Bisimulation

Implementation relations

- A binary relation on transition systems
 - when does a transition systems correctly implement another?
- Important for system synthesis
 - ► stepwise refinement of a system specification *TS* into an "implementation" *TS*'
- Important for system analysis
 - use the implementation relation as a means for abstraction
 - replace $TS \models \varphi$ by $TS' \models \varphi$ where $|TS'| \ll |TS|$ such that:

 $TS \models \varphi \text{ iff } TS' \models \varphi \text{ or } TS' \models \varphi \Rightarrow TS \models \varphi$

- ⇒ Focus on state-based bisimulation and simulation
 - logical characterization: which logical formulas are preserved by bisimulation?

Bisimulation equivalence

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be transition systems. A **bisimulation** for (TS_1, TS_2) is a **binary relation** $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- 1. $\forall s_1 \in I_1 \exists s_2 \in I_2$. $(s_1, s_2) \in \mathcal{R}$ and $\forall s_2 \in I_2 \exists s_1 \in I_1$. $(s_1, s_2) \in \mathcal{R}$
- 2. for all states $s_1 \in S_1$, $s_2 \in S_2$ with $(s_1, s_2) \in \mathcal{R}$ it holds:

2.1 $L_1(s_1) = L_2(s_2)$

- 2.2 if $s_1' \in \textit{Post}(s_1)$ then there exists $s_2' \in \textit{Post}(s_2)$ with $(s_1', s_2') \in \mathcal{R}$
- 2.3 if $s_2' \in \textit{Post}(s_2)$ then there exists $s_1' \in \textit{Post}(s_1)$ with $(s_1', s_2') \in \mathcal{R}$

 TS_1 and TS_2 are bisimilar, denoted $TS_1 \sim TS_2,$ if there exists a bisimulation for (TS_1, TS_2)

Bisimulation equivalence

	s_1	\rightarrow	s'_1		s_1	\rightarrow	s'_1
	\mathcal{R}			can be completed to	\mathcal{R}		\mathcal{R}
	s ₂				s ₂	\rightarrow	<i>s</i> ₂ '
and							
	s 1				s 1	\rightarrow	<i>s</i> ' ₁
	\mathcal{R}			can be completed to	\mathcal{R}		\mathcal{R}
	s 2	\rightarrow	s_2'		<i>s</i> ₂	\rightarrow	s_2'

Example (1)

 $\mathcal{R} = \{(s_0, t_0), (s_1, t_1), (s_2, t_2), (s_2, t_3), (s_3, t_4)\}$ is a bisimulation for (*TS*₁, *TS*₂) where *AP* = { *pay*, *beer*, *sprite* }

Example (2)

$$\begin{split} & TS_1 \not\sim TS_3 \text{ for } AP = \{ \textit{pay, beer, sprite} \} \\ & \text{But: } \{ (s_0, u_0), (s_1, u_1), (s_1, u_2), (s_2, u_3), (s_2, u_4), (s_3, u_3), (s_3, u_4) \} \\ & \text{ is a bisimulation for } (TS_1, TS_3) \text{ for } AP = \{ \textit{pay, drink} \} \end{split}$$

 \sim is an equivalence

For any transition systems TS, TS_1 , TS_2 and TS_3 over AP:

- ► *TS* ~ *TS* (reflexivity)
- $TS_1 \sim TS_2$ implies $TS_2 \sim TS_1$ (symmetry)
- $TS_1 \sim TS_2$ and $TS_2 \sim TS_3$ implies $TS_1 \sim TS_3$ (transitivity)

Bisimulation on paths

Whenever we have:

 $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \dots$

proof: by induction on index i of state s_i

Bisimulation vs. trace equivalence

 $TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$

bisimilar transition systems thus satisfy the same LT properties!

Bisimulation on states

 $\mathcal{R} \subseteq S \times S$ is a **bisimulation** on *TS* if for any $(s_1, s_2) \in \mathcal{R}$:

- $\blacktriangleright L(s_1) = L(s_2)$
- ▶ if $s'_1 \in \textit{Post}(s_1)$ then there exists an $s'_2 \in \textit{Post}(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$
- ▶ if $s'_2 \in Post(s_2)$ then there exists an $s'_1 \in Post(s_1)$ with $(s'_1, s'_2) \in \mathcal{R}$

 s_1 and s_2 are **bisimilar**, $s_1 \sim_{_{TS}} s_2$, if $(s_1, s_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

$s_1 \sim_{TS} s_2$ if and only if $TS_{s_1} \sim TS_{s_2}$

 TS_s is the transition system obtained from TS by declaring s as the initial state.

