Bisimulation

Bisimulation equivalence
Let TS; = (S;, Acti, =, i, AP, L), i=1,2, be transition systems.
A bisimulation for (TSy, TS,) is a binary relation R C Sy x S,
such that:
1. Vsy € h3sz € b.(s1,52) € R and Vs, € b3sy € . (51,82) €R
2. for all states sy € Sy, 52 € S; with (51, 52) € R it holds:

21 Li(s1) = La(s2)

2.2 if s € Post(sy) then there exists s, € Post(s;) with
(s, 82) € R

2.3 if s, € Post(sy) then there exists s} € Post(sy) with
(s1.8) €R

TSi and TS; are bisimilar, denoted TS; ~ TS;, if there exists a bisimulation
for (TS, TS:)

Implementation relations

» A binary relation on transition systems

» when does a transition systems correctly implement
another?

» Important for system synthesis

» stepwise refinement of a system specification TS into an
“implementation” TS'

» Important for system analysis

» use the implementation relation as a means for abstraction
> replace TS|= ¢ by TS' |= p where | TS' | < | TS| such that:

TSE¢iff TS e or TSk = TSk

= Focus on state-based bisimulation and simulation

» logical characterization: which logical formulas are
preserved by bisimulation?

Bisimulation equivalence

sy — 8 sy — 8

R can be completed to R R

So S — s
and

S s — 8

R can be completed to R R

S — 8 S, — 8



Example (1)

{ beer} { sprite} { beer) { sprite}

R = {(s0, 1), (51, 1), (52, o), (S2. 3), (S5, ta) }

is a bisimulation for (TSy, TS,) where AP = { pay, beer, sprite }

~ is an equivalence

For any transition systems TS, TS;, TS, and TS;3 over AP:
» TS ~ TS (reflexivity)
> TSy ~ TS implies TS, ~ TSy (symmetry)
» TS; ~ TSy and TS, ~ TS; implies TSy ~ TS3 (transitivity)

Example (2)

{ beer} { sprite} { beer} { sprite}

TS # TS; for AP = { pay, beer, sprite }
But: { (S0, o), (1, U1), (81, U2), (S2, U3), (S2, Ua), (S3, Us), (S3, Ua) }
is a bisimulation for (TSy, TS;) for AP = { pay, drink }

Bisimulation on paths

Whenever we have:
S — S — S — S — S4......
R
fo

this can be completed to
S — S — S — S — S4......
R R R R R

t() — 4 — b — tg — b

proof: by induction on index i of state s;



Bisimulation vs. trace equivalence

TS) ~ TS, implies Traces(TSy) = Traces(TSy)

bisimilar transition systems thus satisfy the same LT properties!

Coarsest bisimulation

~1s IS an equivalence and the coarsest bisimulation for TS

Bisimulation on states

R C S x S'is a bisimulation on TS if for any (s, s2) € R:
> L(s1) = L(s2)
» if s} € Post(s1) then there exists an s, € Post(s,) with (s}, s5) € R
» if s, € Post(s;) then there exists an s} € Postf(s) with (s{,s;) € R

s1 and s, are bisimilar, sy ~5 S»,
if (s1,82) € R for some bisimulation R for TS

‘Sw ~7s Sp ifandonlyif TSs ~ TS,

TS; is the transition system obtained from TS by declaring s as
the initial state.

Quotient transition system

For TS = (S, Act,—, I, AP, L) and bisimulation ~7s C S x Son
TS let

TS/ ~s= (S,{7},=',I,AP, L") be the quotient of TS under ~s

where
» §=8/~r= {[s]~| s€ S} with
[S]l. = {se€S|s~s}
» —'is defined by: ﬁ
» I'={[sl. |sel}
> L'([s]) = L(s)



The Bakery algorithm

loop forever do
noncritical

n:o oyii=ya+1

P
¢ @ critical
y1:=0

Data abstraction

wi: await (2 =0V y < o) l

Py

loop forever do
noncritical
n: Y=y +1
wi: await (1 =0V y2 < y1)
c : critical

y2:=0

Function f maps a reachable state of TSz« onto an abstract one in TS‘E’Z,?(
Let s = (¢4, 02, y1 = b1, ¥ = bo) be a state of TSpa With
Lie{n,w,c}and b€ N

Then:
44
04

~

1
44
04

2,1 =0,y2=0)
L2, y1=0,y2 > 0)
2, ¥1 > 0,y2 =0)
L2,y > yo > 0)
Lo, Y2 > y1 > 0)

ifby=b=0
ifby =0and b, >0
ifby >0and b, =0
it by > b, >0
ifbp > by >0

R ={(s,f(s)) | s € S}is abisimulation for (TSpax, TSas)

for any subset of AP = { noncrit;, wait;, crit; | i = 1,2}

Example path fragment

process Py | process P, [ y1 | o | effect

ny np 0 | 0 | P;requests access to critical section
w4 no 1 | 0 | P, requests access to critical section
wy Wo 1 2 | P; enters the critical section

C Wo 1 2 | P leaves the critical section

ny Wo 0 | 2 | Py requests access to critical section
w4 Wo 3 | 2 | P enters the critical section

w4 o 3 | 2 | P, leaves the critical section

w4 no 3 | 0 | P,requests access to critical section
w4 wWo 3 | 4 | P; enters the critical section

Bisimulation quotient

() [5]

TSk = TSeak/ ~

wics
Nn=y>0

for AP = {crity, crit; }



Remarks

v

In this example, data abstraction yields a bisimulation
relation

» (typically, only a simulation relation is obtained, more later)
TS £ o with, e.g.,:

» O(=erity VvV —crit;)  and

@aowaity = OOcrity) A (OOwait, = OO crit)

> Since TS ~ TSpa, it follows TSpa = ¢
Note: Traces(TS5) = Traces(TSpax)

\{

v

Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite transition system without terminal states,
and let sy, s, statesin TS

The following statements are equivalent:
(1) s1 ~715 82

(2) sy and s, are CTL-equivalent, i.e., sy =cr. S2

(3) sy and s, are CTL -equivalent, i.e., Sy =c7+ S

thisis proveninthree steps: =cn € ~1s C =¢n- C =cn

equivalence is also obtained for any sub-logic containing -, A and EX

CTL* equivalence
States sy and s, in TS (over AP) are CTL"-equivalent:
St =cn+ Sp ifandonlyif (s1 = @ iff s = @)
for all CTL* state formulas over AP

TS, =cn- TS, ifandonlyif (TS, = o iff TS, = @)

for any sublogic of CTL*, logical equivalence is defined analogously



