Fairness (revisited)

Fairness definition For $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states, $A \subseteq Act$,
and infinite execution fragment $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$ of <i>TS</i> :
1. ρ is unconditionally A-fair whenever: true $\implies \forall k \ge 0. \exists j \ge k. \alpha_j \in A$
infinitely often A is taken
2. ρ is strongly A-fair whenever:
$(\forall k \ge 0. \exists j \ge k. Act(s_j) \cap A \neq \emptyset) \implies (\forall k \ge 0. \exists j \ge k. \alpha_j \in A)$
infinitely often A is enabled infinitely often A is taken
3. ρ is weakly A-fair whenever:
$(\exists k \geq 0, \forall j \geq k. Act(s_j) \cap A \neq \emptyset) \implies (\forall k \geq 0, \exists j \geq k. \alpha_j \in A)$
A is eventually always enabled infinitely often A is taken
where $Act(s) = \{ \alpha \in Act \mid \exists s' \in S. \ s \xrightarrow{\alpha} s' \}$ Lecture 5

Fair satisfaction

► *TS* satisfies LT-property *P*:

 $TS \models P$ if and only if $Traces(TS) \subseteq P$

- TS satisfies the LT property P if all its observable behaviors are admissible
- ► TS fairly satisfies LT-property P wrt. fairness assumption F:

 $TS \models_{\mathcal{F}} P$ if and only if $FairTraces_{\mathcal{F}}(TS) \subseteq P$

- ▶ if all paths in *TS* are *F*-fair, then $TS \models_F P$ if and only if $TS \models P$
- if some path in *TS* is not *F*-fair, then possibly $TS \models_F P$ but $TS \not\models P$

Lecture 5

LTL fairness constraints

Let Φ and Ψ be propositional logic formulas over *AP*. 1. An unconditional LTL fairness constraint is of the form: $ufair = \Box \diamondsuit \Psi$ 2. A strong LTL fairness condition is of the form: $sfair = \Box \diamondsuit \Phi \longrightarrow \Box \diamondsuit \Psi$ 3. A weak LTL fairness constraint is of the form: $wfair = \diamondsuit \Box \Phi \longrightarrow \Box \diamondsuit \Psi$

 Φ stands for "something is enabled"; Ψ for "something is taken"

Fair satisfaction

LTL fairness assumption = conjunction of LTL fairness constraints: *fair* = *ufair* \land *sfair* \land *wfair*

For state *s* in transition system *TS* (over *AP*) without terminal states, let

 $\begin{aligned} & \textit{FairPaths}_{\textit{fair}}(s) = \left\{ \pi \in \textit{Paths}(s) \mid \pi \models \textit{fair} \right\} \\ & \textit{FairTraces}_{\textit{fair}}(s) = \left\{ \textit{trace}(\pi) \mid \pi \in \textit{FairPaths}_{\textit{fair}}(s) \right\} \end{aligned}$

For LTL-formula φ , and LTL fairness assumption *fair*:

 $s \models_{fair} \varphi$ if and only if $\forall \pi \in FairPaths_{fair}(s) . \pi \models \varphi$ and $TS \models_{fair} \varphi$ if and only if $\forall s_0 \in I. s_0 \models_{fair} \varphi$

\models_{fair} is the fair satisfaction relation for LTL; \models the standard one for LTL

Turning action-based into state-based fairness

For $TS = (S, Act, \rightarrow, I, AP, L)$ let $TS' = (S', Act \cup \{begin\}, \rightarrow', l', AP', L')$ with: $S' = I \times \{begin\} \cup S \times Act$ and $l' = I \times \{begin\}$

 $\blacktriangleright \ \rightarrow'$ is the smallest relation satisfying:

