

 $\equiv_{c\pi} \subseteq \sim_{\tau s}$

Let TS be a finite transition system without terminal states, and let s_1 , s_2 be states in TS:

 $s_1 \equiv_{CTL} s_2$ implies $s_1 \sim_{TS} s_2$.

Proof: We show that $\mathcal{R} = \{(s_1, s_2) \mid s_1 \equiv_{CTL} s_2\}$ is a bisimulation on TS.

• For any $(s_1, s_2) \in \mathcal{R}$, $L(s_1) = L(s_2)$. Consider the following CTL state formula Φ over *AP*:

 $\Phi = \bigwedge_{a \in L(s_1)} a \land \bigwedge_{a \in AP \setminus L(s_1)} \neg a$

Since $s_1 \models \Phi$ and $s_1 \equiv_{CTL} s_2$, it follows that $s_2 \models \Phi$. Hence, $L(s_2) = L(s_1).$

 $\equiv_{c\pi} \subset \sim_{\tau s}$ (continued)

- if $s'_1 \in Post(s_1)$ then there exists an $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$
 - Let $[s'_1]$ be the equivalence class of s_1 with respect to \mathcal{R} . We construct a CTL-formula $\Phi_{[s'_i]}$ with $Sat(\Phi_{[s'_i]}) = [s'_i]$. For any pair of equivalence classes $(C, D) \in S/\mathcal{R}$, let $\Phi_{C,D}$ be a CTL-formula such that $C \subseteq Sat(\Phi_{C,D})$ and $D \cap Sat(\Phi_{C,D}) = \emptyset$. Then $\Phi_{[s'_1]} = \bigwedge_{D \in S/\mathcal{R}, D \neq [s']} \Phi_{[s'_1], D}$. Since $s'_1 \in Post(s_1)$, we have $s_1 \models \mathsf{EX} \Phi_{[s'_1]}$.

 - Since $s_1 \equiv_{CTL} s_2$, we get $s_2 \models \mathsf{EX} \Phi_{[s'_1]}$. Thus, there is a state $s'_2 \in Post(s_2)$ with $s'_2 \models \Phi_{[s'_1]}$.
 - ▶ Hence, $s'_2 \in [s'_1]$, and therefore $(s'_1, s'_2) \in \overline{\mathcal{R}}$.
- if $s'_2 \in Post(s_2)$ then there exists an $s'_1 \in Post(s_1)$ with $(s'_1, s'_2) \in \mathcal{R}$ analogous (\mathcal{R} is an equivalence relation).

 $\sim_{\tau s} \subset \equiv_{c\pi^*}$

Let TS be a transition system without terminal states, let s_1 , s_2 be states in *TS*, and π_1 , π_2 be infinite path fragments in *TS*:

(a) If $s_1 \sim_{TS} s_2$, then for any CTL* state formula Φ : $s_1 \models \Phi$ iff $s_2 \models \Phi$ (b) If $\pi_1 \sim_{TS} \pi_2$, then for any CTL* path formula φ : $\pi_1 \models \varphi$ iff $\pi_2 \models \varphi$

Proof: By **induction** over the structure of the formula.

• $\Phi = a \in AP$:

 $s_1 \models a$ iff $a \in L(s_1)$ iff $a \in L(s_2)$ iff $s_2 \models a$

 $\blacktriangleright \Phi = \neg \Psi$:

 $s_1 \models \neg \Phi$ iff $s_1 \not\models \Phi$ iff $s_2 \not\models \Phi$ iff $s_2 \models \neg \Phi$

....

$\sim_{\tau s} \subseteq \equiv_{c \tau L^*}$ (continued)

- $\Phi = \mathsf{E} \varphi$:
 - Assume s₁ ⊨ E φ. Then there exists path π starting in s₁ that satisfies φ.
 - Then there exists a path π_2 starting in s_2 such that $\pi_1 \sim_{\tau S} \pi_2$.
 - From the induction hypothesis, it follows that π₂ ⊨ φ, and therefore s₂ ⊨ E φ

• $\varphi = X \psi$:

$$\pi_1 \models \mathsf{X} \psi$$
 iff $\pi_1[1..] \models \psi$ iff $\pi_2[1..] \models \psi$ iff $\pi_2 \models \mathsf{X} \psi$

