Bisimulation vs. CTL* and CTL equivalence

$$
\begin{aligned}
& \text { Let } T S \text { be a finite transition system without terminal states, } \\
& \text { and let } s_{1}, s_{2} \text { states in } T S \\
& \text { The following statements are equivalent: } \\
& \text { (1) } s_{1} \sim_{T S} s_{2} \\
& \text { (2) } s_{1} \text { and } s_{2} \text { are CTL-equivalent, i.e., } s_{1} \equiv \equiv_{C L} s_{2} \\
& \text { (3) } s_{1} \text { and } s_{2} \text { are CTL*-equivalent, i.e., } s_{1} \equiv c \pi L^{*} s_{2}
\end{aligned}
$$

this is proven in three steps: $\equiv C T L \subseteq \sim_{T S} \subseteq \equiv C T L^{*} \subseteq \equiv C T L$ equivalence is also obtained for any sub-logic containing \neg, \wedge and EX

$\equiv_{c T L} \subseteq \sim_{T S}$ (continued)

- if $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ then there exists an $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in R$

Let $\left[s_{1}^{\prime}\right]$ be the equivalence class of s_{1} with respect to \mathcal{R}
We construct a CTL-formula $\phi_{\text {s }}$, with Sat $\left(\phi_{\left[s^{\prime}, 1\right.}\right)=\left[s_{1}^{\prime}\right]$.
For any pair of equivalence classes $(C, D) \in S / \mathcal{R}$,
let $\Phi_{C, D}$ be a CTL-formula such that
$C \subseteq \operatorname{Sat}\left(\Phi_{C, D}\right)$ and $D \cap \operatorname{Sat}\left(\Phi_{C, D}\right)=\emptyset$.
Then $\Phi_{\left[s_{1}^{\prime}\right]}=\bigwedge_{D \in S / R}, D \neq\left[s^{\prime}\right] \Phi_{\left[s_{1}^{\prime} 1\right], D}$.
Since $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$, we have $s_{1} \models E X \Phi_{\left[s_{1}^{\prime}\right]}$
Since $s_{1} \equiv$ ctı s_{2}, we get $s_{2} \models E X \Phi_{\left[s^{\prime}\right]}$
Thus, there is a state $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $s_{2}^{\prime} \models \Phi_{\left[s_{1}^{\prime}\right]}$.
Hence, $s_{2}^{\prime} \in\left[s_{1}^{\prime}\right]$, and therefore $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$.

- if $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ then there exists an $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$ analogous (\mathcal{R} is an equivalence relation).

$\equiv_{C T L} \subseteq \sim_{T S}$

> Let $T S$ be a finite transition system without terminal states, and let s_{1}, s_{2} be states in $T S$: $$
s_{1} \equiv_{C T L} s_{2} \text { implies } s_{1} \sim_{T S} s_{2} .
$$

Proof: We show that $\mathcal{R}=\left\{\left(s_{1}, s_{2}\right) \mid s_{1} \equiv_{c \text { cTL }} s_{2}\right\}$ is a bisimulation on $T S$.

- For any $\left(s_{1}, s_{2}\right) \in \mathcal{R}, L\left(s_{1}\right)=L\left(s_{2}\right)$.

Consider the following CTL state formula Φ over $A P$.

$$
\Phi=\bigwedge_{a \in L\left(s_{1}\right)} a \wedge \bigwedge_{a \in A P \backslash L\left(s_{1}\right)} \neg a
$$

since $s_{1} \models \Phi$ and $s_{1} \equiv_{c T L} s_{2}$, it follows that $s_{2} \models \Phi$. Hence, $L\left(s_{2}\right)=L\left(s_{1}\right)$.