 $\begin{array}{c|c} \underline{s \xrightarrow{\alpha} s'} \\ \hline \hline \langle \mathbf{s}, \beta \rangle \xrightarrow{\alpha'} \langle s', \alpha \rangle \end{array} \quad \text{ and } \quad \begin{array}{c|c} \underline{s_0 \xrightarrow{\alpha} s \ s_0 \in I} \\ \hline \langle s_0, \textit{begin} \rangle \xrightarrow{\alpha'} \langle s, \alpha \rangle \end{array}$

- $AP' = AP \cup \{ enabled(\alpha), taken(\alpha) \mid \alpha \in Act \}$
- Iabeling function:
 - $\blacktriangleright L'(\langle s_0, begin \rangle) = L(s_0) \cup \{enabled(\beta) \mid \beta \in Act(s_0) \}$
 - ► $L'(\langle s, \alpha \rangle) = L(s) \cup \{ taken(\alpha) \} \cup \{ enabled(\beta) \mid \beta \in Act(s) \}$

it follows: $Traces_{AP}(TS) = Traces_{AP}(TS')$

State- versus action-based fairness

 Strong A-fairness is described by the LTL fairness assumption:

$$\textit{sfair}_{\textit{A}} = \textit{GF} \bigvee_{\alpha \in \textit{A}} \textit{enabled}(\alpha) \rightarrow \textit{GF} \bigvee_{\alpha \in \textit{A}} \textit{taken}(\alpha)$$

► The fair traces of *TS* and its action-based variant *TS*' are equal:

$$\{ trace_{AP}(\pi) \mid \pi \in Paths(TS), \pi \text{ is } \mathcal{F}\text{-fair} \}$$
$$= \{ trace_{AP}(\pi') \mid \pi' \in Paths(TS'), \pi' \models fair \}$$

► For every LT-property *P* (over *AP*): $TS \models_{\mathcal{F}} P$ iff $TS' \models_{fair} P$

Reducing \models_{fair} to \models

- For:
 - transition system TS without terminal states
 - LTL formula φ , and
 - ► LTL fairness assumption fair

it holds:

 $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$

verifying an LTL-formula under a fairness assumption can be done using standard verification algorithms for LTL

Fairness constraints in CTL

- For LTL it holds:
- $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$
- An analogous approach for CTL is not possible!
- ▶ Formulas of form \forall (*fair* $\rightarrow \varphi$) and \exists (*fair* $\land \varphi$) needed
- But: boolean combinations of path formulas are not allowed in CTL
- and: strong fairness constraints

$$GFb \rightarrow GFc \equiv FG \neg b \lor GFc$$

cannot be expressed, since persistence properties are not in $\ensuremath{\mathsf{CTL}}$

 Solution: change the semantics of CTL by ignoring unfair paths

CTL fairness constraints

A strong CTL fairness constraint is a formula of the form:

$$sfair = \bigwedge_{0 < i \le k} (\mathsf{G} \mathsf{F} \Phi_i \to \mathsf{G} \mathsf{F} \Psi_i)$$

- ▶ where Φ_i and Ψ_i (for $0 < i \le k$) are CTL-formulas over *AP*
- unconditional and weak CTL fairness constraints are defined analogously,

$$ufair = \bigwedge_{0 < i \le k} GF\Psi_i$$
 and $wfair = \bigwedge_{0 < i \le k} (FG\Phi_i \to GF\Psi_i)$

- $\Rightarrow\,$ a CTL fairness constraint is an LTL formula over CTL state formulas!
- a CTL fairness assumption fair is a conjunction of CTL fairness constraints.

