A finite-state mutual exclusion protocol

Process 1:

Process 2:

while true \{

$$
n c: \quad x=1
$$

$$
r q: \quad b_{2}=\text { true }
$$

$$
w t: \quad \text { wait until }\left(x==2 \| \neg b_{1}\right)\{
$$

$$
\text { CS : } \quad \text {...critical section...\} }
$$

$$
b_{2}=\text { false }
$$

A finite-state mutual exclusion protocol

Desirable properties:

- Mutual exclusion
it is never the case that Process 1 and Process 2 are in their critical sections at the same time
- Accessibility
whenever a process leaves its noncritical section, it will eventually enter its critical section

Is the protocol correct?

Process 1:

Process 2:

Mutual exclusion is violated

Possible state sequence:

$$
\left.\begin{array}{llll}
\left\langle n c_{1},\right. & n c_{2}, & x=1, & b_{1}=\text { false },
\end{array} b_{2}=\text { false }\right\rangle,
$$

Peterson's mutual exclusion algorithm

Process 1:

Process 2:

	while true $\{$	
	$\ldots \ldots$	
$n c:$	$\left\langle\left(b_{2}, x\right)=(\right.$ true, 1$\left.) ;\right\rangle$	
wt :	wait until $\left(x==2 \\| \neg b_{1}\right)\{$	
cs:	\ldots critical section $\ldots\}$	
	$b_{2}=$ false;	
	$\ldots \ldots$	
	$\}$	

Timed Automata

- Finite-state systems + clocks
- Locations with invariants
- Transitions:
- guard
- synchronization label
- clock resets
- state = location + clock valuation
\rightarrow infinitely many states!
\rightarrow idea: finite number of equivalence classes

Clock zones: abstraction for timed automata

Clock zones: abstraction for timed automata

- timed automaton

- zone graph

- abstract states: (q, z) - finite number of states!
- reachability in timed automata is decidable.

Infinite-state systems: software

```
method isqrt(N : int) returns (R : int)
    requires N >= 0 ;
    ensures (R + 1) * (R + I) > N ;
    ensures R * R <= N ;
{
    R := 0 ;
    while ((R + 1) * (R + 1) <= N)
        {
                        R := R + 1 ;
    }
}
```


Infinite-state systems: software

```
method isqrt(N : int) returns (R : int)
    requires N >= 0 ;
    ensures (R + 1) * (R + I) > N ;
    ensures R * R <= N ;
{
    R := 0 ;
    while ((R + 1) * (R + 1) <= N)
                        invariant R * R <= N ;
    {
        R := R + 1 ;
    }
}
```


Course overview

- Transition systems
- Linear-time temporal logic
- Linear-time properties
- Automata-theoretic model checking
- Bounded model checking
- Computation tree logic
- Symbolic model checking
- Equivalences and abstraction
- Timed automata
- Deductive verification
- Decision procedures for verification
- Automatic abstraction refinement

Transition systems

Transition systems

- model to describe the behaviour of systems
- directed graphs where nodes represent states and edges represent transitions
- state:
- in hardware: the current value of the registers together with the values of the input bits
- in software: the current values of all program variables + the program counter
- transition: ("state change")
- in hardware: the change of the registers and output bits for a new input
- in software: the execution of a program statement

Transition systems

A transition system $T S$ is a tuple $(S, A c t, \rightarrow, I, A P, L)$ where

- S is a set of states
- Act is a set of actions
- $\longrightarrow \subseteq S \times A c t \times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- $A P$ is a set of atomic propositions
- $L: S \rightarrow 2^{A P}$ is a labeling function

Notation: $s \xrightarrow{\alpha} s^{\prime}$ for $\left(s, \alpha, s^{\prime}\right) \in \longrightarrow$

A beverage vending machine

labeling: $L(s)=\{s\}$
alternative labeling:
$L($ pay $)=\emptyset, L($ sprite $)=L($ beer $)=\{$ drink $\}, L($ select $)=\{$ paid $\}$

