
A finite-state mutual exclusion protocol

Process 1:

while true {

. . . . . .

nc : x = 2;

rq : b1 = true;

wt : wait until(x == 1 || ¬ b2) {

cs : . . . critical section . . .}

b1 = false;

. . . . . .

}

Process 2:

while true {

. . . . . .

nc : x = 1;

rq : b2 = true;

wt : wait until(x == 2 || ¬ b1) {

cs : . . . critical section . . .}

b2 = false;

. . . . . .

}



A finite-state mutual exclusion protocol

Desirable properties:

! Mutual exclusion

it is never the case that Process 1 and Process 2 are in
their critical sections at the same time

! Accessibility

whenever a process leaves its noncritical section, it will
eventually enter its critical section



Is the protocol correct?

Process 1:

while true {

. . . . . .

nc : x = 2;

rq : b1 = true;

wt : wait until(x == 1 || ¬ b2) {

cs : . . . critical section . . .}

b1 = false;

. . . . . .

}

Process 2:

while true {

. . . . . .

nc : x = 1;

rq : b2 = true;

wt : wait until(x == 2 || ¬ b1) {

cs : . . . critical section . . .}

b2 = false;

. . . . . .

}



Mutual exclusion is violated

Possible state sequence:

⟨nc1, nc2, x = 1, b1 = false, b2 = false⟩

⟨nc1, rq2, x = 1, b1 = false, b2 = false⟩

⟨rq1, rq2, x = 2, b1 = false, b2 = false⟩

⟨wt1, rq2, x = 2, b1 = true, b2 = false⟩

⟨cs1, rq2, x = 2, b1 = true, b2 = false⟩

⟨cs1, wt2, x = 2, b1 = true, b2 = true⟩

⟨cs1, cs2, x = 2, b1 = true, b2 = true⟩



Peterson’s mutual exclusion algorithm

Process 1:

while true {

. . . . . .

nc : ⟨(b1, x) = (true, 2); ⟩

wt : wait until(x == 1 || ¬ b2) {

cs : . . . critical section . . .}

b1 = false;

. . . . . .

}

Process 2:

while true {

. . . . . .

nc : ⟨(b2, x) = (true, 1); ⟩

wt : wait until(x == 2 || ¬ b1) {

cs : . . . critical section . . .}

b2 = false;

. . . . . .

}





Timed Automata

! Finite-state systems + clocks

! Locations with invariants
! Transitions:

! guard
! synchronization label
! clock resets

! state = location + clock valuation
→ infinitely many states!
→ idea: finite number of equivalence
classes

ooooidle

oooo
work
c ≤ 5

oooofail

request!
c := 0

c ≥ 5
timeout!

c < 5
reply?



Clock zones: abstraction for timed automata

y

x

z1 : 1 ≤ x ≤ 5
1 ≤ y ≤ 6

−2 ≤ x−y ≤ 3



Clock zones: abstraction for timed automata

y

x

z1 : 1 ≤ x ≤ 5
1 ≤ y ≤ 6

−2 ≤ x−y ≤ 3

z2 = z1[y := 0]



Clock zones: abstraction for timed automata

y

xz2 : 1 ≤ x ≤ 5
0 ≤ y ≤ 0
1 ≤ x−y ≤ 5





Clock zones: abstraction for timed automata

y

xz2 : 1 ≤ x ≤ 5
0 ≤ y ≤ 0
1 ≤ x−y ≤ 5

z3 = future(z2)



Clock zones: abstraction for timed automata

y

xz2 : 1 ≤ x ≤ 5
0 ≤ y ≤ 0
1 ≤ x−y ≤ 5

z3 : 1 ≤ x < ∞
0 ≤ y < ∞
1 ≤ x−y ≤ 5



Clock zones: abstraction for timed automata

! timed automaton

A

x ≤ 4

B C

x ≤ 6

y := 0 y > 1

! zone graph

! abstract states: (q, z) – finite number of states!

! reachability in timed automata is decidable.