Semantics of fair CTL

For CTL fairness assumption *fair*, relation \models_{fair} is defined by:

 $s \models_{fair} a$ iff $a \in Label(s)$

- $s \models_{fair} \neg \Phi$ iff $\neg (s \models_{fair} \Phi)$
- $s \models_{fair} \Phi \lor \Psi$ iff $(s \models_{fair} \Phi) \lor (s \models_{fair} \Psi)$
- $s \models_{fair} \mathsf{E} \varphi$ iff $\pi \models_{fair} \varphi$ for some fair path π that starts in s
- $s \models_{fair} A \varphi$ iff $\pi \models_{fair} \varphi$ for all fair paths π that start in s

 $\begin{aligned} \pi &\models_{fair} X \Phi & \text{iff } \pi[1] \models_{fair} \Phi \\ \pi &\models_{fair} \Phi \cup \Psi & \text{iff } (\exists j \ge 0, \pi[j] \models_{fair} \Psi \land (\forall 0 \le k < j, \pi[k] \models_{fair} \Phi)) \\ \pi & \text{ is a fair path iff } \pi \models fair \text{ for CTL fairness assumption } fair \end{aligned}$

Transition system semantics

For CTL state formula Φ, and fairness assumption *fair*, the satisfaction set Sat_{fair}(Φ) is defined by:

 $Sat_{fair}(\Phi) = \{ q \in Q \mid q \models_{fair} \Phi \}$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

 $TS \models_{fair} \Phi$ if and only if $\forall q_0 \in I. q_0 \models_{fair} \Phi$

• this is equivalent to $I \subseteq Sat_{fair}(\Phi)$

Fair CTL model-checking problem

For:

- finite transition system
- \blacktriangleright CTL formula Φ in ENF, and
- CTL fairness assumption fair

establish whether or not:

 $TS \models_{fair} \Phi$

use bottom-up procedure a la CTL to determine $Sat_{tair}(\Phi)$ using as much as possible standard CTL model-checking algorithms

CTL fairness constraints

► A strong CTL fairness constraint: $sfair = \bigwedge_{0 < i \le k} (GF \Phi_i \to GF \Psi_i)$

▶ where Φ_i and Ψ_i (for $0 < i \le k$) are CTL-formulas over *AP*

 Replace the CTL state formulas in *sfair* by fresh atomic propositions:

 $\textit{sfair} := \bigwedge_{0 < i \le k} (\mathsf{GF}_{a_i} \to \mathsf{GF}_{b_i})$

▶ where $\mathbf{a}_i \in L(s)$ if and only if $s \in Sat(\Phi_i)$ (not $Sat_{fair}(\Phi_i)!$) ▶ ... $b_i \in L(s)$ if and only if $s \in Sat(\Psi_i)$ (not $Sat_{fair}(\Psi_i)!$) ▶ (for unconditional and weak fairness this goes similarly)

Note:

 $\pi \models fair \text{ iff } \pi[j..] \models fair \text{ for some } j \ge 0 \text{ iff } \pi[j..] \models fair \text{ for all } j \ge 0$

Results for $\models_{fair} (1)$

 $s \models_{fair} \mathsf{EX} a$ if and only if $\exists s' \in \mathsf{Post}(s)$ with $s' \models a$ and $\mathit{FairPaths}(s') \neq \emptyset$

 $s \models_{fair} E(a \cup a')$ if and only if there exists a finite path fragment

 $s_0 s_1 s_2 \dots s_{n-1} s_n \in Paths_{fin}(s)$ with $n \ge 0$

such that $s_i \models a$ for $0 \le i < n$, $s_n \models a'$, and $FairPaths(s_n) \ne \emptyset$

Results for \models_{fair} (2)

 $s \models_{fair} \mathsf{EX} a \text{ if and only if } \exists s' \in \mathsf{Post}(s)$ with $s' \models a$ and $\underbrace{\mathsf{FairPaths}(s') \neq \emptyset}_{s' \models_{fair} \mathsf{EG} \mathsf{ true}}$

 $s \models_{fair} E(a \cup a')$ if and only if there exists a finite path fragment