Direct successors and predecessors

$$
\begin{aligned}
& \operatorname{Post}(s, \alpha)=\left\{s^{\prime} \in S \mid s \xrightarrow{\alpha} s^{\prime}\right\}, \quad \operatorname{Post}(s)=\bigcup_{\alpha \in A c t} \operatorname{Post}(s, \alpha) \\
& \operatorname{Pre}(s, \alpha)=\left\{s^{\prime} \in S \mid s^{\prime} \xrightarrow{\alpha} s\right\}, \quad \operatorname{Pre}(s)=\bigcup_{\alpha \in A c t} \operatorname{Pre}(s, \alpha) . \\
& \operatorname{Post}(C, \alpha)=\bigcup_{s \in C} \operatorname{Post}(s, \alpha), \quad \operatorname{Post}(C)=\bigcup_{s \in C} \operatorname{Post}(s) \text { for } C \subseteq S . \\
& \operatorname{Pre}(C, \alpha)=\bigcup_{s \in C} \operatorname{Pre}(s, \alpha), \quad \operatorname{Pre}(C)=\bigcup_{s \in C} \operatorname{Pre}(s) \text { for } C \subseteq S .
\end{aligned}
$$

A state s is called terminal if $\operatorname{Post}(s)=\emptyset$

Action- and $A P$-determinism

- A transition system is action-deterministic iff:

$$
|I| \leq 1 \quad \text { and } \quad|\operatorname{Post}(s, \alpha)| \leq 1
$$

for all s, α.

- A transition system is $A P$-deterministic iff:

$$
|I| \leq 1 \text { and }|\underbrace{\operatorname{Post}(s) \cap\left\{s^{\prime} \in S \mid L\left(s^{\prime}\right)=A\right\}}_{\text {equally labeled successors of } s}| \leq 1
$$

for all $s, A \in 2^{A P}$.

The role of nondeterminism

Nondeterminism is an important modeling feature

- to model concurrency by interleaving
- no assumption about the relative speed of processes
- to model implementation freedom
- only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
- use incomplete information

Executions

- A finite execution fragment of $T S$ is an alternating sequence of states and actions ending with a state:
$\varrho=s_{0} \alpha_{1} s_{1} \alpha_{2} \ldots \alpha_{n} s_{n}$ such that $s_{i} \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \leq i<n$.
- An infinite execution fragment of $T S$ is an infinite, alternating sequence of states and actions:
$\rho=s_{0} \alpha_{1} s_{1} \alpha_{2} s_{2} \alpha_{3} \ldots$ such that $s_{i} \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \leq i$.
- An execution of TS is an initial, maximal execution fragment
- a maximal execution fragment is either finite ending in a terminal state, or infinite
- an execution fragment is initial if $s_{0} \in I$

Example executions

$$
\begin{aligned}
& \rho_{1}=\text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { sprite } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { sprite } \xrightarrow{\text { sget }} \ldots \\
& \rho_{2} \\
& =\text { select } \xrightarrow{\tau} \text { sprite } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { beer } \xrightarrow{\text { bget }} \ldots \\
& \varrho \\
& \\
& \\
& \text { s. pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { sprite } \xrightarrow{\text { sget }} \text { pay } \xrightarrow{\text { coin }} \text { select } \xrightarrow{\tau} \text { sprite }
\end{aligned}
$$

- ρ_{1} and ϱ are initial,
- ρ_{2} is not initial
- ϱ is not maximal as it does not end in a terminal state
- assuming that ρ_{1} and ρ_{2} are infinite, they are maximal

Reachable states

State $s \in S$ is called reachable in $T S$
if there exists an initial finite execution fragment

$$
s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{n}} s_{n}=s
$$

Reach (TS) denotes the set of all reachable states in TS.

Modeling hardware: sequential circuits

Transition system representation of a simple hardware circuit:

- input variable x, output variable y, and register r
- output function $\neg(x \oplus r)$
- register evaluation function $x \vee r$

Atomic propositions

Consider two possible state-labelings:

- Let $A P=\{x, y, r\}$
- $L(\langle x=0, r=1\rangle)=\{r\}$ and $L(\langle x=1, r=1\rangle)=\{x, r, y\}$
- $L(\langle x=0, r=0\rangle)=\{y\}$ and $L(\langle x=1, r=0\rangle)=\{x\}$
- example property: "once the r becomes 1 , it remains 1 "
- Let $A P^{\prime}=\{x, y\}$
- $L(\langle x=0, r=1\rangle)=\emptyset$ and $L(\langle x=1, r=1\rangle)=\{x, y\}$
- $L(\langle x=0, r=0\rangle)=\{y\}$ and $L(\langle x=1, r=0\rangle)=\{x\}$
- example property: " y is set infinitely often"
- the register valuation is no longer visible

