
Bisimulation vs. CTL∗ and CTL equivalence

Let TS be a finite transition system without terminal states,
and let s1, s2 states in TS

The following statements are equivalent:

(1) s1 ∼TS s2

(2) s1 and s2 are CTL-equivalent, i.e., s1 ≡CTL s2

(3) s1 and s2 are CTL∗-equivalent, i.e., s1 ≡CTL∗ s2

this is proven in three steps: ≡CTL ⊆ ∼TS ⊆ ≡CTL∗ ⊆ ≡CTL

equivalence is also obtained for any sub-logic containing ¬, ∧ and EX

Lecture 13

≡CTL ⊆ ∼TS

Let TS be a finite transition system without terminal states,
and let s1, s2 be states in TS:

s1 ≡CTL s2 implies s1 ∼TS s2.

Proof: We show that R = {(s1, s2) | s1 ≡CTL s2} is a
bisimulation on TS.

! For any (s1, s2) ∈ R, L(s1) = L(s2).
Consider the following CTL state formula Φ over AP:

Φ =
∧

a∈L(s1)

a ∧
∧

a∈AP\L(s1)

¬a

Since s1 |= Φ and s1 ≡CTL s2, it follows that s2 |= Φ. Hence,
L(s2) = L(s1).

≡CTL ⊆ ∼TS (continued)

! if s′
1 ∈ Post(s1) then there exists an s′

2 ∈ Post(s2) with (s′
1, s

′
2) ∈ R

! Let [s′
1] be the equivalence class of s1 with respect to R.

We construct a CTL-formula Φ[s′

1]
with Sat(Φ[s′

1]
) = [s′

1].
For any pair of equivalence classes (C,D) ∈ S/R,
let ΦC,D be a CTL-formula such that
C ⊆ Sat(ΦC,D) and D ∩ Sat(ΦC,D) = ∅.
Then Φ[s′

1]
=

∧
D∈S/R,D ̸=[s′] Φ[s′

1],D
.

! Since s′
1 ∈ Post(s1), we have s1 |= EXΦ[s′

1]
.

! Since s1 ≡CTL s2, we get s2 |= EXΦ[s′

1]
.

! Thus, there is a state s′
2 ∈ Post(s2) with s′

2 |= Φ[s′

1]
.

! Hence, s′
2 ∈ [s′

1], and therefore (s′
1, s

′
2) ∈ R.

! if s′
2 ∈ Post(s2) then there exists an s′

1 ∈ Post(s1) with (s′
1, s

′
2) ∈ R

analogous (R is an equivalence relation).

∼TS⊆≡CTL∗

Let TS be a transition system without terminal states,
let s1, s2 be states in TS, and π1,π2 be infinite path fragments in TS:

(a) If s1∼TSs2, then for any CTL∗ state formula Φ: s1 |= Φ iff s2 |= Φ
(b) If π1∼TSπ2, then for any CTL∗ path formula ϕ: π1 |= ϕ iff π2 |= ϕ

Proof: By induction over the structure of the formula.

! Φ = a ∈ AP:

s1 |= a iff a ∈ L(s1) iff a ∈ L(s2) iff s2 |= a

! Φ = ¬Ψ:

s1 |= ¬Φ iff s1 ̸|= Φ iff s2 ̸|= Φ iff s2 |= ¬Φ

! . . .

∼TS⊆≡CTL∗ (continued)

! Φ = Eϕ:

! Assume s1 |= Eϕ. Then there exists path π starting in s1

that satisfies ϕ.
! Then there exists a path π2 starting in s2 such that π1∼TSπ2.
! From the induction hypothesis, it follows that π2 |= ϕ, and

therefore s2 |= Eϕ

! ϕ = X ψ:

π1 |= X ψ iff π1[1..] |= ψ iff π2[1..] |= ψ iff π2 |= X ψ

! . . .

The importance of this result

! CTL and CTL∗ equivalence coincide
! despite the fact that CTL∗ is more expressive than CTL

! Bisimilar transition systems preserve the same CTL∗

formulas
! and thus the same LTL formulas

! Non-bisimilarity can be shown by a single CTL (or CTL∗)
formula

! TS1 |= Φ and TS2 ̸|= Φ implies TS1 ̸∼ TS2

! You even do not need to use an until-operator!

