A finite-state mutual exclusion protocol

Process 1: Process 2:
while true { while true {
ne . X =2: ne : x=1:
rq : by = true; rq : b, = true;
waituntil(x ==1|| = b2){ ; waituntil(x ==2|| = by) {
CS : ... critical section . . .} CS : ... critical section .. .}
b, = false; b, = false;
} }

A finite-state mutual exclusion protocol

Desirable properties:

» Mutual exclusion

it Is never the case that Process 1 and Process 2 are in
their critical sections at the same time

» Accessiblility

whenever a process leaves its noncritical section, it will
eventually enter its critical section

Is the protocol correct?

Process 1:

Process 2:

while true {

nc : X =2:
rq : by = true;
waituntil(x == 1|| = b2){
CS : ... critical section . . .}
b = false;
}

while true {

ne : X =
rq : b, = true;

waituntil(x ==2|| = b1) {
CS : ... critical section .. .}

b, = false;

Mutual exclusion is violated

Possible state sequence:
(nc1, nc., x=1, by = false,
(ncy, rge, x=1, by =false,
rqy, rge, x =2, by =false,
, g, x =2, by =true,

(
(
(csy, rqs, X =2, by =true,
(Csq, , Xx=2, by =rtrue,
(

CS1, CS», x =2, by =true,

b, = false
b, = false
b> = true)

Peterson’s mutual exclusion algorithm

Process 1:

Process 2:

while true {

nec : (b1, x) = (true, 2);)
waituntil(x ==1|| = b2){
CS : ... critical section . . .}
by = false;

nc :

CS :

while true {
(b2, x) = (true, 1);)
waituntil(x == 2|| = by) {
... critical section. . .}

b, = false:

F b2=F

b1
X==2

b1=T b2=T

x=2 x=1

rx=1

b1

F

Timed Automata

» Finite-state systems + clocks

» Locations with invariants

» [ransitions:

» guard
» synchronization label
» clock resets

» state = location + clock valuation
— infinitely many states!
— idea: finite number of equivalence
classes

l

(=

request!
c:=0

work
c<5

c>5
timeout!

Y

c<5H
reply?

Clock zones: abstraction for timed automata

Yy

Z{

VAN VANVAN
| < X
VANVANVAN

\wmm

N — —

><V

Clock zones: abstraction for timed automata

Yy

Z{

VAN VANVAN
| < X
VANVANVAN

\wmm

N — —

><V

Zy = zy[y := 0]

Clock zones: abstraction for timed automata

Yy

><V

o
VANVANVAN
| < X
VAN VANVAN
01 O Ol

Clock zones: abstraction for timed automata

Yy

zg = future(zo)

><V

o
VANVANVAN
| < X
VAN VANVAN
01 O Ol

Clock zones: abstraction for timed automata

8 8w

V V VI

>
< x|
x
VIVIVI
- O

N

0 o

VIVIVI

>
X > |
P

VIVIVI

- O

N'

Yy

Clock zones: abstraction for timed automata

» timed automaton

x <4 x<6

» zone graph

» abstract states: (g, z) — finite number of states!
» reachability in timed automata is decidable.

Infinite-state systems: software

method isgrt (N : int) returns (R : 1int)
requlires N >= 0 ;
ensures (R + 1) » (R + 1) > N ;
ensures R x» R <= N ;

R := 0 ;
while ((R + 1) « (R + 1) <= N)
{
R :=R + 1
}

Infinite-state systems: software

method i1isgrt (N : i1nt) returns (R : 1nt)
requires N >= 0 ;
ensures (R + 1) » (R + 1) > N ;
ensures R x R <= N ;

R := 0 ;
while ((R + 1) » (R + 1) <= N)
invariant R = R <= N ;

R :=R + 1 ;

Course overview

» Transition systems

» Linear-time temporal logic

» Linear-time properties

» Automata-theoretic model checking
» Bounded model checking

» Computation tree logic

» Symbolic model checking

» Equivalences and abstraction

» Timed automata

» Deductive verification

» Decision procedures for verification
» Automatic abstraction refinement

Transition systems

Transition systems

» model to describe the behaviour of systems

» directed graphs where nodes represent states
and edges represent transitions

» State:

» in hardware: the current value of the registers together with
the values of the input bits

» In software: the current values of all program variables +
the program counter

» transition: (“state change”)

» In hardware: the change of the registers and output bits for
a new input
» In software: the execution of a program statement

Transition systems

A transition system TSis a tuple (S, Act, —, I, AP, L) where
» Sis a set of states
» Actis a set of actions
» — C S x Actx Sis atransition relation
» | C Sis a set of initial states

» AP s a set of atomic propositions

» L: S — 24P s a labeling function

Notation: s = s’ for (s,a,8’) € —

A beverage vending machine

get sprite get beer

insert_coin

- . select |

labeling: L(s) = {s}

alternative labeling:
L(pay) = 0, L(sprite) = L(beer) = {drink}, L(select) = {paid}

Direct successors and predecessors

Post(s, o) = { seS| s=%¥¢ }, Post(s) = U Post(s, a)

acAct
Pre(s, o) = {s’ €S | s’&s}, Pre(s) = | | Pre(s,a).
acAct
Post(C,a) = |] Post(s,a), Post(C) = |] Post(s)for C C S.
scC scC
Pre(C,a) = | | Pre(s,a), Pre(C) = | | Pre(s)forCC S.
seC seC

A state s is called terminal if Post(s) = ()

Action- and AP-determinism

» A transition system is action-deterministic iff:
/| < 1 and |Post(s,a)| < 1

for all s, c.

