
Bisimulation

Implementation relations

! A binary relation on transition systems
! when does a transition systems correctly implement

another?

! Important for system synthesis
! stepwise refinement of a system specification TS into an

“implementation” TS′

! Important for system analysis
! use the implementation relation as a means for abstraction
! replace TS |= ϕ by TS′ |= ϕ where |TS′ | << |TS | such that:

TS |= ϕ iff TS′ |= ϕ or TS′ |= ϕ ⇒ TS |= ϕ

⇒ Focus on state-based bisimulation and simulation
! logical characterization: which logical formulas are

preserved by bisimulation?

Bisimulation equivalence
Let TSi = (Si ,Acti ,→i , Ii ,AP,Li), i=1,2, be transition systems.
A bisimulation for (TS1,TS2) is a binary relation R ⊆ S1 × S2

such that:

1. ∀s1 ∈ I1 ∃s2 ∈ I2. (s1, s2) ∈ R and ∀s2 ∈ I2 ∃s1 ∈ I1. (s1, s2) ∈ R

2. for all states s1 ∈ S1, s2 ∈ S2 with (s1, s2) ∈ R it holds:

2.1 L1(s1) = L2(s2)

2.2 if s′
1 ∈ Post(s1) then there exists s′

2 ∈ Post(s2) with
(s′

1, s
′
2) ∈ R

2.3 if s′
2 ∈ Post(s2) then there exists s′

1 ∈ Post(s1) with
(s′

1, s
′
2) ∈ R

TS1 and TS2 are bisimilar, denoted TS1 ∼ TS2, if there exists a bisimulation

for (TS1,TS2)

Bisimulation equivalence

s1 −→ s′

1 s1 −→ s′

1

R can be completed to R R

s2 s2 −→ s′

2

and

s1 s1 −→ s′

1

R can be completed to R R

s2 −→ s′

2 s2 −→ s′

2



Example (1)

s0

s1

s2 s3

t0

t1

t2

t4t3

{ pay } { pay }

∅ ∅

{ beer} { sprite} { beer } { sprite }

{ beer}

R =
{

(s0, t0), (s1, t1), (s2, t2), (s2, t3), (s3, t4)
}

is a bisimulation for (TS1,TS2) where AP = { pay, beer, sprite }

Example (2)

s0

s1

s2 s3

u0

u1

u4u3

{ pay } { pay }

∅ ∅

{ beer} { sprite} { beer} { sprite }

∅u2

TS1 ̸∼ TS3 for AP = { pay, beer, sprite }

But: { (s0, u0), (s1, u1), (s1, u2), (s2, u3), (s2, u4), (s3, u3), (s3, u4) }

is a bisimulation for (TS1,TS3) for AP = { pay, drink }

∼ is an equivalence

For any transition systems TS,TS1,TS2 and TS3 over AP:

! TS ∼ TS (reflexivity)

! TS1 ∼ TS2 implies TS2 ∼ TS1 (symmetry)

! TS1 ∼ TS2 and TS2 ∼ TS3 implies TS1 ∼ TS3 (transitivity)

Bisimulation on paths

Whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4 . . . . . .

R

t0

this can be completed to

s0 −→ s1 −→ s2 −→ s3 −→ s4 . . . . . .

R R R R R

t0 −→ t1 −→ t2 −→ t3 −→ t4 . . . . . .

proof: by induction on index i of state si



Bisimulation vs. trace equivalence

TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)

bisimilar transition systems thus satisfy the same LT properties!

Bisimulation on states

R ⊆ S × S is a bisimulation on TS if for any (s1, s2) ∈ R:

! L(s1) = L(s2)

! if s′
1 ∈ Post(s1) then there exists an s′

2 ∈ Post(s2) with (s′
1, s

′
2) ∈ R

! if s′
2 ∈ Post(s2) then there exists an s′

1 ∈ Post(s1) with (s′
1, s

′
2) ∈ R

s1 and s2 are bisimilar, s1 ∼TS s2,
if (s1, s2) ∈ R for some bisimulation R for TS

s1 ∼TS s2 if and only if TSs1
∼ TSs2

TSs is the transition system obtained from TS by declaring s as
the initial state.

