Implementation relations

- A binary relation on transition systems
- when does a transition systems correctly implement another?
- Important for system synthesis
stepwise refinement of a system specification $T S$ into an "implementation" TS
- Important for system analysis
use the implementation relation as a means for abstraction
replace $T S \models \varphi$ by $T S^{\prime} \models \varphi$ where $\left|T S^{\prime}\right| \ll|T S|$ such that:

$$
T S \models \varphi \text { iff } T S^{\prime} \models \varphi \text { or } \quad T S^{\prime} \models \varphi \Rightarrow T S \models \varphi
$$

\Rightarrow Focus on state-based bisimulation and simulation

- logical characterization: which logical formulas are preserved by bisimulation

Bisimulation equivalence
Let $T S_{i}=\left(S_{i}, t_{1}\right), i=1,2$, be transition systems A bisimulation for $\left(T S_{1}, T S_{2}\right)$ is a binary relation $\mathcal{R} \subseteq S_{1} \times S_{2}$ A bisimulat

1. $\forall s_{1} \in I_{1} \exists s_{2} \in I_{2} .\left(s_{1}, s_{2}\right) \in \mathcal{R}$ and $\forall s_{2} \in I_{2} \exists s_{1} \in I_{1}$. $\left(s_{1}, s_{2}\right) \in \mathcal{R}$
2. for all states $s_{1} \in S_{1}, s_{2} \in S_{2}$ with $\left(s_{1}, s_{2}\right) \in \mathcal{R}$ it holds:
2.1 $L_{1}\left(s_{1}\right)=L_{2}\left(s_{2}\right.$
2.2 if $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ then there exists $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$
2.3 if $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ then there exists $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$
$s_{1} \rightarrow s_{1}^{\prime}$
\mathcal{R}
S_{2} and
s_{1}
\mathcal{R}
$s_{2} \rightarrow s_{2}^{\prime}$
$s_{1} \rightarrow s_{1}^{\prime}$
can be completed to
$s_{2} \rightarrow s_{2}^{\prime}$
$T S_{1}$ and $T S_{2}$ are bisimilar, denoted $T S_{1} \sim T S_{2}$, if there exists a bisimulation

$$
\text { for }\left(T S_{1}, T S_{2}\right)
$$

Example (1)

$\mathcal{R}=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{2}, t_{3}\right),\left(s_{3}, t_{4}\right)\right\}$
is a bisimulation for $\left(T S_{1}, T S_{2}\right)$ where $A P=\{$ pay, beer, sprite $\}$

\sim is an equivalence

For any transition systems $T S, T S_{1}, T S_{2}$ and $T S_{3}$ over $A P$:

- TS $\sim T S$ (reflexivity)
- $T S_{1} \sim T S_{2}$ implies $T S_{2} \sim T S_{1}$ (symmetry)
- $T S_{1} \sim T S_{2}$ and $T S_{2} \sim T S_{3}$ implies $T S_{1} \sim T S_{3}$ (transitivity)

Example (2)

$T S_{1} \nsim T S_{3}$ for $A P=\{$ pay, beer, sprite $\}$
But: $\left\{\left(s_{0}, u_{0}\right),\left(s_{1}, u_{1}\right),\left(s_{1}, u_{2}\right),\left(s_{2}, u_{3}\right),\left(s_{2}, u_{4}\right),\left(s_{3}, u_{3}\right),\left(s_{3}, u_{4}\right)\right\}$ is a bisimulation for $\left(T S_{1}, T S_{3}\right)$ for $A P=\{$ pay, drink $\}$

?

Bisimulation on paths

Whenever we have:
$s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{4} \ldots \ldots$
\mathcal{R}
t_{0}
this can be completed to

$$
\begin{array}{lllllllll}
s_{0} & \rightarrow & s_{1} & \rightarrow & s_{2} & \rightarrow & s_{3} & \rightarrow & s_{4} \ldots \ldots \\
\mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} \\
t_{0} & \rightarrow & t_{1} & \rightarrow & t_{2} & \rightarrow & t_{3} & \rightarrow & t_{4} \ldots \ldots
\end{array}
$$

Bisimulation vs. trace equivalence

$T S_{1} \sim T S_{2}$ implies $\operatorname{Traces}\left(T S_{1}\right)=\operatorname{Traces}\left(T S_{2}\right)$
bisimilar transition systems thus satisfy the same LT properties!

Coarsest bisimulation
$\sim_{T S}$ is an equivalence and the coarsest bisimulation for $T S$

Bisimulation on states

$\mathcal{R} \subseteq S \times S$ is a bisimulation on $T S$ if for any $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:

- $L\left(s_{1}\right)=L\left(s_{2}\right)$
- if $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ then there exists an $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$
- if $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ then there exists an $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$
s_{1} and s_{2} are bisimilar, $s_{1} \sim_{T S} s_{2}$,
if $\left(s_{1}, s_{2}\right) \in \mathcal{R}$ for some bisimulation \mathcal{R} for $T S$

$$
s_{1} \sim_{T S} s_{2} \text { if and only if } T S_{s_{1}} \sim T S_{s_{2}}
$$

$T S_{s}$ is the transition system obtained from $T S$ by declaring s as the initial state.

