Model checking CTL

» How to check whether state graph TS satisfies CTL
formula ?
» convert the formula & into the equivalent & in ENF
» compute recursively the set Satl(¢) ={qge S|qgE ¢}
» TS |= ¢ if and only if each initial state of TS belongs to
Sat(d)
» Recursive bottom-up computation of Sat(®):
» consider the parse-tree of ¢
» start to compute Sat(a;), for all leaves in the tree
» then go one level up in the tree and determine Sat(-) for
these nodes

e.g.. Sat(Vi A Vp) = Sat(\if;) N Sat(i!i)

node at level i node at node at
level i—1 level i—1

» then go one level up and determine Saf(-) of these nodes
» and so on....... until the root is treated, i.e., Saf(®) is
computed

Sat(w")

® = EXa A E(bU EGc)

~~~ ——
\lj w//
(S

W/



Basic algorithm

Require: finite transition system TS with states S and initial states /,
and CTL formula ¢ (both over AP)
Ensure: TS ¢

{compute the sets Sat(®) = {qge S|qE o }}
foralli <|®¢|do
for all ¥ € Sub(¢) with |V | =i do
compute Sat(V) from Sat(V’) {for maximal proper
V" € Sub(V)}
end for
end for
return / C Saf(®)

Characterization of Sat (1)

For all CTL formulas ¢, V over AP it holds:

Saf(true) = S
Sat(a) = {ge S|acl(q)}, forany ac AP
Saf(d AV) = Sat(®) N Sat(V)
Sat(—-¢) = S\ Sal(P)
)

Sat(EX®) = {qe€ S| Post(q)n Sat(®) # 0}

for a given finite transition system with states S



Characterization of Sat (2)

Sat(E (¢ U V) is the smallest subset T of S, such that:
(1) Sat(w)C T and
(2) (g€ Sat(®)and Post(q)NT#0) = qeT

» We show that for any T that satisfies (1) and (2),
we have Sat(E (¢UWV)) C T.

> Let se Sat(E(oUW)).
> If s € Sat(V), then, by (1), s T.

» Otherwise, there exists a path 7 = sp51s2. ..
starting in s = sp such that 7 = e U V.

» Letn>O0suchthats, =WVands;=®forall0<i<n.
» s, € T by (1), because s, € Sat(V).
> S,_1 € T by (2), because s, € Post(s,_1) N T and s,_1 € Sat(®).

» s=5p € T by (2), because s1 € Post(sp) N T and sy € Sat(®).

Characterization of Sat (3)

Sat(EG @) is the largest subset T of S, such that:
(3) T C Sat(¢) and
(4) g€ T implies Post(q)N'T #0

» We show that for any T that satisfies (3) and (4),
we have T C Saf(EG o).

» Let s € T. We construct a path 7 = 595155 ... . as follows:

> SO = S
» Since sp € T, we find, by (4), a state sy € Post(so) N T.
» Since sy € T, we find, by (4), a state s, € Post(s;) N T.

> .

» By (3), we have s; € T C Sat(®). Hence, s € Sat(EG o).



Computing Sat(E (¢ UW)) (1)

Sat(E (# U WV)) is the smallest set T C Q such that:
(1) Sat(Ww)C T and (2) (g€ Sat(¢)and Post(q)NT #0) = qeT

» This suggests to compute Saf(E (¢ U V)) iteratively:
To = Sat(V) and T4 = Tju{q e Sat(®) | Post(q)NT; # 0}

» T; = states that can reach a V-state in at most / steps via a
®-path
» By induction on j it follows:

ThoCTHC...CTiCTy1C ... C Saf(E(eUV))

Computing Sat(E (e U WV)) (2)

v

TS is finite, so for some j > 0 we have:
Ti= T = Tz = -
Therefore: T, = T; U {q € Sat(®) | Post(q)N'T; # 0}
Hence: { g € Saf(®) | Post(q)NTi#0} € T;
» hence, T; satisfies (2), i.e.,
(g € Sat(®) and Post(q)N'T; #0) = ge T,
» further, Sat(V) = To C T, so, T; satisfies (1), i.e.
Sat(v) C T;
As Saf(E (® U V)) is the smallest set satisfying (1) and (2),
Sat(E(®UV)) C T;andthus Saf(E (¢ UWV)) = T,.
» Hence:

oS THiCTC. . .CT=Ty1=...= Sa(E(®UV))

v

v

v



Computing Sat(E (¢ UW)) (3)

Require: finite transition system with states S CTL-formula E (» U V)
Ensure: Saf(E(¢UV))={ge S|g=E(®UV)}

V .= Sat(V); {V administers states g with g = E (¢ U W)}
T := V; {T contains the already visited states q with g = E (¢ U W)}