» A transition system is AP-deterministic iff:

/| < 1 and | Post(s) N {s'e S|L(s)=A}] < 1

equally labeled successors of s

for all s, A € 2AF.

The role of nondeterminism

Nondeterminism is an important modeling feature

» to model concurrency by interleaving
» no assumption about the relative speed of processes

» to model implementation freedom
» only describes what a system should do, not how

» to model under-specified systems,
or abstractions of real systems

» use incomplete information

Executions

» A finite execution fragment of TS is an alternating
sequence of states and actions ending with a state:

0 = SpaqSias ...anSpsuchthat s, —"*'ss;, 4 forall0 <i<n.
|

» An infinite execution fragment of TS is an infinite,
alternating sequence of states and actions:

p = Sy StapSpag... suchthat s, —~*s ;. 4 forall 0 < /.

» An execution of TS is an initial, maximal execution
fragment
» a maximal execution fragment is either finite ending in a

terminal state, or infinite
» an execution fragment is initial if s € /

Example executions

P1

P2

>

coin sget coin

pay -1 select -+ sprite %% pay -2 select - sprite %% . ..

select -~ sprite —29° pay %", select =+ beer 2%, ..

pay -1 select -+ sprite %% pay -2 select -+ sprite

p1 and p are initial,

po 1S not initial

o Is not maximal as it does not end in a terminal state
assuming that p; and po are infinite, they are maximal

Reachable states

State s € Sis called reachable in TS
If there exists an initial finite execution fragment

So%&%...%Sn:S.

Reach(TS) denotes the set of all reachable states in TS.

Modeling hardware: sequential circuits

Transition system representation of a simple hardware circuit:
» input variable x, output variable y, and register r
» output function —(x @ r)
» register evaluation function x v r

Atomic propositions

Consider two possible state-labelings:

» Let AP={x,y,r}
» L((x=0,r=1)={r}tand L((x=1,r=1))={x,r,y}
> L((x=0,r=0))={ytand L({(x =1,r=0)) = {x}
» example property: “once the r becomes 1, it remains 1”

» Let AP = {x,y}

» L((x=0,r=1))=0and L({(x=1,r=1))={x,y}
L((x=0,r=0))={ytand L({x =1,r=0)) ={x}
example property: “y is set infinitely often”

» the register valuation is no longer visible

v

v

Modeling software: data-dependent systems

The beverage vending machine revisited:

“Abstract” transitions:

start -rve:con , select and start _rue:reil, oiart
te>0: t b 0:bget
select SPC=U-59CL | gtart and select 12€/=YP9CL, srart
select nspr/z‘e:O/\nbeer:O:ret_com> start

Action Effect on variables

coin

ret_coin

sget nsprite := nsprite — 1
bget nbeer := nbeer — 1

refill nsprite := max; nbeer := max

Some preliminaries

» typed variables with a valuation that assigns values to
variables

» e.g.,n(x)=17and n(y) = -2
» Boolean conditions over Var

> propositional logic formulas whose propositions are of the
form “x € D”, where x denotes a tuple of variables
» for example: (-3 < x < 5) A (y = green)

» effect of the actions is formalized by means of a mapping:

Effect : Act x Eval(Var) — Eval(Var)

example: o = x := y+5 and

evaluation n(x) = 17 and n(y) = -2
» Effect(a,n)(x) = n(y)+5=3,
> Effect(a,n)(y) =nly) = -2

Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc, Act, Effect,—, Locy, gg) where

» Locis a set of locations with initial locations Locy C Loc
» Actis a set of actions
» Effect: Act x Eval(Var) — Eval(Var) is the effect function
» — C Locx (Cond(Var) xAct)x Loc

—_——

Boolean condition over Var

IS the transition relation
» go € Cond(Var) is the initial condition.

Notation: ¢/ % ¢’ denotes (¢, 9, o, (') € —

Beverage vending machine

» Loc = { start, select } with Locy = { start }

» Act = { bget, sget, coin, ret_coin, refill }

» Var = { nsprite, nbeer } with domain {0,1,..., max }
» Effect:

Effect(coin, n)
Effect(ret_coin,n)
Effect(sget, n)

nsprite := nsprite—1]
Effect(bget, n) ‘nbeer := nbeer—1]
Effect(refill, n) nsprite := max, nbeer := max|

> Qo = (nsprite = max A nbeer = max)

S S S S 33

From program graphs to transition systems

» Basic strategy: unfolding

» state = location (current control) ¢ + data valuation 7
» initial state = initial location satisfying the initial
condition gy
» Propositions and labeling
» propositions: “/” and “x € D” for D C dom(x)
» (¢,n) is labeled with “¢” and all conditions that hold in

» if ¢ L% ¢ and g holds in 7, then (¢, n) - (¢, Effect(c, n))