►

The importance of this result

- CTL and CTL* equivalence coincide
- despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
 - and thus the same LTL formulas
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
 - ► $TS_1 \models \Phi$ and $TS_2 \not\models \Phi$ implies $TS_1 \not\sim TS_2$
- > You even do not need to use an until-operator!
- ► To check $TS \models \Phi$, it suffices to check $TS / \sim \models \Phi$

Computing bisimulation quotients

- ► A partition $\Pi = \{B_1, ..., B_k\}$ of *S* is a set of nonempty $(B_i \neq \emptyset)$ and pairwise disjoint blocks B_i that decompose *S* $(S = \bigcup_{i=1,...,k} B_i)$.
- ► A partition Π defines an equivalence relation ~ $((q, q') \in \sim \Leftrightarrow \exists B_i \in \Pi, q, q' \in B_i).$
- Likewise, an equivalence relation \sim defines a partition $\Pi = S/\sim$.
- A nonempty union $C = \biguplus_{i \in I} B_i$ of blocks is called a superblock.
- ► A block B_i of a partition Π is called **stable** w.r.t. a set B if either $B_i \cap Pre(B) = \emptyset$, or $B_i \subseteq Pre(B)$. $(Pre(B) = \{q \in S \mid Post(q) \cap B \neq \emptyset\})$
- A partition Π is called stable w.r.t. a set B if all blocks of Π are stable w.r.t. B.

Computing bisimulation quotients

Stable partitions and bisimulation

Lemma 1. A partition Π with consistently labeled blocks is stable with respect to all of its (super)blocks iff it defines a bisimulation relation.

"⇒"

- Let $s_1 \sim s_2$, and $B = [s_1]_{\Pi} = [s_2]_{\Pi}$.
- Let $s'_1 \in Post(s_1)$ and $C = [s'_1]_{\Pi}$.
- Since $s_1 \in B \cap Pre(C)$, $B \subseteq Pre(C)$.
- ▶ Hence, $s_2 \in Pre(C)$.
- Hence, there is a state $s'_2 \in Post(s_2) \cap C$.
- Since $s'_2 \in C$, $s'_2 \sim s'_1$.

Stable partitions and bisimulation (cont'd)

Lemma 1. A partition Π with consistently labeled blocks is stable with respect to all of its (super)blocks iff it defines a bisimulation relation.

"⇐"

- Let B, C be blocks of Π .
- We assume that $B \cap Pre(C) \neq \emptyset$ and show that $B \subseteq Pre(C)$.
- ▶ Since $B \cap Pre(C) \neq \emptyset$ there exists a state $s_1 \in B$ and a state $s'_1 \in Post(s_1) \cap C$.
- Let s_2 be an arbitrary state in *B*. We show that $s_2 \in Pre(C)$.
- \blacktriangleright Since \sim is a bisimulation, there exists a transition $s_2 \to s_2'$ such that $s_2' \in {\it C}.$
- ▶ Hence, *s*₂ ∈ *Pre*(*C*).

Partition refinement

For two partitions $\Pi = \{B_1, \dots, B_k\}$ and $\Pi' = \{B'_1, \dots, B'_j\}$ of *S*, we say that Π is finer than Π' iff every block of Π' is a superblock of Π .

For a given partition $\Pi = \{B_1, \dots, B_k\}$, we call a (super)block *C* of Π a **splitter** of a block B_i / the partition Π if B_i / Π is not stable w.r.t. *C*.

Refine(B_i , C) denotes { B_i } if B_i is **stable** w.r.t. C, and { $B_i \cap Pre(C), B_i \smallsetminus Pre(C)$ } if C is a **splitter** of B_i . Refine(Π, C) = $\bigcup_{i=1,...,k}$ Refine(B_i, C).

Lemma 2. Refine(Π , *C*) is finer than Π .

An algorithm for bisimulation quotienting

Input: Transition system $(S, Act, \rightarrow, I, AP, L)$ **Output:** Bisimulation quotient

```
1. \Pi = S/\sim_{AP} (q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')
```

2. while some block $B \in \Pi$ is a splitter of Π loop invariant: Π is coarser than S/\sim_{TS} 2.1 pick a block B that is a splitter of Π 2.2 Π = Refine(Π, B)

Example

Example

Example

ാ

Example

Example

റ്

Correctness and termination

Theorem. The algorithm returns the quotient S/\sim_{TS} of the coarsest bisimulation \sim_{TS} .