while V +# () do
let g € V;
Vi=V\{¢};
for all g € Pre(q’) do
if ge Sat(¢)\ TthenV:=V U {q};T:=T U {qg}; endif
end for
end while
return T

Computing Sat(EG @)
V := S\ Sai($); {V contains any not visited q’ with ¢’ |~ E G ¢}

T := Saf(®); {T contains any g for which g = E G ¢ has not yet been disproven}
for all g € Sat(¢) do c[q] := | Post(q) |; od {initialize array c}

while V # () do
{loop invariant: c[q] = | Post(q) N (T U V) |}
let g’ € V;{q' [+ ¢}
V:=V\{q};{q has been considered}
for all g € Pre(q’) do

if g € T then
c[q] := c[q] — 1; {update counter c[q] for predecessor q of g’}
if c[g] = 0 then

T:=T\{q};V:=VU{q};{qdoes not have any successor in T}

end if

end if

end for
end while

return T



Alternative algorithm for Sat(EG @)

1. Consider only state q if g = ¢, otherwise eliminate g
» change states to S’ = Sat(®),
2. Determine all non-trivial strongly connected components in
TS[®]
» non-trivial SCC = maximal, connected subgraph with at
least one edge
= any state in such SCC satisfies EG ¢

3. g = EG ¢ is equivalent to “some SCC is reachable from q”
» this search can be done in a backward manner

Time complexity

For transition system TS with N states and M edges,
and CTL formula ¢, the CTL model-checking problem TS = ¢
can be determined in time O(| ¢ |-(N + M))




Model-checking LTL versus CTL

Let TS be a transition system with N states and M edges
Model-checking LTL-formula ¢ has time-complexity
O((N+M)-21*1)

» linear in the state space of the system model

» exponential in the length of the formula
Model-checking CTL-formula ¢ has time-complexity
O((N+M)-[ @)

» linear in the state space of the system model and the

formula

Is model-checking CTL more efficient?

v

v

v

v

Hamiltonian path problem

= LTL-formulae can be exponentially shorter than their
CTL-equivalent

» Existence of Hamiltonian path in LTL:
A (Opi A O(pr = OO-p))
» In CTL, all possible (= 4!) routes need to be encoded



Equivalence of LTL and CTL formulas

CTL-formula ® and LTL-formula ¢ (both over AP) are
equivalent, denoted ¢ = ¢, if for any transition system TS (over
AP):

TSE¢ ifandonlyif TSE ¢

Examples (1)

CTL-formulaAGAFa and LTL-formula GFa are equivalent.



Examples (2)

AF AG a is not equivalentto FG a

& O ¢

So S So

Examples (3)

F(a N Xa)is not equivalentto AF (a A AX a)

0
. N ! ’
ge. @ s
; {a) {a)



LTL and CTL are incomparable

» Some LTL-formulas cannot be expressed in CTL, e.g.,
» FGa
» F(a A Xa)

» Some CTL-formulas cannot be expressed in LTL, e.g.,

» AFAGa
> AF(a A AXa)
» AGEFa

= Cannot be expressed = there does not exist an equivalent
formula

Example

The CTL-formula AG EF a cannot be expressed in LTL

» Proof by contradiction: assume ¢ = AGEF g; let:

\s s %
TS 0 @{a} TS 0

» TS &= AGEF a, and thus, by assumption, TS = ¢
» Paths(TS') C Paths(TS), thus TS = ¢
» But TS [~ AGEF a, because path s¥ - GEFa




Comparing LTL and CTL

Let & be a CTL-formula, and ¢ the LTL-formula obtained by
eliminating all path quantifiers in ®. Then: [Clarke & Draghicescu]

® = ¢ orthere does not exist any LTL-formula that is equivalent to ¢

Proof

Suppose ¢ = ¢ for some LTL formula ).
Assume w.l.0.g. that TS is an infinite tree.

TS v
iff for all paths 7 in TS, = satisfies

iff for all paths 7 in TS, the transition system TS, with the
single path 7 satisfies ¢

iff for all paths = in TS, TS, satisfies ¢ (because ¢ = )

iff for all paths 7 in TS, TS, satisfies ¢ (because there is only
a single path)

iff for all paths 7 in TS, = satisfies ¢

iff TSE @



