
Fairness (revisited)

Fairness definition
For TS = (S,Act,→, I,AP, L) without terminal states, A ⊆ Act,

and infinite execution fragment ρ = s0
α0−−→ s1

α1−−→ . . . of TS:

1. ρ is unconditionally A-fair whenever:
true =⇒ ∀k ≥ 0. ∃j ≥ k . αj ∈ A

︸ ︷︷ ︸

infinitely often A is taken

2. ρ is strongly A-fair whenever:

(∀k ≥ 0. ∃j ≥ k . Act(sj) ∩ A ̸= ∅ )
︸ ︷︷ ︸

infinitely often A is enabled

=⇒ (∀k ≥ 0. ∃j ≥ k . αj ∈ A )
︸ ︷︷ ︸

infinitely often A is taken

3. ρ is weakly A-fair whenever:

(∃k ≥ 0. ∀j ≥ k . Act(sj) ∩ A ̸= ∅ )
︸ ︷︷ ︸

A is eventually always enabled

=⇒ (∀k ≥ 0. ∃j ≥ k . αj ∈ A )
︸ ︷︷ ︸

infinitely often A is taken

where Act(s) =
{

α ∈ Act | ∃s′ ∈ S. s α−−→ s′
}

Lecture 5

Fair satisfaction

! TS satisfies LT-property P:

TS |= P if and only if Traces(TS) ⊆ P

! TS satisfies the LT property P if all its observable behaviors
are admissible

! TS fairly satisfies LT-property P wrt. fairness
assumption F :

TS |=F P if and only if FairTracesF (TS) ⊆ P

! if all paths in TS are F -fair, then TS |=F P if and only if
TS |= P

! if some path in TS is not F -fair, then possibly TS |=F P but
TS ̸|= P

Lecture 5

LTL fairness constraints

Let Φ and Ψ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = Ψ

2. A strong LTL fairness condition is of the form:

sfair = Φ −→ Ψ

3. A weak LTL fairness constraint is of the form:

wfair = Φ −→ Ψ

Φ stands for “something is enabled”; Ψ for “something is taken”



Fair satisfaction

LTL fairness assumption = conjunction of LTL fairness
constraints: fair = ufair ∧ sfair ∧ wfair

For state s in transition system TS (over AP) without terminal states,

let

FairPathsfair (s) =
{

π ∈ Paths(s) | π |= fair
}

FairTracesfair (s) =
{

trace(π) | π ∈ FairPathsfair (s)
}

For LTL-formula ϕ, and LTL fairness assumption fair :

s |=fair ϕ if and only if ∀π ∈ FairPathsfair (s).π |=ϕ and

TS |=fair ϕ if and only if ∀s0 ∈ I. s0 |=fair ϕ

|=fair is the fair satisfaction relation for LTL;

|= the standard one for LTL

Turning action-based into state-based fairness

For TS = (S,Act,→, I,AP, L) let
TS′ = (S′,Act ∪ { begin },→ ′, I′,AP′, L′) with:

! S′ = I × { begin } ∪ S × Act and I′ = I × { begin }

! → ′ is the smallest relation satisfying:

s α−−→ s′

⟨s,β⟩ α−−→′ ⟨s′,α⟩
and

s0
α−−→ s s0 ∈ I

⟨s0, begin⟩ α−−→′ ⟨s,α⟩

! AP′ = AP ∪
{

enabled (α), taken(α) | α ∈ Act
}

! labeling function:

! L′(⟨s0, begin⟩) = L(s0) ∪
{

enabled (β) | β ∈ Act(s0)
}

! L′(⟨s,α⟩) = L(s) ∪
{

taken(α)
}

∪
{

enabled(β) | β ∈
Act(s)

}

it follows: TracesAP(TS) = TracesAP(TS′)

State- versus action-based fairness

! Strong A-fairness is described by the LTL fairness
assumption:

sfairA = G F
∨

α∈A

enabled(α) → G F
∨

α∈A

taken(α)

! The fair traces of TS and its action-based variant TS′ are
equal:

{

traceAP(π) | π ∈ Paths(TS),π is F -fair
}

=
{

traceAP(π
′) | π′ ∈ Paths(TS′),π′ |= fair

}

! For every LT-property P (over AP):
TS |=F P iff TS′ |=fair P

Reducing |=fair to |=

For:

! transition system TS without terminal states

! LTL formula ϕ, and

! LTL fairness assumption fair

it holds:

TS |=fair ϕ if and only if TS |= (fair → ϕ)

verifying an LTL-formula under a fairness assumption can be done

using standard verification algorithms for LTL



Fairness constraints in CTL

! For LTL it holds:
TS |=fair ϕ if and only if TS |= (fair → ϕ)

! An analogous approach for CTL is not possible!

! Formulas of form ∀(fair → ϕ) and ∃(fair ∧ ϕ) needed

! But: boolean combinations of path formulas
are not allowed in CTL

! and: strong fairness constraints

G F b → G F c ≡ F G¬b ∨ G F c

cannot be expressed, since persistence properties
are not in CTL

! Solution: change the semantics of CTL by ignoring unfair
paths

CTL fairness constraints

! A strong CTL fairness constraint is a formula of the form:

sfair =
∧

0<i≤k

(G FΦi → G FΨi)

! where Φi and Ψi (for 0 < i ≤ k ) are CTL-formulas over AP

! unconditional and weak CTL fairness constraints are
defined analogously,

ufair =
∧

0<i≤k

G FΨi and wfair =
∧

0<i≤k

(F GΦi → G FΨi)

⇒ a CTL fairness constraint is an LTL formula over CTL state
formulas!

! a CTL fairness assumption fair is a conjunction of CTL
fairness constraints.

Semantics of fair CTL

For CTL fairness assumption fair , relation |=fair is defined by:

s |=fair a iff a ∈ Label(s)

s |=fair ¬Φ iff ¬ (s |=fair Φ)

s |=fair Φ ∨ Ψ iff (s |=fair Φ) ∨ (s |=fair Ψ)

s |=fair Eϕ iff π |=fair ϕ for some fair path π that starts in s

s |=fair Aϕ iff π |=fair ϕ for all fair paths π that start in s

π |=fair XΦ iff π[1] |=fair Φ

π |=fair ΦUΨ iff (∃ j ≥ 0.π[j] |=fair Ψ ∧ (∀ 0 ≤ k < j.π[k ] |=fair Φ))

π is a fair path iff π |= fair for CTL fairness assumption fair

Transition system semantics

! For CTL state formula Φ, and fairness assumption fair, the
satisfaction set Satfair (Φ) is defined by:

Satfair (Φ) = {q ∈ Q | q |=fair Φ }

! TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS |=fair Φ if and only if ∀q0 ∈ I.q0 |=fair Φ

! this is equivalent to I ⊆ Satfair (Φ)



Fair CTL model-checking problem

For:

! finite transition system

! CTL formula Φ in ENF, and

! CTL fairness assumption fair

establish whether or not:

TS |=fair Φ

use bottom-up procedure a la CTL to determine Satfair (Φ)

using as much as possible standard CTL model-checking algorithms

CTL fairness constraints

! A strong CTL fairness constraint:
sfair =

∧

0<i≤k

(G FΦi → G FΨi)

! where Φi and Ψi (for 0 < i ≤ k ) are CTL-formulas over AP

! Replace the CTL state formulas in sfair by fresh atomic
propositions:

sfair :=
∧

0<i≤k

(G F ai → G F bi)

! where ai ∈ L(s) if and only if s ∈ Sat(Φi ) (not Satfair (Φi)!)
! . . . bi ∈ L(s) if and only if s ∈ Sat(Ψi) (not Satfair (Ψi)!)
! (for unconditional and weak fairness this goes similarly)

! Note:

π |= fair iff π[j..] |= fair for some j ≥ 0 iff π[j..] |= fair for all j ≥ 0

Results for |=fair (1)

s |=fair EX a if and only if ∃s′ ∈ Post(s)
with s′ |= a and FairPaths(s′) ̸= ∅

s |=fair E (a U a′) if and only if there exists a finite path fragment

s0 s1 s2 . . . sn−1sn ∈ Pathsfin(s) with n ≥ 0

such that si |= a for 0 ≤ i < n, sn |= a′, and FairPaths(sn) ̸= ∅

Results for |=fair (2)

s |=fair EX a if and only if ∃s′ ∈ Post(s)
with s′ |= a and FairPaths(s′) ̸= ∅

︸ ︷︷ ︸

s′ |=fair EG true

s |=fair E (a U a′) if and only if there exists a finite path fragment

s0 s1 s2 . . . sn−1sn ∈ Pathsfin(s) with n ≥ 0

such that si |= a for 0 ≤ i < n, sn |= a′, and FairPaths(sn) ̸= ∅
︸ ︷︷ ︸

sn |=fair EG true



Basic algorithm

! Determine Satfair (EG true) = {q ∈ Q | FairPaths(q) ̸= ∅ }
! Introduce an atomic proposition afair such that:

! afair ∈ L(q) if and only if q ∈ Satfair (EG true)

! Compute the sets Satfair (Ψ) for all subformulas Ψ of Φ (in
ENF) by:

Satfair (a) = { q ∈ Q | a ∈ L(q) }
Satfair (¬a) = Q \ Satfair (a)

Satfair (a ∧ a′) = Satfair (a) ∩ Satfair (a′)
Satfair (EX a) = Sat (EX (a ∧ afair ))

Satfair (E (a U a′)) = Sat (E (a U (a′ ∧ afair )))
Satfair (EG a) = . . . . . .

! Thus: model checking CTL under fairness constraints is
! CTL model checking + algorithm for computing

Satfair (EG a)!

Core model-checking algorithm

{states are assumed to be labeled with ai and bi }
compute Satfair (EG true) = { q ∈ Q | FairPaths(q) ̸= ∅ }
forall q ∈ Satfair (EG true) do L(q) := L(q)∪ { afair } od
{compute Satfair (Φ)}
for all 0 < i ≤ |Φ | do

for all Ψ ∈ Sub(Φ) with |Ψ | = i do
switch(Ψ):

true : Satfair (Ψ) := Q;
a : Satfair (Ψ) := { q ∈ Q | a ∈ L(s) };
a ∧ a′ : Satfair (Ψ) := { q ∈ Q | a, a′ ∈ L(s) };
¬a : Satfair (Ψ) := { q ∈ Q | a ̸∈ L(s) };
EX a : Satfair (Ψ) := Sat(EX (a ∧ afair));
E (a U a′) : Satfair (Ψ) := Sat(E (a U (a′ ∧ afair)));
EG a : compute Satfair (EG a)

end switch
replace all occurrences of Ψ (in Φ) by the fresh atomic proposition aΨ

forall q ∈ Satfair(Ψ) do L(q) := L(q)∪ { aΨ } od
end for

end for
return I ⊆ Satfair(Φ)

Characterization of Satfair (EG a)

q |=sfair EG a where sfair =
∧

0<i≤k

(G F bi → G F ci)

iff there exists a finite path fragment q0 . . . qn and a cycle
q′

0 . . . q
′
r with:

1. q0 = q and qn = q′
0 = q′

r

2. qi |= a, for every 0 ≤ i ≤ n, and q′
j |= a, for every 0 ≤ j ≤ r ,

and

3. Sat(bi) ∩ {q′
1, . . . ,q

′
r } = ∅ or Sat(ci ) ∩ {q′

1, . . . ,q
′
r } ≠ ∅

for 0 < i ≤ k

Computing Satfair(EG a)

! Consider state q only if q |= a, otherwise eliminate q
! change TS into TS[a] = (S′,Act,→′, I′,AP, L′) with

S′ = Sat(a),
! →′ = → ∩ (S′ × Act × S′), I′ = I ∩ S′, and L′(s) = L(s) for

s ∈ S′

⇒ each infinite path fragment in TS[a] satisfies G a

! q |=fair EG a iff there is a non-trivial SCC D in TS[a]
reachable from q such that

! D ∩ Sat(bi) = ∅ or
! D ∩ Sat(ci) ̸= ∅

for 0 < i ≤ k
! Satsfair (EG a) = {q ∈ S | ReachTS[a](s) ∩ T ̸= ∅ }

! T is the union of all such SCCs D.

how to compute T ?