Quotient transition system

For $T S=(S, A c t, \rightarrow, I, A P, L)$ and bisimulation $\sim_{T S} \subseteq S \times S$ on
TS let
$T S / \sim_{T S}=\left(S^{\prime},\{\tau\}, \rightarrow^{\prime}, I^{\prime}, A P, L^{\prime}\right)$ be the quotient of $T S$ under $\sim_{T S}$ where

- $S^{\prime}=S / \sim_{T S}=\left\{[s]_{\sim} \mid s \in S\right\}$ with
$[s]_{\sim}=\left\{s^{\prime} \in S \mid s \sim_{T S} s^{\prime}\right\}$
- \rightarrow^{\prime} is defined by: $\frac{s \xrightarrow{\alpha} s^{\prime}}{[s]_{\sim} \xrightarrow{\prime}\left[s^{\prime}\right]_{\sim}}$
- $I^{\prime}=\left\{[s]_{\sim} \mid s \in I\right\}$
- $L^{\prime}\left([s]_{\sim}\right)=L(s)$

The Bakery algorithm

Data abstraction

Function f maps a reachable state of $T S_{\text {Bak }}$ onto an abstract one in $T S_{B a k}^{a b s}$ Let $s=\left\langle\ell_{1}, \ell_{2}, y_{1}=b_{1}, y_{2}=b_{2}\right\rangle$ be a state of $T S_{\text {Bak }}$ with $\ell_{i} \in\left\{n_{i}, w_{i}, c_{i}\right\}$ and $b_{i} \in \mathbb{N}$
Then:

$$
f(s)= \begin{cases}\left\langle\ell_{1}, \ell_{2}, y_{1}=0, y_{2}=0\right\rangle & \text { if } b_{1}=b_{2}=0 \\ \left\langle\ell_{1}, \ell_{2}, y_{1}=0, y_{2}>0\right\rangle & \text { if } b_{1}=0 \text { and } b_{2}>0 \\ \left\langle\ell_{1}, \ell_{2}, y_{1}>0, y_{2}=0\right\rangle & \text { if } b_{1}>0 \text { and } b_{2}=0 \\ \left\langle\ell_{1}, \ell_{2}, y_{1}>y_{2}>0\right\rangle & \text { if } b_{1}>b_{2}>0 \\ \left\langle\ell_{1}, \ell_{2}, y_{2}>y_{1}>0\right\rangle & \text { if } b_{2}>b_{1}>0\end{cases}
$$

$$
\mathcal{R}=\{(s, f(s)) \mid s \in S\} \text { is a bisimulation for }\left(T S_{B a k}, T S_{\text {Bak }}^{\text {abs }}\right)
$$

for any subset of $A P=\left\{\right.$ noncritit $_{i}$, wait $t_{,}$, crit $\left._{i} \mid i=1,2\right\}$

Example path fragment

process P_{1}	process P_{2}	y_{1}	y_{2}	effect
n_{1}	n_{2}	0	0	P_{1} requests access to critical section
w_{1}	n_{2}	1	0	P_{2} requests access to critical section
w_{1}	w_{2}	1	2	P_{1} enters the critical section
c_{1}	w_{2}	1	2	P_{1} leaves the critical section
n_{1}	w_{2}	0	2	P_{1} requests access to critical section
w_{1}	w_{2}	3	2	P_{2} enters the critical section
w_{1}	c_{2}	3	2	P_{2} leaves the critical section
w_{1}	n_{2}	3	0	P_{2} requests access to critical section
w_{1}	w_{2}	3	4	P_{1} enters the critical section
\ldots	\ldots	\ldots

Bisimulation quotient

Remarks

- In this example, data abstraction yields a bisimulation relation
- (typically, only a simulation relation is obtained, more later)
- $T S_{B a k}^{a b s} \models \varphi$ with, e.g.,:
- $\square\left(\neg\right.$ crit ${ }_{1} \vee \neg$ crit $\left._{2}\right)$ and
$\left(\square \diamond\right.$ wait $_{1} \Rightarrow \square \diamond$ crit $\left._{1}\right) \wedge\left(\square \diamond\right.$ wait $_{2} \Rightarrow \square \diamond$ crit $\left._{2}\right)$
- Since $T S_{B a k}^{a b s} \sim T S_{B a k}$, it follows $T S_{B a k} \models \varphi$
- Note: $\operatorname{Traces}\left(T S_{B a k}^{a b s}\right)=\operatorname{Traces}\left(T S_{B a k}\right)$

CTL* equivalence

States s_{1} and s_{2} in $T S$ (over $A P$) are CTL*-equivalent:
$s_{1} \equiv_{C T L^{*}} s_{2} \quad$ if and only if $\quad\left(s_{1} \models \Phi\right.$ iff $\left.s_{2} \models \Phi\right)$ for all CTL* state formulas over $A P$
$T S_{1} \equiv_{C T L^{*}} T S_{2} \quad$ if and only if $\quad\left(T S_{1} \models \Phi\right.$ iff $\left.T S_{2} \models \Phi\right)$
for any sublogic of CTL^{*}, logical equivalence is defined analogously

Bisimulation vs. CTL* and CTL equivalence

> Let $T S$ be a finite transition system without terminal states, and let s_{1}, s_{2} states in $T S$
> The following statements are equivalent:
> (1) $s_{1} \sim_{T S} s_{2}$
> (2) s_{1} and s_{2} are CTL-equivalent, i.e., $s_{1} \equiv_{C T L} s_{2}$ (3) s_{1} and s_{2} are CTL*-equivalent, i.e., $s_{1} \equiv_{C T L *} s_{2}$
this is proven in three steps: \equiv CTL $\subseteq \sim_{T S} \subseteq \equiv$ CTL* $\subseteq \equiv$ CTL equivalence is also obtained for any sub-logic containing \neg, \wedge and EX