Infinite-state systems: software

method isqrt(N : int) returns (R : int)

requires N >= 0 ;

ensures (R + 1) * (R + 1) > N ;

ensures R * R <= N ;

{

R := 0 ;

while ((R + 1) * (R + 1) <= N)

{

R := R + 1 ;

}

}



Infinite-state systems: software

method isqrt(N : int) returns (R : int)

requires N >= 0 ;

ensures (R + 1) * (R + 1) > N ;

ensures R * R <= N ;

{

R := 0 ;

while ((R + 1) * (R + 1) <= N)

invariant R * R <= N ;

{

R := R + 1 ;

}

}



Course overview

! Transition systems

! Linear-time temporal logic

! Linear-time properties

! Automata-theoretic model checking

! Bounded model checking

! Computation tree logic

! Symbolic model checking

! Equivalences and abstraction

! Timed automata

! Deductive verification

! Decision procedures for verification

! Automatic abstraction refinement



Transition systems



Transition systems

! model to describe the behaviour of systems

! directed graphs where nodes represent states
and edges represent transitions

! state:
! in hardware: the current value of the registers together with

the values of the input bits
! in software: the current values of all program variables +

the program counter

! transition: (“state change”)
! in hardware: the change of the registers and output bits for

a new input
! in software: the execution of a program statement



Transition systems

A transition system TS is a tuple (S,Act,→, I,AP, L) where

! S is a set of states

! Act is a set of actions

! −→ ⊆ S × Act × S is a transition relation

! I ⊆ S is a set of initial states

! AP is a set of atomic propositions

! L : S → 2AP is a labeling function

Notation: s α−−→ s′ for (s,α, s′) ∈ −→



A beverage vending machine

pay

selectsprite beer

insert_coin

τ
τ

get_sprite get_beer

labeling: L(s) = {s}

alternative labeling:
L(pay) = ∅, L(sprite) = L(beer) = {drink}, L(select) = {paid}



Direct successors and predecessors

Post(s,α) =
{

s′ ∈ S | s α−−→ s′

}

, Post(s) =
⋃

α∈Act

Post(s,α)

Pre(s,α) =
{

s′ ∈ S | s′ α−−→ s
}

, Pre(s) =
⋃

α∈Act

Pre(s,α).

Post(C,α) =
⋃

s∈C

Post(s,α), Post(C) =
⋃

s∈C

Post(s) for C ⊆ S.

Pre(C,α) =
⋃

s∈C

Pre(s,α), Pre(C) =
⋃

s∈C

Pre(s) for C ⊆ S.

A state s is called terminal if Post(s) = ∅



Action- and AP-determinism

! A transition system is action-deterministic iff:

| I | ≤ 1 and |Post(s,α) | ≤ 1

for all s,α.

! A transition system is AP-deterministic iff:

| I | ≤ 1 and | Post(s) ∩ { s′ ∈ S | L(s′) = A }
︸ ︷︷ ︸

equally labeled successors of s

| ≤ 1

for all s,A ∈ 2AP.



The role of nondeterminism

Nondeterminism is an important modeling feature

! to model concurrency by interleaving
! no assumption about the relative speed of processes

! to model implementation freedom
! only describes what a system should do, not how

! to model under-specified systems,
or abstractions of real systems

! use incomplete information



Executions

! A finite execution fragment of TS is an alternating
sequence of states and actions ending with a state:

ϱ = s0 α1 s1 α2 . . .αn sn such that si
αi+1−−−→ si+1 for all 0 ≤ i < n.

! An infinite execution fragment of TS is an infinite,
alternating sequence of states and actions:

ρ = s0 α1 s1 α2 s2 α3 . . . such that si
αi+1−−−→ si+1 for all 0 ≤ i .

! An execution of TS is an initial, maximal execution
fragment

! a maximal execution fragment is either finite ending in a
terminal state, or infinite

! an execution fragment is initial if s0 ∈ I



Example executions

ρ1 = pay coin−−−→ select τ−→ sprite
sget−−−→ pay coin−−−→ select τ−→ sprite

sget−−−→ . . .

ρ2 = select τ−→ sprite
sget−−−→ pay coin−−−→ select τ−→beer

bget−−−→ . . .

ϱ = pay coin−−−→ select τ−→ sprite
sget−−−→ pay coin−−−→ select τ−→ sprite

! ρ1 and ϱ are initial,

! ρ2 is not initial

! ϱ is not maximal as it does not end in a terminal state

! assuming that ρ1 and ρ2 are infinite, they are maximal



Reachable states

State s ∈ S is called reachable in TS
if there exists an initial finite execution fragment

s0
α1−−→ s1

α2−−→ . . . αn−−→ sn = s .

