Psi) \subseteq T$ and (2) $(q \in Sat(\Phi) \text{ and } Post(q) \cap T \neq \emptyset) \Rightarrow q \in T$

• This suggests to compute $Sat(E(\Phi \cup \Psi))$ iteratively:

 $T_0 = Sat(\Psi)$ and $T_{i+1} = T_i \cup \{ q \in Sat(\Phi) \mid Post(q) \cap T_i \neq \emptyset \}$

- *T_i* = states that can reach a Ψ-state in at most *i* steps via a Φ-path
- By induction on *j* it follows:

 $T_0 \subseteq T_1 \subseteq \ldots \subseteq T_j \subseteq T_{j+1} \subseteq \ldots \subseteq Sat(\mathsf{E}(\Phi \cup \Psi))$

Computing $Sat(E(\Phi U \Psi))$ (2)

- ► *TS* is finite, so for some $j \ge 0$ we have: $T_j = T_{j+1} = T_{j+2} = \dots$
- ▶ Therefore: $T_i = T_i \cup \{ q \in Sat(\Phi) \mid Post(q) \cap T_i \neq \emptyset \}$
- ► Hence: { $q \in Sat(\Phi) | Post(q) \cap T_j \neq \emptyset$ } ⊆ T_j
 - hence, T_j satisfies (2), i.e., (q ∈ Sat(Φ) and Post(q) ∩ T_j ≠ Ø) ⇒ q ∈ T_j
 further, Sat(Ψ) = T₀ ⊆ T_j so, T_j satisfies (1), i.e.
- Sat(Ψ) ⊆ T_j As Sat(E($\Phi \cup \Psi$)) is the smallest set satisfying (1) and (2),
- $Sat(E(\Phi \cup \Psi)) \subseteq T_j$ and thus $Sat(E(\Phi \cup \Psi)) = T_j$.

Hence:

$$T_0 \subsetneqq T_1 \subsetneqq T_2 \subsetneqq \dots \subsetneqq T_j = T_{j+1} = \dots = Sat(\mathsf{E}(\Phi \cup \Psi))$$

Computing $Sat(E(\Phi \cup \Psi))$ (3)

Require: finite transition system with states *S* CTL-formula $E(\Phi \cup \Psi)$ **Ensure:** $Sat(E(\Phi \cup \Psi)) = \{ q \in S | q \models E(\Phi \cup \Psi) \}$

```
V := Sat(\Psi); \{V \text{ administers states } q \text{ with } q \models E(\Phi \cup \Psi)\}

T := V; \{T \text{ contains the already visited states } q \text{ with } q \models E(\Phi \cup \Psi)\}

while V \neq \emptyset do

let q' \in V;

V := V \setminus \{q'\};

for all q \in Pre(q') do

if q \in Sat(\Phi) \setminus T then V := V \cup \{q\}; T := T \cup \{q\}; endif

end for

end while

return T
```

Computing $Sat(EG \Phi)$

 $V := S \setminus Sat(\Phi); \{V \text{ contains any not visited } q' \text{ with } q' \not\models E G \Phi \}$

 $T := Sat(\Phi)$; {*T* contains any *q* for which $q \models E G \Phi$ has not yet been disproven}

for all $q \in Sat(\Phi)$ do c[q] := |Post(q)|; od {initialize array c}

```
while V \neq \emptyset do

{loop invariant: c[q] = |Post(q) \cap (T \cup V)|}

let q' \in V; \{q' \not\models \Phi\}

V := V \setminus \{q'\}; \{q' \text{ has been considered}

for all q \in Pre(q') do

if q \in T then

c[q] := c[q] - 1; {update counter c[q] for predecessor q of q'}

if c[q] = 0 then

T := T \setminus \{q\}; V := V \cup \{q\}; {q does not have any successor in T}

end if

end if

end for

end while

return T
```

Alternative algorithm for $Sat(EG \Phi)$

- Consider only state q if q ⊨ Φ, otherwise eliminate q
 change states to S' = Sat(Φ),
- 2. Determine all non-trivial strongly connected components in $TS[\Phi]$
 - non-trivial SCC = maximal, connected subgraph with at least one edge
 - $\Rightarrow~$ any state in such SCC satisfies EG φ
- 3. $q \models EG \Phi$ is equivalent to "some SCC is reachable from q"
 - this search can be done in a backward manner

Time complexity

For transition system *TS* with *N* states and *M* edges, and CTL formula Φ , the CTL model-checking problem *TS* $\models \Phi$ can be determined in time $\mathcal{O}(|\Phi| \cdot (N + M))$

Model-checking LTL versus CTL

- ► Let *TS* be a transition system with *N* states and *M* edges
- Model-checking LTL-formula Φ has time-complexity $\mathcal{O}((N+M)\cdot 2^{|\Phi|})$
 - linear in the state space of the system model
 - exponential in the length of the formula
- Model-checking CTL-formula Φ has time-complexity O((N+M)·|Φ|)
 - linear in the state space of the system model and the formula
- Is model-checking CTL more efficient?

Hamiltonian path problem

 \Rightarrow LTL-formulae can be exponentially shorter than their CTL-equivalent

- ► Existence of Hamiltonian path in LTL: $\Lambda_i (\Diamond p_i \land \Box(p_i \to \bigcirc \Box \neg p_i))$
- ► In CTL, all possible (= 4!) routes need to be encoded

Equivalence of LTL and CTL formulas

CTL-formula Φ and LTL-formula φ (both over *AP*) are **equivalent**, denoted $\Phi \equiv \varphi$, if for any transition system *TS* (over *AP*):

 $TS \models \Phi$ if and only if $TS \models \varphi$

Examples (1)

CTL-formula AGAFa and LTL-formula GFa are equivalent.

Examples (2)

Examples (3)

LTL and CTL are incomparable

- Some LTL-formulas cannot be expressed in CTL, e.g.,
 - ▶ FG*a*
 - ► F (a ∧ X a)
- Some CTL-formulas cannot be expressed in LTL, e.g.,
 - AF AG a
 - ► AF (*a* ∧ AX *a*)
 - AG EF a
- ⇒ Cannot be expressed = there does not exist an equivalent formula

Example

Comparing LTL and CTL

Let Φ be a CTL-formula, and φ the LTL-formula obtained by eliminating all path quantifiers in Φ . Then: [Clarke & Draghicescu]

 $\Phi \equiv \varphi$ or there does not exist any LTL-formula that is equivalent to Φ

Proof

Suppose $\Phi \equiv \psi$ for some LTL formula ψ . Assume w.l.o.g. that *TS* is an infinite tree.

 $TS \models \psi$

- iff for all paths π in *TS*, π satisfies ψ
- iff for all paths π in *TS*, the transition system *TS*_{π} with the single path π satisfies ψ
- iff for all paths π in *TS*, *TS*_{π} satisfies Φ (because $\Phi \equiv \psi$)
- iff for all paths π in *TS*, *TS*_{π} satisfies φ (because there is only a single path)
- iff for all paths π in *TS*, π satisfies φ
- $\inf \ TS \models \varphi$