 $s_0 s_1 s_2 \dots s_{n-1} s_n \in Paths_{fin}(s)$ with $n \ge 0$

such that $s_i \models a$ for $0 \le i < n$, $s_n \models a'$, and $\underbrace{FairPaths(s_n) \neq \emptyset}_{i < i}$

s_n ⊨_{fair} EG true

Basic algorithm

- ▶ Determine $Sat_{fair}(EG true) = \{ q \in Q | FairPaths(q) \neq \emptyset \}$
- Introduce an atomic proposition a_{fair} such that:
 a_{fair} ∈ L(q) if and only if q ∈ Sat_{fair}(EG true)
- Compute the sets Sat_{lair}(Ψ) for all subformulas Ψ of Φ (in ENF) by:

 $\begin{array}{rcl} Sat_{tair}(a) &= \{q \in Q \mid a \in L(q)\}\\ Sat_{tair}(\neg a) &= Q \setminus Sat_{tair}(a)\\ Sat_{tair}(a \wedge a') &= Sat_{tair}(a) \cap Sat_{tair}(a')\\ Sat_{tair}(E \land a) &= Sat(E \land (a \wedge a_{tair}))\\ Sat_{tair}(E (a \cup a')) &= Sat(E (a \cup (a' \wedge a_{tair})))\\ Sat_{tair}(E G a) &= \dots \end{array}$

- Thus: model checking CTL under fairness constraints is
 - CTL model checking + algorithm for computing Sat_{fair}(EG a)!

Core model-checking algorithm

```
{states are assumed to be labeled with a_i and b_i}
compute Sat_{tair}(EG true) = \{ q \in Q \mid FairPaths(q) \neq \emptyset \}
forall q \in Sat_{tair}(EGtrue) do L(q) := L(q) \cup \{a_{tair}\} od
{compute Sat_{fair}(\Phi)}
for all 0 < i \le |\Phi| do
   for all \Psi \in Sub(\Phi) with |\Psi| = i do
       switch(\Psi):
                true
                                : Sat_{fair}(\Psi) := Q;
                а
                                : Sat_{fair}(\Psi) := \{ q \in Q \mid a \in L(s) \};
                a \wedge a' : Sat_{tair}(\Psi) := \{ q \in Q \mid a, a' \in L(s) \};
                              : Sat_{fair}(\Psi) := \{ q \in Q \mid a \notin L(s) \};
                 \neg a
                             : Sat_{fair}(\Psi) := Sat(EX(a \land a_{fair}));
                EX a
                \mathsf{E}(\mathsf{aU}\mathsf{a}') : Sat_{tair}(\Psi) := Sat(\mathsf{E}(\mathsf{aU}(\mathsf{a}' \land \mathsf{a}_{tair})));
                            : compute Sat<sub>fair</sub>(EG a)
                EGa
       end switch
       replace all occurrences of \Psi (in \Phi) by the fresh atomic proposition a_{\Psi}
      forall q \in Sat_{tair}(\Psi) do L(q) := L(q) \cup \{a_{\Psi}\} od
   end for
end for
return I \subseteq Sat_{fair}(\Phi)
```

Characterization of Sat_{fair}(EG a)

 $q \models_{stair} \mathsf{EG} a$ where $stair = \bigwedge_{0 < i \le k} (\mathsf{GF} b_i \to \mathsf{GF} c_i)$

iff there exists a finite path fragment $q_0 \dots q_n$ and a cycle $q'_0 \dots q'_r$ with:

1.
$$q_0 = q$$
 and $q_n = q'_0 = q'_r$

- 2. $q_i \models a$, for every $0 \le i \le n$, and $q'_j \models a$, for every $0 \le j \le r$, and
- 3. $Sat(\mathbf{b}_i) \cap \{\mathbf{q}'_1, \dots, \mathbf{q}'_r\} = \emptyset$ or $Sat(\mathbf{c}_i) \cap \{\mathbf{q}'_1, \dots, \mathbf{q}'_r\} \neq \emptyset$ for $0 < i \le k$

Computing *Sat_{fair}*(EG *a*)