Coarsest bisimulation

∼TS is an equivalence and the coarsest bisimulation for TS

Quotient transition system

For TS = (S,Act,→, I,AP,L) and bisimulation ∼TS ⊆ S × S on
TS let

TS/∼TS = (S′, { τ },→′, I′,AP,L′) be the quotient of TS under ∼TS

where

! S′ = S/∼TS = { [s]∼ | s ∈ S } with
[s]∼ = { s′ ∈ S | s ∼TS s′ }

! →′ is defined by:
s α−−→ s′

[s]∼
τ−→′ [s′]∼

! I′ = { [s]∼ | s ∈ I }

! L′([s]∼) = L(s)



The Bakery algorithm

P1 ::

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

loop forever do
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

noncritical

n1 : y1 := y2 + 1

w1 : await (y2 = 0 ∨ y1 < y2 )

c1 : critical

y1 := 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|| P2 ::

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

loop forever do
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

noncritical

n1 : y2 := y1 + 1

w1 : await (y1 = 0 ∨ y2 < y1 )

c1 : critical

y2 := 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Example path fragment

process P1 process P2 y1 y2 effect

n1 n2 0 0 P1 requests access to critical section
w1 n2 1 0 P2 requests access to critical section
w1 w2 1 2 P1 enters the critical section
c1 w2 1 2 P1 leaves the critical section
n1 w2 0 2 P1 requests access to critical section
w1 w2 3 2 P2 enters the critical section
w1 c2 3 2 P2 leaves the critical section
w1 n2 3 0 P2 requests access to critical section
w1 w2 3 4 P1 enters the critical section
. . . . . . .. .. . . .

Data abstraction

Function f maps a reachable state of TSBak onto an abstract one in TSabs
Bak

Let s = ⟨ℓ1, ℓ2, y1 = b1, y2 = b2⟩ be a state of TSBak with
ℓi ∈ { ni ,wi , ci } and bi ∈ IN

Then:

f (s) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⟨ℓ1, ℓ2, y1 = 0, y2 = 0⟩ if b1 = b2 = 0

⟨ℓ1, ℓ2, y1 = 0, y2 > 0⟩ if b1 = 0 and b2 > 0

⟨ℓ1, ℓ2, y1 > 0, y2 = 0⟩ if b1 > 0 and b2 = 0

⟨ℓ1, ℓ2, y1 > y2 > 0⟩ if b1 > b2 > 0

⟨ℓ1, ℓ2, y2 > y1 > 0⟩ if b2 > b1 > 0

R = { (s, f (s)) | s ∈ S } is a bisimulation for (TSBak ,TSabs
Bak )

for any subset of AP = { noncriti ,waiti , criti | i = 1, 2 }

Bisimulation quotient

n1 n2

y1 = 0
y2 = 0

n1 w2

y1 = 0
y2 > 0

w1 n2

y1 > 0
y2 = 0

n1 c2

y1 = 0
y2 > 0

c1 n2

y1 > 0
y2 = 0

w1 w2

y1 > y2 > 0
w1 w2

y2 > y1 > 0

c1 w2

y2 > y1 > 0
w1 c2

y1 > y2 > 0

TSabs
Bak = TSBak/ ∼ for AP = { crit1, crit2 }



Remarks

! In this example, data abstraction yields a bisimulation
relation

! (typically, only a simulation relation is obtained, more later)

! TSabs
Bak |= ϕ with, e.g.,:
! (¬crit1 ∨ ¬crit2) and

(wait1 ⇒ crit1) ∧ (wait2 ⇒ crit2)

! Since TSabs
Bak ∼ TSBak , it follows TSBak |= ϕ

! Note: Traces(TSabs
Bak ) = Traces(TSBak )

CTL∗ equivalence

States s1 and s2 in TS (over AP) are CTL∗-equivalent:

s1 ≡CTL∗ s2 if and only if (s1 |= Φ iff s2 |= Φ)

for all CTL∗ state formulas over AP

TS1 ≡CTL∗ TS2 if and only if (TS1 |= Φ iff TS2 |= Φ)

for any sublogic of CTL∗, logical equivalence is defined analogously

Bisimulation vs. CTL∗ and CTL equivalence

Let TS be a finite transition system without terminal states,
and let s1, s2 states in TS

The following statements are equivalent:

(1) s1 ∼TS s2

(2) s1 and s2 are CTL-equivalent, i.e., s1 ≡CTL s2

(3) s1 and s2 are CTL∗-equivalent, i.e., s1 ≡CTL∗ s2

this is proven in three steps: ≡CTL ⊆ ∼TS ⊆ ≡CTL∗ ⊆ ≡CTL

equivalence is also obtained for any sub-logic containing ¬, ∧ and EX