Reach(TS) denotes the set of all reachable states in TS.



Modeling hardware: sequential circuits

XOR

OR

y
NOT

x

r x r y

x 0 r 0

x 0 r 1

x 1 r 0

x 1 r 1
r

x y

Transition system representation of a simple hardware circuit:

! input variable x , output variable y , and register r

! output function ¬(x ⊕ r)

! register evaluation function x ∨ r



Atomic propositions

Consider two possible state-labelings:

! Let AP = { x , y , r }
! L(⟨x = 0, r = 1⟩) = { r } and L(⟨x = 1, r = 1⟩) = { x , r , y }
! L(⟨x = 0, r = 0⟩) = { y } and L(⟨x = 1, r = 0⟩) = { x }
! example property: “once the r becomes 1, it remains 1”

! Let AP′ = { x , y }
! L(⟨x = 0, r = 1⟩) = ∅ and L(⟨x = 1, r = 1⟩) = { x , y }
! L(⟨x = 0, r = 0⟩) = { y } and L(⟨x = 1, r = 0⟩) = { x }
! example property: “y is set infinitely often”
! the register valuation is no longer visible



Modeling software: data-dependent systems

The beverage vending machine revisited:

“Abstract” transitions:

start true:coin−−−−−−→ select and start true:refill−−−−−−→ start

select
nsprite>0:sget−−−−−−−−−−→ start and select

nbeer>0:bget−−−−−−−−−→ start

select
nsprite=0 ∧ nbeer=0:ret_coin−−−−−−−−−−−−−−−−−−−→ start

Action Effect on variables

coin
ret_coin
sget nsprite := nsprite − 1
bget nbeer := nbeer − 1
refill nsprite := max ; nbeer := max



Some preliminaries

! typed variables with a valuation that assigns values to
variables

! e.g., η(x) = 17 and η(y) = −2

! Boolean conditions over Var
! propositional logic formulas whose propositions are of the

form “x ∈ D”, where x denotes a tuple of variables
! for example: (−3 < x ≤ 5) ∧ (y = green)

! effect of the actions is formalized by means of a mapping:

Effect : Act × Eval(Var) → Eval(Var)

example: α ≡ x := y+5 and
evaluation η(x) = 17 and η(y) = −2

! Effect(α, η)(x) = η(y) + 5 = 3,
! Effect(α, η)(y) = η(y) = −2



Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,−→, Loc0, g0) where

! Loc is a set of locations with initial locations Loc0 ⊆ Loc

! Act is a set of actions

! Effect : Act × Eval(Var) → Eval(Var) is the effect function

! −→ ⊆ Loc × ( Cond(Var)
︸ ︷︷ ︸

Boolean condition over Var

×Act)× Loc

is the transition relation

! g0 ∈ Cond(Var) is the initial condition.

Notation: ℓ
g:α−−−→ ℓ′ denotes (ℓ,g,α, ℓ′) ∈ −→



Beverage vending machine

! Loc = { start , select } with Loc0 = { start }

! Act = {bget , sget , coin, ret_coin, refill }

! Var = {nsprite, nbeer } with domain {0, 1, . . . ,max }

! Effect:

Effect(coin, η) = η
Effect(ret_coin, η) = η
Effect(sget , η) = η[nsprite := nsprite−1]
Effect(bget , η) = η[nbeer := nbeer−1]
Effect(refill , η) = η[nsprite := max ,nbeer := max ]

! g0 = (nsprite = max ∧ nbeer = max)



From program graphs to transition systems

! Basic strategy: unfolding
! state = location (current control) ℓ + data valuation η
! initial state = initial location satisfying the initial

condition g0

! Propositions and labeling
! propositions: “ℓ” and “x ∈ D” for D ⊆ dom(x)
! ⟨ℓ, η⟩ is labeled with “ℓ” and all conditions that hold in η

! if ℓ
g:α−−−→ ℓ′ and g holds in η, then ⟨ℓ, η⟩ α−−→⟨ℓ′,Effect(α, η)⟩