- Consider state q only if q ⊨ a, otherwise eliminate q
 change TS into TS[a] = (S', Act, →', I', AP, L') with
 - S' = Sat(a), $\rightarrow ' = \rightarrow \cap (S' \times Act \times S'), l' = l \cap S', and L'(s) = L(s) for$
 - $\rightarrow \stackrel{\rightarrow}{\longrightarrow} \rightarrow \stackrel{\rightarrow}{\longrightarrow} (S \times Act \times S'), \ r = r \cap S', \text{ and } L'(s) = L(s) \text{ for } s \in S'$
 - \Rightarrow each infinite path fragment in *TS*[*a*] satisfies G *a*
- $q \models_{fair} EG \frac{a}{a}$ iff there is a non-trivial SCC *D* in *TS*[a] reachable from *q* such that
 - $D \cap Sat(b_i) = \emptyset$ or
 - $D \cap Sat(c_i) \neq \emptyset$

for
$$0 < i \le k$$

► Sat_{stair}(EG a) = {
$$q \in S | Reach_{TS[a]}(s) \cap T \neq \emptyset$$
 }
► T is the union of all such SCCs D.

how to compute T?

Unconditional fairness

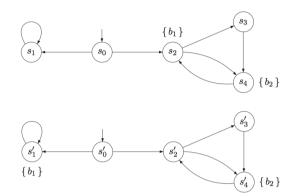
$$\begin{aligned} \textit{ufair} &\equiv \bigwedge_{0 < i \le k} \mathsf{G} \mathsf{F} b_i \\ \text{Let } \mathcal{T} \text{ be the set union of all non-trivial SCCs } \mathcal{C} \text{ of } \mathcal{TS}[a] \\ \text{satisfying} \\ \mathcal{C} \cap \textit{Sat}(b_i) \neq \emptyset \quad \text{for all } 0 < i \le k \end{aligned}$$

It now follows:

 $s \models_{ufair} EG a$ if and only if $Reach_{\tau s[a]}(s) \cap T \neq \emptyset$

 \Rightarrow *T* can be determined by a simple graph analysis (DFS)

Examples $G F b_1 \wedge G F b_2$



Weak fairness

► Weak fairness constraint
$$\bigwedge_{\substack{0 < i \le k}} (FGb_i \to GFc_i)$$

= $\bigwedge_{\substack{0 < i \le k}} (GF(\neg b_i) \lor GFc_i)$
= $\bigwedge_{\substack{0 < i \le k}} (GF(\neg b_i \lor c_i))$

can be treated like an unconditional fairness constraint.

Strong fairness: single constraint (k = 1)

- sfair = $G F \frac{b_1}{b_1} \rightarrow G F \frac{c_1}{c_1}$
- *q* ⊨_{stair} E G a iff C is a non-trivial SCC in TS[a] reachable from *q* with:
 (1) C ∩ Sat(c₁) ≠ Ø, or
 - (2) there exists a non-trivial SCC *D* in $C[\neg b_1]$
- ► For the union *T* of all such SCCs *C*:

 $q \models_{sfair} \mathsf{E} \mathsf{G} a$ if and only if $\mathit{Reach}_{\tau s[a]}(q) \cap T \neq \emptyset$

Strong fairness: general case (k > 1)

Check each non-trivial SCC *C* recursively as follows: Check (*C*, $\bigwedge_{0 \le i \le k} (G \models b_i \to G \models c_i)$): **if** $\forall i \in \{1, \dots, k\} : C \cap Sat(c_i) \neq \emptyset$ **return** *true* **else choose** some $j \in \{1, \dots, k\} : C \cap Sat(c_i) = \emptyset$. remove all states in *Sat*(b_i) from *C* **for all** non-trivial SCCs *D* do **if** Check(*D*, $\bigwedge_{0 \le i \le k, i \neq j} (G \models b_i \to G \models c_i)$) **return** *true*

return false

T is the union of all SCCs *C* that pass the check.