Coarsest bisimulation

 $\sim_{ au s}$ is an equivalence and the coarsest bisimulation for *TS*

Quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and bisimulation $\sim_{TS} \subseteq S \times S$ on TS let

 $TS/\sim_{TS} = (S', \{\tau\}, \rightarrow', I', AP, L')$ be the **quotient** of TS under \sim_{TS}

where

$$S' = S/\sim_{TS} = \{ [s]_{\sim} \mid s \in S \} \text{ with} \\ [s]_{\sim} = \{ s' \in S \mid s \sim_{TS} s' \} \\ \rightarrow \text{' is defined by:} \qquad \frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\tau} [s']_{\sim}} \\ \downarrow I' = \{ [s]_{\sim} \mid s \in I \} \\ \vdash L'([s]_{\sim}) = L(s) \end{cases}$$

The Bakery algorithm

Example path fragment

process P ₁	process P ₂	<i>Y</i> 1	y ₂	effect
<i>n</i> ₁	<i>n</i> ₂	0	0	P ₁ requests access to critical section
<i>w</i> ₁	<i>n</i> ₂	1	0	P2 requests access to critical section
<i>w</i> ₁	<i>W</i> ₂	1	2	P ₁ enters the critical section
C1	W ₂	1	2	P1 leaves the critical section
<i>n</i> ₁	W 2	0	2	P1 requests access to critical section
<i>w</i> ₁	W 2	3	2	P2 enters the critical section
<i>w</i> ₁	<i>C</i> ₂	3	2	P ₂ leaves the critical section
<i>w</i> ₁	<i>n</i> ₂	3	0	P2 requests access to critical section
<i>w</i> ₁	<i>w</i> ₂	3	4	P ₁ enters the critical section

Data abstraction

Function f maps a reachable state of TS_{Bak} onto an abstract one in TS_{Bak}^{abs} Let $s = \langle \ell_1, \ell_2, y_1 = b_1, y_2 = b_2 \rangle$ be a state of TS_{Bak} with $\ell_i \in \{ n_i, w_i, c_i \}$ and $b_i \in \mathbb{N}$ Then: $f(s) = \begin{cases} \langle \ell_1, \ell_2, y_1 = 0, y_2 = 0 \rangle & \text{if } b_1 = b_2 = 0 \\ \langle \ell_1, \ell_2, y_1 = 0, y_2 > 0 \rangle & \text{if } b_1 = 0 \text{ and } b_2 > 0 \\ \langle \ell_1, \ell_2, y_1 > 0, y_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \\ \langle \ell_1, \ell_2, y_1 > 0, y_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \end{cases}$

 $\langle \ell_1, \ell_2, y_2 > y_1 > 0 \rangle$ if $b_2 > b_1 > 0$

 $\mathcal{R} = \{ (s, f(s)) \mid s \in S \}$ is a bisimulation for $(TS_{Bak}, TS_{Bak}^{abs})$

for any subset of $AP = \{ noncrit_i, wait_i, crit_i \mid i = 1, 2 \}$

Bisimulation quotient

 $TS^{abs}_{Bak} = TS_{Bak} / \sim \text{ for } AP = \{ \textit{crit}_1, \textit{crit}_2 \}$

Remarks

- In this example, data abstraction yields a bisimulation relation
 - (typically, only a simulation relation is obtained, more later)
- $TS_{Bak}^{abs} \models \varphi$ with, e.g.,:
 - $\vdash \Box(\neg crit_1 \lor \neg crit_2) \text{ and } \\ (\Box \diamondsuit wait_1 \Rightarrow \Box \diamondsuit crit_1) \land (\Box \diamondsuit wait_2 \Rightarrow \Box \diamondsuit crit_2) \end{cases}$
- Since $TS_{Bak}^{abs} \sim TS_{Bak}$, it follows $TS_{Bak} \models \varphi$
- ► Note: $Traces(TS_{Bak}^{abs}) = Traces(TS_{Bak})$

CTL* equivalence

States s_1 and s_2 in *TS* (over *AP*) are CTL^{*}-equivalent:

 $s_1 \equiv_{CTL^*} s_2$ if and only if $(s_1 \models \Phi \text{ iff } s_2 \models \Phi)$

for all CTL* state formulas over AP

 $TS_1 \equiv_{CTL^*} TS_2$ if and only if $(TS_1 \models \Phi \text{ iff } TS_2 \models \Phi)$

for any sublogic of CTL*, logical equivalence is defined analogously

Bisimulation vs. CTL* and CTL equivalence

Let *TS* be a finite transition system without terminal states, and let s_1 , s_2 states in *TS* The following statements are equivalent: (1) $s_1 \sim_{TS} s_2$ (2) s_1 and s_2 are CTL-equivalent, i.e., $s_1 \equiv_{CTL} s_2$ (3) s_1 and s_2 are CTL*-equivalent, i.e., $s_1 \equiv_{CTL} s_2$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim_{TS} \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$ equivalence is also obtained for any sub-logic containing \neg , \land and EX