
Introduction to verification

Anca Muscholl, Marc Zeitoun

Bibliography: Principles of Model-Checking, C. Baier
and J.-P. Katoen, MIT Press 2008

Factorial(x) := if x=0 then 1 else x*Factorial(x-1)

Is this program correct?

Some examples where it matters

Therac-25 Radiation Overdosing
(1985-87)

• Radiation machine for
treatment of cancer patients

• At least 6 cases of overdoses
in period 1985-1987

• Three death cases

• Source: Design error in the
control software (race
condition)

• 9 hours outage of large parts
of US telephone network

• Cost: several 100 million $

• Source: software flaw (wrong
interpretation of break
statement in C)

AT&T Telephone Network Outage
(1990)

• Crash of Ariane 5 missile in June
1996

• Cost: more than 500 million $

• Source: software flaw

• A data conversion from 64-bit
floating to 16-bit signed integer

Ariane 5 Crash (1996)

• FDIV= floating point division
unit

• 1 in 9 billion floating point
dividers would produce
inaccurate results

• Cost: 500 million $ in replaced
processors

• Source flaw in a division table

Pentium FDIV Bug (1994)

Why it is difficult to verify
computer systems?

• Analog systems are continuous

• Digital systems are discrete

• Big number of components interacting together

Some analysis

“The role of software in recent Aerospace Accidents” (2001)

Nancy G. Leveson
Aeronautic and Astronautic Department

MIT

Engineers often underestimate the complexity of software and overestimate the
effectiveness of testing.

Increasingly: system accidents that result from dysfunctional interactions among
components, not from individual component failure.

Accidents analyzed
•Explosion of Ariane 5

•Loss of Mars Climate Orbiter

•Destruction of Mars Polar Lander

•Placing Milstar satellite in an incorrect orbit

•American Airlines B-757 crash into a mountain near Cali

•Collision of Lufthansa A320 into earth bank in Warsaw

•Crash of China Airlines A320 near Nagoya

•Overconfidence on digital
automation

•Not understanding the risks
associated to software

•Almost all errors were due to
flaws in specification and not in
coding

•Reliability techniques (like
redundancy) not effective for
software

•Assuming the risk decreases
over time

•Inadequate specifications

• Flawed review process

•Inadequate safety engineering

•50%-70% safety decisions are
made in early stages of
development

•Software reuse without safety
analysis

•Unnecessary complexity of
software (“keep it simple!”)

Some analysis
Why does cryptographic software fail? A case
study and open problems

David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich
MIT CSAIL, 2014

83% of bugs are misuses of cryptographic libraries by individual applications

Bugs analyzed

• Apple’s goto bug in its SSL/TLS implementation
(additional goto statement)

• Goto bug in GnuTLS’s certificate validation code
(secure communications library implementing SSL, TLS,
DTLS)

• 269 cryptographic vulnerabilities reported in the CVE
database (2011 - 2014).

• Plaintext disclosure (not using HTTPS for login, storing
passwords in plaintext)

• Man-in-the-middle attacks (authentication errors, see
Apple and OS X)

• Brute-force attacks (low encryption strength,
insufficient randomness)

• Side-channel attacks (information leakage)

Nature of bugs

• Testing: high code coverage difficult to achieve (ex: test
vectors use 7-bit ASCII, not sufficient for Unicode)

• Static analysis (catching errors at compiler time): do not
offer strong guarantees, as they do not catch behavioral
errors

• Formal verification: relies on SAT solvers (but cannot
handle inputs of variable length)

Formal verification at work

Signalling system for RER

• Increase traffic by 25% preserving
safety levels

• 21K of Modula-2 code have been
formally specified and verified using
B method

• Later the same method has been
used for line 14 and Roissy Shuttle

• No unit test were preformed, just
some global tests

B method

AAMP Microprocessor

• AAMP5 widely used processor
(Rockwell Collins)

• .5 M transistors
• Completely verified in PVS (300

hours per instruction)
• Later verified AAMP-FV showing

dramatic reduction in verification
costs

• National Security Agency
certification for use in cryptographic
applications.

file://localhost/Users/igw/Act/Lecture/transputer

Airbus
• Development of Level A controllers

for A340/600 series (Esterel
technologies)

• 70% of code generated
automatically

• Quick management of requirements
changes

• Major productivity improvement
(each new project requires twice as
much software as its predecessor)

• SCADE has been adopted for A380
for most of on-board computers.

What are formal methods

Specification
+

Analysis of the system

Customer
needs

Requirements
(security,
safety,..)

Specification

Source code

Machine code

Specificaion

Giving precise statement of what the system has to do,
while avoiding constraints on how it is achieved.

Ex: No deadlock, termination, no crash etc

Limits: Component based software
development

One of the most widely recognized problems in software
development is the difficulty of clearly specifying expected
software behavior.

Ensuring that component-based software is reliable is
difficult also because source code is often not available for
components that have been bought.

Methods of system verification

Verification is impossible
(algorithmically)

Halting problem for Turing machines

Alan Turing (1912-1954)
Mathematician, Logician, crypto-specialist
Computational model: Turing machine

Program termination is not decidable:
There is no algorithm to decide if a TM stops.

Verification is impossible
(algorithmically)

But we have no choice

Peer reviewing

• Manual code inspection.

• On average 60% of errors caught.

• Subtle errors (concurrency, algorithm defects) hard to catch.

• Used in 80% of all software engineering projects.

• Refinement of this method: parallel development

Testing
30%-50% of development cost.

Programmers have to provide insights what to test, and
what should be system response.

New tools provide as good coverage as manual
test cases. They avoid programming test cases

Formal specifications help here:

	 One of the most cost-effective uses of specifications

When to stop testing?

Get them as soon as you can

Theorem proving
Doing large proofs semi-automatically

Constructive logics (type theory): PVS, COQ,Isabelle

Model Checking

Requiremen

Model checking flow-graph

The ACM Turing Award in 2007
for model-checking

Some Turing Award Winners

•Edsger Dijkstra (1972)
•Donald Knuth (1974)
•Michael Rabin and Dana Scott (1976)
•Tony Hoare (1980)
•Thompson & Ritchie (1983)
•Hopcroft & Tarjan (1986)
•Rivest, Shamir, Adleman (2002)

The ACM Turing Award in 2007

Edmund M. Clarke Jr. (CMU USA)
Allen E. Emerson (U. of Texas at Austin, USA)
Joseph Sifakis (IMAG, Grenoble)

Jury justification:
For their roles in developing Model-Checking
into a highly effective verification technology,
widely adopted in the hardware and
software industries

A transition system (model)

A property

A sequence of events is correct

Mutual exclusion

No deadlock

No starvation

No starvation

Model Checker

Yes No Insufficient memory

Counterexample

Makes formal techniques available to broad audience:
not much training required

Automatic procedure (“push-button”) taking as input:
a finite state model and a set of required properties

Advantages
General verification approach

Provides diagnostic information

Outcome depends on the quality of the model obtained
from the real system - good abstractions are crucial.

Disavantages

Suitable for control-intensive applications, less for data.

Suffers from state-explosion problem - if decidable at all.

Overview

•Transition systems

• Linear-time temporal logic

• Automata-theoretic model checking

• Bounded model checking

• Computation tree logic

• Symbolic model checking

• Equivalences and abstraction

• Partial order reduction

• Communicating automata

• Timed automata

• Probabilistic systems