Time complexity

For transition system *TS* with *N* states and *M* edges, CTL formula Φ , and CTL fairness constraint *fair* with *k* conjuncts, the CTL model-checking problem *TS* $\models_{fair} \Phi$ can be determined in time $\mathcal{O}(|\Phi| \cdot (N + M) \cdot k)$

Syntax of CTL*

CTL* state formulas are formed according to the grammar:

 $\Phi ::= \mathsf{true} \ \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \ \land \ \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \mathsf{E} \varphi$

where $a \in AP$ and φ is a path-formula

CTL* path formulas are formed according to the grammar:

$$\varphi ::= \Phi \left| \begin{array}{c} \varphi_1 \ \land \ \varphi_2 \end{array} \right| \ \neg \varphi \ \left| \begin{array}{c} \mathsf{X} \varphi \end{array} \right| \ \varphi_1 \mathsf{U} \varphi_2$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

in CTL*: $A\varphi = \neg E \neg \varphi$.

CTL*

CTL* semantics

$$\begin{split} s &\models a & \text{iff} \quad a \in L(s) \\ s &\models \neg \Phi & \text{iff} \quad \text{not } s \models \Phi \\ s &\models \Phi \land \Psi & \text{iff} \quad (s \models \Phi) \text{ and } (s \models \Psi) \\ s &\models \mathsf{E} \varphi & \text{iff} \quad \pi \models \varphi \text{ for some } \pi \in \textit{Paths}(s) \end{split}$$

$$\begin{split} \pi &\models \Phi & \text{iff} \quad \pi[0] \models \Phi \\ \pi &\models \varphi_1 \land \varphi_2 & \text{iff} \quad \pi \models \varphi_1 \text{ and } \pi \models \varphi_2 \\ \pi &\models \neg \varphi & \text{iff} \quad \mathsf{not} \pi \models \varphi \\ \pi &\models \mathsf{X} \Phi & \text{iff} \quad \pi[1..] \models \Phi \\ \pi &\models \Phi \mathsf{U} \Psi & \text{iff} \quad \exists j \ge 0. \ (\pi[j..] \models \Psi \land (\forall 0 \le k < j. \pi[k..] \models \Phi)) \end{split}$$

Transition system semantics

For CTL*-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

 $Sat(\Phi) = \{ q \in S \mid q \models \Phi \}$

 TS satisfies CTL*-formula Φ iff Φ holds in all its initial states:

 $TS \models \Phi$ if and only if $\forall q \in I. q_0 \models \Phi$

this is exactly as for CTL

Embedding of LTL in CTL*

For LTL formula φ and *TS* without terminal states (both over *AP*) and for each $q \in S$:

 $\underbrace{q \models \varphi}_{\text{LTL semantics}} \quad \text{if and only if} \quad \underbrace{q \models A\varphi}_{\text{CTL}^* \text{ semantics}}$

Hence also:

 $TS \models_{LTL} \varphi$ if and only if $TS \models_{CTL*} A \varphi$

CTL* is more expressive than LTL and CTL

For the CTL*-formula over $AP = \{a, b\}$:

 $\Phi = (\mathsf{AFG} a) \lor (\mathsf{AGEF} b)$

there does not exist any equivalent LTL or CTL formula

CTL⁺ state formulas are formed according to the grammar:

$$\Phi ::= \text{true} \left| \begin{array}{c} a \end{array} \right| \left| \begin{array}{c} \Phi_1 \\ \wedge \end{array} \right| \left| \begin{array}{c} \neg \Phi \end{array} \right| \left| \begin{array}{c} \mathsf{E} \varphi \end{array} \right| \left| \begin{array}{c} \mathsf{A} \varphi \end{array} \right|$$

where $a \in AP$ and φ is a path-formula

CTL⁺ path formulas are formed according to the grammar:

$$\varphi ::= \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid X \Phi \mid \Phi_1 U \Phi_2$$