! To check TS |= Φ, it suffices to check TS/∼|= Φ

Computing bisimulation quotients

Computing bisimulation quotients

! A partition Π = {B1, . . . ,Bk} of S is a set of nonempty
(Bi ̸= ∅) and pairwise disjoint blocks Bi that decompose S
(S =

⊎
i=1,...k Bi).

! A partition Π defines an equivalence relation ∼
((q,q′)∈ ∼⇔ ∃Bi ∈ Π.q,q′ ∈ Bi).

! Likewise, an equivalence relation ∼ defines a partition
Π = S/∼.

! A nonempty union C =
⊎

i∈I Bi of blocks is called a
superblock.

! A block Bi of a partition Π is called stable w.r.t. a set B if
either Bi ∩ Pre(B) = ∅, or Bi ⊆ Pre(B).

(Pre(B) = {q ∈ S | Post(q) ∩ B ̸= ∅})

! A partition Π is called stable w.r.t. a set B if all blocks of Π
are stable w.r.t. B.

Stable partitions and bisimulation

Lemma 1. A partition Π with consistently labeled blocks
is stable with respect to all of its (super)blocks
iff it defines a bisimulation relation.

“⇒”

! Let s1 ∼ s2, and B = [s1]Π = [s2]Π.

! Let s′
1 ∈ Post(s1) and C = [s′

1]Π.

! Since s1 ∈ B ∩ Pre(C), B ⊆ Pre(C).

! Hence, s2 ∈ Pre(C).

! Hence, there is a state s′
2 ∈ Post(s2) ∩ C.

! Since s′
2 ∈ C, s′

2 ∼ s′
1.

Stable partitions and bisimulation (cont’d)

Lemma 1. A partition Π with consistently labeled blocks
is stable with respect to all of its (super)blocks
iff it defines a bisimulation relation.

“⇐”

! Let B,C be blocks of Π.

! We assume that B ∩ Pre(C) ̸= ∅ and show that
B ⊆ Pre(C).

! Since B ∩ Pre(C) ̸= ∅ there exists a state s1 ∈ B and a
state s′

1 ∈ Post(s1) ∩ C.

! Let s2 be an arbitrary state in B. We show that
s2 ∈ Pre(C).

! Since ∼ is a bisimulation, there exists a transition s2 → s′
2

such that s′
2 ∈ C.

! Hence, s2 ∈ Pre(C).

Partition refinement

For two partitions Π = {B1, . . . ,Bk} and Π′ = {B′
1, . . . ,B

′
j} of S,

we say that Π is finer than Π′ iff every block of Π′ is a
superblock of Π.

For a given partition Π = {B1, . . . ,Bk}, we call a (super)block C
of Π a splitter of a block Bi / the partition Π if Bi / Π is not stable
w.r.t. C.

Refine(Bi ,C) denotes {Bi} if Bi is stable w.r.t. C, and
{Bi ∩ Pre(C),Bi ! Pre(C)} if C is a splitter of Bi .

Refine(Π,C) =
⊎

i=1,...,kRefine(Bi ,C).

Lemma 2. Refine(Π,C) is finer than Π.

An algorithm for bisimulation quotienting

Input: Transition system (S,Act,→, I,AP,L)
Output: Bisimulation quotient

1. Π = S/∼AP (q,q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π
loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π
2.2 Π = Refine(Π,B)

3. return Π

Example
1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π
2.2 Π = Refine(Π,B)

3. return Π

Example
1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π
2.2 Π = Refine(Π,B)

3. return Π

Example
1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π
2.2 Π = Refine(Π,B)

3. return Π

Example
1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π
2.2 Π = Refine(Π,B)

3. return Π

Example
1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π
2.2 Π = Refine(Π,B)

3. return Π

Correctness and termination

1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π
2.2 Π = Refine(Π,B)

3. return Π

Lemma 3. The algorithm terminates.
Lemma 4. The loop invariant holds initially.
Lemma 5. The loop invariant is preserved.

Theorem. The algorithm returns the quotient S/∼TS of the
coarsest bisimulation ∼TS.