Let TS be a transition system without terminal states,
let s_{1}, s_{2} be states in $T S$, and π_{1}, π_{2} be infinite path fragments in $T S$
(a) If $s_{1} \sim_{T s} s_{2}$, then for any CTL* state formula $\phi: s_{1} \models \Phi$ iff $s_{2} \models \Phi$ (b) If $\pi_{1} \sim_{T s} \pi_{2}$, then for any CTL* path formula $\varphi: \pi_{1} \models \varphi$ iff $\pi_{2} \models \varphi$

Proof: By induction over the structure of the formula.
$\Phi=a \in A P:$

$$
s_{1} \models a \quad \text { iff } \quad a \in L\left(s_{1}\right) \quad \text { iff } \quad a \in L\left(s_{2}\right) \quad \text { iff } \quad s_{2} \models a
$$

$\phi=\neg \psi$:
$\sim_{T s} \subseteq \equiv_{c \pi^{*}}$ (continued)

- $\Phi=\mathrm{E} \varphi$:
- Assume $s_{1} \models \mathrm{E} \varphi$. Then there exists path π starting in s_{1} Assume $s_{1}=$
that satisfies
Then there exists a path π_{2} starting in s_{2} such that $\pi_{1} \sim_{T S} \pi_{2}$
From the induction hypothesis, it follows that $\pi_{2} \models \varphi$, and therefore $s_{2} \models \mathrm{E} \varphi$
- $\varphi=\mathrm{X} \psi$:
$\pi_{1} \models \mathrm{X} \psi \quad$ iff $\quad \pi_{1}[1 ..] \models \psi \quad$ iff $\quad \pi_{2}[1 ..] \models \psi \quad$ iff $\quad \pi_{2} \models \mathrm{X} \psi$
-.

The importance of this result

CTL and CTL* equivalence coincide

- despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
- and thus the same LTL formulas
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
- $T S_{1} \models \Phi$ and $T S_{2} \not \models \Phi$ implies $T S_{1} \nsim T S_{2}$
- You even do not need to use an until-operator!
- To check $T S \vDash \Phi$, it suffices to check $T S / \sim \models \Phi$

Computing bisimulation quotients

Computing bisimulation quotients

- A partition $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$ of S is a set of nonempty ($B_{i} \neq \emptyset$) and pairwise disjoint blocks B_{i} that decompose S $\left(S=\biguplus_{i=1, \ldots k} B_{i}\right)$.
- A partition Π defines an equivalence relation \sim
$\left(\left(q, q^{\prime}\right) \in \sim \Leftrightarrow \exists B_{i} \in \Pi . q, q^{\prime} \in B_{i}\right)$.
- Likewise, an equivalence relation \sim defines a partition $\Pi=S / \sim$.
- A nonempty union $C=\biguplus_{i \in 1} B_{i}$ of blocks is called a superblock.

A block B_{i} of a partition Π is called stable w.r.t. a set B if either $B_{i} \cap \operatorname{Pre}(B)=\emptyset$, or $B_{i} \subseteq \operatorname{Pre}(B)$.

$$
(\operatorname{Pre}(B)=\{q \in S \mid \operatorname{Post}(q) \cap B \neq \emptyset\})
$$

- A partition Π is called stable w.r.t. a set B if all blocks of Π are stable w.r.t. B

Stable partitions and bisimulation

Lemma 1. A partition Π with consistently labeled blocks
is stable with respect to all of its (super)blocks
iff it defines a bisimulation relation.
" $\#$

- Let $s_{1} \sim s_{2}$, and $B=\left[s_{1}\right]_{n}=\left[s_{2}\right]_{n}$
- Let $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ and $C=\left[s_{1}^{\prime}\right]_{\Pi}$.
- Since $s_{1} \in B \cap \operatorname{Pre}(C), B \subseteq \operatorname{Pre}(C)$
- Hence, $s_{2} \in \operatorname{Pre}(C)$
- Hence, there is a state $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right) \cap C$
- Since $s_{2}^{\prime} \in C, s_{2}^{\prime} \sim s_{1}^{\prime}$.

For two partitions $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$ and $\Pi^{\prime}=\left\{B_{1}^{\prime}, \ldots, B_{j}^{\prime}\right\}$ of S, we say that Π is finer than Π^{\prime} iff every block of Π^{\prime} is a superblock of Π.

For a given partition $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$, we call a (super)block C of Π a splitter of a block B_{i} / the partition Π if B_{i} / Π is not stable w.r.t. C.

Refine $\left(B_{i}, C\right)$ denotes $\left\{B_{i}\right\}$ if B_{i} is stable w.r.t. C, and $\left\{B_{i} \cap \operatorname{Pre}(C), B_{i} \backslash \operatorname{Pre}(C)\right\}$ if C is a splitter of B_{i} Refine $(\Pi, C)=\biguplus_{i=1, \ldots, k} \operatorname{Refine}\left(B_{i}, C\right)$.