Modeling software: data-dependent systems

The beverage vending machine revisited:
"Abstract" transitions:

$$
\begin{aligned}
& \text { start } \xrightarrow{\text { true:coin }} \text { select and start } \xrightarrow{\text { true:refill }} \text { start } \\
& \text { select } \xrightarrow{\text { nsprite }>0: \text { sget }} \text { start and select } \xrightarrow{\text { nbeer }>0 \text { :bget }} \text { start } \\
& \text { select } \xrightarrow{\text { nsprite }=0 \wedge \text { nbeer }=0: \text { ret_coin }} \text { start }
\end{aligned}
$$

Action	Effect on variables
coin	
ret_coin	
sget	nsprite $:=$ nsprite -1
bget	nbeer $:=$ nbeer -1
refill	nsprite $:=$ max; nbeer $:=\max$

Some preliminaries

- typed variables with a valuation that assigns values to variables
- e.g., $\eta(x)=17$ and $\eta(y)=-2$
- Boolean conditions over Var
- propositional logic formulas whose propositions are of the form " $\bar{x} \in \bar{D}$ ", where \bar{x} denotes a tuple of variables
- for example: $(-3<x \leq 5) \wedge$ ($y=$ green $)$
- effect of the actions is formalized by means of a mapping:

$$
\text { Effect : Act } \times \text { Eval(Var) } \rightarrow \text { Eval(Var })
$$

example: $\alpha \equiv x:=y+5$ and evaluation $\eta(x)=17$ and $\eta(y)=-2$

- $\operatorname{Effect}(\alpha, \eta)(x)=\eta(y)+5=3$,
- Effect $(\alpha, \eta)(y)=\eta(y)=-2$

Program graphs

A program graph PG over set Var of typed variables is a tuple
(Loc, Act, Effect, $\longrightarrow, L o c_{0}, g_{0}$) where

- Loc is a set of locations with initial locations $L o c_{0} \subseteq L o c$
- Act is a set of actions
- Effect : Act \times Eval(Var) \rightarrow Eval(Var) is the effect function
$\rightarrow \longrightarrow \subseteq \operatorname{Loc} \times(\underbrace{\text { Cond(Var) }} \times A c t) \times$ Loc
Boolean condition over Var
is the transition relation
- $g_{0} \in \operatorname{Cond}($ Var $)$ is the initial condition.

Notation: $\ell \xrightarrow{g: \alpha} \ell^{\prime}$ denotes $\left(\ell, g, \alpha, \ell^{\prime}\right) \in \longrightarrow$

Beverage vending machine

- Loc $=\{$ start, select $\}$ with $L o c_{0}=\{$ start $\}$
- Act $=\{$ bget, sget, coin, ret_coin, refill $\}$
- Var $=\{$ nsprite, nbeer $\}$ with domain $\{0,1, \ldots, \max \}$
- Effect:

Effect(coin, $\eta)$	$=\eta$
Effect(ret_coin, $\eta)$	$=\eta$
Effect(sget, $\eta)$	$=\eta[$ nsprite $:=$ nsprite-1]
Effect(bget, $\eta)$	$=\eta[$ nbeer $:=$ nbeer -1$]$
Effect $($ refill,$\eta)$	$=\eta[$ nsprite $:=\max$, nbeer $:=$ max $]$

- $g_{0}=($ nsprite $=\max \wedge$ nbeer $=\max)$

From program graphs to transition systems

- Basic strategy: unfolding
- state $=$ location (current control) $\ell+$ data valuation η
- initial state = initial location satisfying the initial condition g_{0}
- Propositions and labeling
" propositions: " ℓ " and " $x \in D$ " for $D \subseteq \operatorname{dom}(x)$
- $\langle\ell, \eta\rangle$ is labeled with " ℓ " and all conditions that hold in η
- if $\ell \xrightarrow{g: \alpha} \ell^{\prime}$ and g holds in η, then $\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle$