where Φ, Φ_1, Φ_2 are state-formulas, and φ, φ_1 and φ_2 are path-formulas

CTL⁺ is as expressive as CTL

 $\begin{array}{lll} \mbox{For example:} & \underbrace{\mathsf{E}(\mathsf{F}\,a\wedge\mathsf{F}\,b)}_{\mathsf{CTL}^+ \mbox{ formula}} \equiv \underbrace{\mathsf{E}\,\mathsf{F}\,(a\wedge\mathsf{E}\,\mathsf{F}\,b)\vee\mathsf{E}\,\mathsf{F}\,(b\wedge\mathsf{E}\,\mathsf{F}\,a)}_{\mathsf{CTL} \mbox{ formula}} \\ \mbox{Some rules for transforming CTL}^+ \mbox{ formulas into equivalent CTL formulas:} \\ & \mathsf{E}\left(\neg(\Phi_1\,U\,\Phi_2)\right) \equiv \mathsf{E}\left(\left(\Phi_1\wedge\neg\Phi_2\right)U\left(\neg\Phi_1\wedge\neg\Phi_2\right)\right)\vee\mathsf{E}\,\mathsf{G}\,\neg\Phi_2 \\ & \mathsf{E}\left(X\,\Phi_1\wedge X\,\Phi_2\right) \equiv \mathsf{E}\,X(\Phi_1\wedge\Phi_2) \\ & \mathsf{E}\left(X\,\Phi_1\wedge\Phi_2\right) \equiv \mathsf{E}\,X(\Phi_1\wedge\Phi_2) \\ & \mathsf{E}\left(X\,\Phi\wedge(\Phi_1\,U\,\Phi_2)\right) \equiv \mathsf{E}\left((\Phi_1\wedge\Psi_1)U\left(\Phi_2\wedge\mathsf{E}\,(\Psi_1\,U\,\Psi_2)\right)\right) \vee \\ & \mathsf{E}\left((\Phi_1\,U\,\Phi_2)\wedge(\Psi_1\,U\,\Psi_2)\right) \equiv \mathsf{E}\left((\Phi_1\wedge\Psi_1)U\left(\Psi_2\wedge\mathsf{E}\,(\Phi_1\,U\,\Phi_2)\right)\right) \\ & \vdots \end{array}$

adding boolean combinations of path formulas to CTL does not change its expressiveness but CTL⁺ formulas can be much shorter than shortest equivalent CTL formulas

CTL* model checking

- Adopt the same bottom-up procedure as for (fair) CTL
- \blacktriangleright Replace each maximal proper state subformula Ψ by new proposition a_{Ψ}
 - $a_{\Psi} \in L(s)$ if and only if $s \in Sat(\Psi)$
- \blacktriangleright Most interesting case: formulas of the form E φ
- by replacing all maximal state sub-formulas in φ, an LTL-formula results!

CTL* model-checking algorithm

```
for all i \leq |\Phi| do
for all \Psi \in Sub(\Phi) with |\Psi| = i do
switch(\Psi):
```

true : $Sat(\Psi) := S;$: $Sat(\Psi) := \{ q \in S \mid a \in L(q) \};$ а $a_1 \wedge a_2$: $Sat(\Psi) := Sat(a_1) \cap Sat(a_2);$: $Sat(\Psi) := S \setminus Sat(a);$ $\neg a$ Eφ determine $Sat_{LTL}(\neg \varphi)$ with an LTL model checker; $Sat(\Psi) := S \setminus Sat_{LTL}(\neg \varphi)$ end switch $AP := AP \cup \{a_{\Psi}\}$; {introduce fresh atomic proposition} replace Ψ with a_{Ψ} forall $q \in Sat(\Psi)$ do $L(q) := L(q) \cup \{a_{\Psi}\}$; od end for end for return $I \subseteq Sat(\Phi)$

Time complexity

For transition system *TS* with *N* states and *M* transitions, CTL* formula Φ , the CTL* model-checking problem *TS* $\models \Phi$ can be determined in time $\mathcal{O}((N+M)\cdot 2^{|\Phi|})$.

the CTL* model-checking problem is PSPACE-complete