Lemma 2. Refine (Π, C) is finer than Π.

Stable partitions and bisimulation (cont'd)
Lemma 1. A partition Π with consistently labeled blocks is stable with respect to all of its (super)blocks iff it defines a bisimulation relation.
"と"

- Let B, C be blocks of Π.
- We assume that $B \cap \operatorname{Pre}(C) \neq \emptyset$ and show that $B \subseteq \operatorname{Pre}(C)$.
- Since $B \cap \operatorname{Pre}(C) \neq \emptyset$ there exists a state $s_{1} \in B$ and a state $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right) \cap C$
- Let s_{2} be an arbitrary state in B. We show that $s_{2} \in \operatorname{Pre}(C)$.
- Since \sim is a bisimulation, there exists a transition $s_{2} \rightarrow s_{2}^{\prime}$ such that $s_{2}^{\prime} \in C$.
- Hence, $s_{2} \in \operatorname{Pre}(C)$.

An algorithm for bisimulation quotienting

Input: Transition system ($S, A c t, \rightarrow, I, A P, L$)
Output: Bisimulation quotient

1. $\Pi=S / \sim$
$\left(q, q^{\prime}\right) \in \sim_{A P} \Leftrightarrow L(q)=L\left(q^{\prime}\right)$
2. while some block $B \in \Pi$ is a splitter of Π
loop invariant: Π is coarser than $S / \sim_{T S}$
2.1 pick a block B that is a splitter of Π $2.2 \Pi=\operatorname{Refine}(\Pi, B)$
3. return \sqcap

Example

2. while some block $B \in \Pi$ is a splitter of $\Pi \quad\left(q, q^{\prime}\right) \in \sim_{A \rho} \Leftrightarrow L(q)=L\left(q^{\prime}\right)$ 2.1 pick a block B that is a splitter of Π
$2.2 \Pi=\operatorname{Refine}(\Pi, B)$
3. return Π

Example

1. $\Pi=S / \sim_{A P}$
$\left(q, q^{\prime}\right) \in \sim A P \Leftrightarrow L(q)=L\left(q^{\prime}\right)$
2. while some block $B \in \Pi$ is a splitter of Π
loop ivvariant: Π is coarser than S / \sim TS 2.1 pick a block B that is a splitter of Π
$2.2 \Pi=\operatorname{Refine}(\Pi, B)$
3. return Π

Example

1. $\Pi=S / \sim_{A P}$
$\left(q, q^{\prime}\right) \in \sim_{A P} \Leftrightarrow L(q)=L\left(q^{\prime}\right)$
2. while some block $B \in \Pi$ is a spliter of $\Pi \quad$ ioop invariant: Π is coarser than $S / \sim T S$ 2.1 pick a block B that is a splitter of Π
$2.2 \Pi=\operatorname{Refine}(\Pi, B)$
3. return $п$

Example

1. $\Pi=S / \sim_{A P} \quad\left(q, q^{\prime}\right) \in \sim_{A P} \Leftrightarrow L(q)=L\left(q^{\prime}\right)$
2. while some block $B \in \Pi$ is a splitter of
2.1 pick a block B that is a splitter of Π
$2.2 \Pi=\operatorname{Refine}(\Pi, B)$
3. return Π

Correctness and termination

1. $\Pi=S / \sim_{A P}$
$\left(q, q^{\prime}\right) \in \sim_{A p} \Leftrightarrow L(q)=L\left(q^{\prime}\right)$
2. while some block $B \in \Pi$ is a splitter of $\Pi \quad$ loop invariant: Π is coarsert than $S / \sim T s$
2.1 pick a block B that is a splitter of Π
$2.2 \Pi=\operatorname{Refine}(\Pi, B)$
3. return \square

Lemma 3. The algorithm terminates.
Lemma 4. The loop invariant holds initially
Lemma 5. The loop invariant is preserved
Theorem. The algorithm returns the quotient $S / \sim_{T S}$ of the coarsest bisimulation $\sim_{T S}$.