Unconditional fairness

ufair ≡
∧

0<i≤k

G F bi

Let T be the set union of all non-trivial SCCs C of TS[a]
satisfying

C ∩ Sat(bi) ̸= ∅ for all 0 < i ≤ k

It now follows:

s |=ufair EG a if and only if ReachTS[a](s) ∩ T ̸= ∅

⇒ T can be determined by a simple graph analysis (DFS)

Examples G F b1 ∧ G F b2

Weak fairness

! Weak fairness constraint
∧

0<i≤k

(F G bi → G F ci)

=
∧

0<i≤k

(G F (¬bi) ∨ G F ci)

=
∧

0<i≤k

(G F (¬bi ∨ ci))

! can be treated like an unconditional fairness constraint.

Strong fairness: single constraint (k = 1)

! sfair = G F b1 → G F c1

! q |=sfair E G a iff C is a non-trivial SCC in TS[a] reachable
from q with:

(1) C ∩ Sat(c1) ̸= ∅, or
(2) there exists a non-trivial SCC D in C[¬b1]

! For the union T of all such SCCs C:

q |=sfair E G a if and only if ReachTS[a](q) ∩ T ̸= ∅



Strong fairness: general case (k > 1)

Check each non-trivial SCC C recursively as follows:
Check(C,

∧

0<i≤k

(G F bi → G F ci)):

if ∀i ∈ {1, . . . , k} : C ∩ Sat(ci) ̸= ∅ return true

else
choose some j ∈ {1, . . . , k} : C ∩ Sat(cj) = ∅.
remove all states in Sat(bj ) from C
for all non-trivial SCCs D do

if Check(D,
∧

0<i≤k,i ̸=j

(G F bi → G F ci)) return t rue

return false

T is the union of all SCCs C that pass the check.

Time complexity

For transition system TS with N states and M edges,

CTL formula Φ, and CTL fairness constraint fair with k conjuncts,

the CTL model-checking problem TS |=fair Φ

can be determined in time O(|Φ |·(N + M)·k)

CTL∗

Syntax of CTL∗

CTL∗ state formulas are formed according to the grammar:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1 ∧ Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ Eϕ

where a ∈ AP and ϕ is a path-formula

CTL∗ path formulas are formed according to the grammar:

ϕ ::= Φ
∣
∣
∣ ϕ1 ∧ ϕ2

∣
∣
∣ ¬ϕ

∣
∣
∣ Xϕ

∣
∣
∣ ϕ1 Uϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in CTL∗: Aϕ = ¬E¬ϕ.



CTL∗ semantics

s |= a iff a ∈ L(s)

s |= ¬Φ iff not s |= Φ

s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)

s |= Eϕ iff π |= ϕ for some π ∈ Paths(s)

π |= Φ iff π[0] |= Φ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= ¬ϕ iff not π |= ϕ

π |= XΦ iff π[1..] |= Φ

π |= ΦUΨ iff ∃ j ≥ 0. (π[j..] |= Ψ ∧ (∀ 0 ≤ k < j.π[k ..] |= Φ))

Transition system semantics

! For CTL∗-state-formula Φ, the satisfaction set Sat(Φ) is
defined by:

Sat(Φ) = {q ∈ S | q |= Φ }

! TS satisfies CTL∗-formula Φ iff Φ holds in all its initial
states:

TS |= Φ if and only if ∀q ∈ I.q0 |= Φ

this is exactly as for CTL

Embedding of LTL in CTL∗

For LTL formula ϕ and TS without terminal states (both over
AP) and for each q ∈ S:

q |= ϕ
︸ ︷︷ ︸

LTL semantics

if and only if q |= Aϕ
︸ ︷︷ ︸

CTL∗ semantics

Hence also:

TS |=LTL ϕ if and only if TS |=CTL∗ Aϕ

CTL∗ is more expressive than LTL and CTL

For the CTL∗-formula over AP = {a,b }:

Φ = (AF G a) ∨ (AG EF b)

there does not exist any equivalent LTL or CTL formula



CTL+

CTL+ state formulas are formed according to the grammar:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1 ∧ Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ Eϕ

∣
∣
∣ Aϕ

where a ∈ AP and ϕ is a path-formula

CTL+ path formulas are formed according to the grammar:

ϕ ::= ϕ1 ∧ ϕ2

∣
∣
∣ ¬ϕ

∣
∣
∣ XΦ

∣
∣
∣ Φ1 UΦ2

where Φ,Φ1, Φ2 are state-formulas, and ϕ, ϕ1 and ϕ2 are
path-formulas

CTL+ is as expressive as CTL

For example: E (F a ∧ F b)
︸ ︷︷ ︸

CTL+ formula

≡ E F (a ∧ E F b) ∨ E F (b ∧ E F a)
︸ ︷︷ ︸

CTL formula

Some rules for transforming CTL+ formulas into equivalent CTL formulas:

E
(

¬(Φ1 UΦ2)
)

≡ E
(

(Φ1 ∧ ¬Φ2)U (¬Φ1 ∧ ¬Φ2)
)

∨ E G¬Φ2

E
(

XΦ1 ∧ XΦ2

)

≡ E X (Φ1 ∧ Φ2)

E
(

XΦ ∧ (Φ1 UΦ2)
)

≡
(

Φ2 ∧ E XΦ
)

∨
(

Φ1 ∧ E X (Φ ∧ E (Φ1 UΦ2))
)

E
(

(Φ1 UΦ2) ∧ (Ψ1 UΨ2)
)

≡ E
(

(Φ1 ∧Ψ1)U (Φ2 ∧ E (Ψ1 UΨ2)
))

∨

E
(

(Φ1 ∧Ψ1)U (Ψ2 ∧ E (Φ1 UΦ2)
))

...

adding boolean combinations of path formulas to CTL does not change its

expressiveness but CTL+ formulas can be much shorter than shortest

equivalent CTL formulas

CTL∗ model checking

! Adopt the same bottom-up procedure as for (fair) CTL
! Replace each maximal proper state subformula Ψ by new

proposition aΨ

! aΨ ∈ L(s) if and only if s ∈ Sat(Ψ)

! Most interesting case: formulas of the form Eϕ
! by replacing all maximal state sub-formulas in ϕ, an

LTL-formula results!

! q |= Eϕ iff q ̸|= A¬ϕ
︸ ︷︷ ︸

CTL∗ semantics

iff q ̸|= ¬ϕ
︸ ︷︷ ︸

LTL semantics
! SatCTL∗(Eϕ) = S \ SatLTL(¬ϕ)

CTL∗ model-checking algorithm

for all i ≤ |Φ | do
for all Ψ ∈ Sub(Φ) with |Ψ | = i do

switch(Ψ):

true : Sat(Ψ) := S;
a : Sat(Ψ) := { q ∈ S | a ∈ L(q) };
a1 ∧ a2 : Sat(Ψ) := Sat(a1) ∩ Sat(a2);
¬a : Sat(Ψ) := S \ Sat(a);
Eϕ : determine SatLTL(¬ϕ) with an LTL model checker;

: Sat(Ψ) := S \ SatLTL(¬ϕ)
end switch
AP := AP ∪ { aΨ }; {introduce fresh atomic proposition}
replace Ψ with aΨ

forall q ∈ Sat(Ψ) do L(q) := L(q) ∪ { aΨ }; od
end for

end for
return I ⊆ Sat(Φ)



Time complexity

For transition system TS with N states and M transitions,

CTL∗ formula Φ, the CTL∗ model-checking problem TS |= Φ

can be determined in time O((N+M)·2|Φ|).

the CTL∗ model-checking problem is PSPACE-complete


