A finite-state mutual exclusion protocol

Process 1:

while true { *nc* : *x* = 2; $b_1 = true;$ **rq** : wait until($x == 1 || \neg b_2$) { *wt* : \ldots critical section \ldots **CS** : $b_1 = false;$

Process 2:

	while true {
<i>nc</i> :	<i>x</i> = 1;
rq :	$b_2 = true;$
w t :	wait until($x == 2 \neg b_1$) {
CS :	critical section}
	$b_2 = false;$
	•••••
	}

A finite-state mutual exclusion protocol

Desirable properties:

Mutual exclusion

it is **never** *the case that Process 1 and Process 2 are in their critical sections at the same time*

Accessibility

whenever a process leaves its noncritical section, it will eventually enter its critical section

Is the protocol correct?

Process 1:

while true { *nc* : *x* = 2; $b_1 = true;$ *rq* : *wt* : wait until($x == 1 || \neg b_2$) { \ldots critical section \ldots **CS** : $b_1 = false;$

Process 2:

	while true {
	••••
nc :	<i>x</i> = 1;
rq :	$b_2 = true;$
wt :	wait until($x == 2 \neg b_1$) {
CS :	critical section }
	$b_2 = false;$
	· · · · · ·
	}

Mutual exclusion is violated

Possible state sequence:

Peterson's mutual exclusion algorithm

Process 1:

while true {	
<i>nc</i> :	$\langle (b_1, x) = (true, 2); \rangle$
w t :	wait until($x == 1 \neg b_2$) {
CS :	critical section }
	$b_1 = false;$
	$b_1 = false;$

Process 2:

	while true {
	••••
<i>nc</i> :	$\langle (b_2, x) = (true, 1); \rangle$
wt :	wait until($x == 2 \neg b_1$) {
CS :	critical section }
	$b_2 = false;$
	}

Timed Automata

- Finite-state systems + clocks
- Locations with invariants
- Transitions:
 - guard
 - synchronization label
 - clock resets
- state = location + clock valuation
 - \rightarrow infinitely many states!
 - \rightarrow idea: finite number of equivalence classes

timed automaton

- abstract states: (q, z) finite number of states!
- reachability in timed automata is **decidable**.

Infinite-state systems: software

```
method isqrt(N : int) returns (R : int)
       requires N \ge 0;
       ensures (R + 1) * (R + 1) > N;
       ensures R \star R <= N;
{
   R := 0 ;
       while ((R + 1) * (R + 1) <= N)
       {
               R := R + 1;
       }
```

Infinite-state systems: software

```
method isqrt(N : int) returns (R : int)
       requires N \ge 0;
       ensures (R + 1) * (R + 1) > N;
       ensures R \star R <= N ;
{
   R := 0 ;
       while ((R + 1) * (R + 1) <= N)
                invariant R * R <= N;
       {
               R := R + 1 ;
       }
```

Course overview

- Transition systems
- Linear-time temporal logic
- Linear-time properties
- Automata-theoretic model checking
- Bounded model checking
- Computation tree logic
- Symbolic model checking
- Equivalences and abstraction
- Timed automata
- Deductive verification
- Decision procedures for verification
- Automatic abstraction refinement

Transition systems

Transition systems

- model to describe the behaviour of systems
- directed graphs where nodes represent states and edges represent transitions
- ► state:
 - in hardware: the current value of the registers together with the values of the input bits
 - in software: the current values of all program variables + the program counter
- transition: ("state change")
 - in hardware: the change of the registers and output bits for a new input
 - ► in **software**: the execution of a program statement

Transition systems

A transition system TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- ► *S* is a set of states
- Act is a set of actions
- $\blacktriangleright \longrightarrow \subseteq S \times Act \times S \text{ is a transition relation}$
- $I \subseteq S$ is a set of initial states
- AP is a set of atomic propositions
- $L: S \rightarrow 2^{AP}$ is a labeling function

Notation:
$$s \xrightarrow{\alpha} s'$$
 for $(s, \alpha, s') \in \longrightarrow$

A beverage vending machine

labeling: $L(s) = \{s\}$

alternative labeling:

 $L(pay) = \emptyset, L(sprite) = L(beer) = \{drink\}, L(select) = \{paid\}$

Direct successors and predecessors

$$\begin{aligned} & \textit{Post}(\boldsymbol{s}, \alpha) = \Big\{ \boldsymbol{s}' \in \boldsymbol{S} \mid \boldsymbol{s} \xrightarrow{\alpha} \boldsymbol{s}' \Big\}, \quad \textit{Post}(\boldsymbol{s}) = \bigcup_{\alpha \in \textit{Act}} \textit{Post}(\boldsymbol{s}, \alpha) \\ & \textit{Pre}(\boldsymbol{s}, \alpha) = \Big\{ \boldsymbol{s}' \in \boldsymbol{S} \mid \boldsymbol{s}' \xrightarrow{\alpha} \boldsymbol{s} \Big\}, \quad \textit{Pre}(\boldsymbol{s}) = \bigcup_{\alpha \in \textit{Act}} \textit{Pre}(\boldsymbol{s}, \alpha). \\ & \textit{Post}(\boldsymbol{C}, \alpha) = \bigcup_{\boldsymbol{s} \in \boldsymbol{C}} \textit{Post}(\boldsymbol{s}, \alpha), \quad \textit{Post}(\boldsymbol{C}) = \bigcup_{\boldsymbol{s} \in \boldsymbol{C}} \textit{Post}(\boldsymbol{s}) \text{ for } \boldsymbol{C} \subseteq \boldsymbol{S}. \\ & \textit{Pre}(\boldsymbol{C}, \alpha) = \bigcup_{\boldsymbol{s} \in \boldsymbol{C}} \textit{Pre}(\boldsymbol{s}, \alpha), \quad \textit{Pre}(\boldsymbol{C}) = \bigcup_{\boldsymbol{s} \in \boldsymbol{C}} \textit{Pre}(\boldsymbol{s}) \text{ for } \boldsymbol{C} \subseteq \boldsymbol{S}. \end{aligned}$$

A state *s* is called terminal if $Post(s) = \emptyset$

Action- and AP-determinism

A transition system is action-deterministic iff:

$$|I| \leq 1$$
 and $|Post(s, \alpha)| \leq 1$

for all s, α .

► A transition system is *AP*-deterministic iff:

$$|I| \leq 1$$
 and $|\underbrace{Post(s) \cap \{s' \in S \mid L(s') = A\}}| \leq 1$

equally labeled successors of s

for all $s, A \in 2^{AP}$.

The role of nondeterminism

Nondeterminism is an important modeling feature

- to model concurrency by interleaving
 - no assumption about the relative speed of processes
- to model implementation freedom
 - only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
 - use incomplete information

Executions

A finite execution fragment of TS is an alternating sequence of states and actions ending with a state:

 $\varrho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$ such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \le i < n$.

An infinite execution fragment of TS is an infinite, alternating sequence of states and actions:

 $\rho = s_0 \alpha_1 s_1 \alpha_2 s_2 \alpha_3 \ldots$ such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \le i$.

- An execution of TS is an initial, maximal execution fragment
 - a maximal execution fragment is either finite ending in a terminal state, or infinite
 - ▶ an execution fragment is initial if $s_0 \in I$

Example executions

$$\rho_{1} = pay \xrightarrow{coin} select \xrightarrow{\tau} sprite \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} sprite \xrightarrow{sget} \dots$$

$$\rho_{2} = select \xrightarrow{\tau} sprite \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} beer \xrightarrow{bget} \dots$$

$$\varrho = pay \xrightarrow{coin} select \xrightarrow{\tau} sprite \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} sprite$$

- ρ_1 and ϱ are initial,
- ρ₂ is not initial
- *o* is **not maximal** as it does not end in a terminal state
- assuming that ρ_1 and ρ_2 are infinite, they are **maximal**

State $s \in S$ is called reachable in *TS* if there exists an initial finite execution fragment

$$\mathbf{S}_0 \xrightarrow{\alpha_1} \mathbf{S}_1 \xrightarrow{\alpha_2} \ldots \xrightarrow{\alpha_n} \mathbf{S}_n = \mathbf{S}$$

Reach(TS) denotes the set of all reachable states in TS.

Modeling hardware: sequential circuits

Transition system representation of a simple hardware circuit:

- input variable x, output variable y, and register r
- output function $\neg(x \oplus r)$
- register evaluation function $x \vee r$

Atomic propositions

Consider two possible state-labelings:

- L(⟨x = 0, r = 1⟩) = {r} and L(⟨x = 1, r = 1⟩) = {x, r, y}
 L(⟨x = 0, r = 0⟩) = {y} and L(⟨x = 1, r = 0⟩) = {x}
- $L(\langle x = 0, r = 0 \rangle) = \{y\} \text{ and } L(\langle x = 1, r = 0 \rangle) = \{x\}$
- example property: "once the r becomes 1, it remains 1"

- $L(\langle x = 0, r = 1 \rangle) = \emptyset$ and $L(\langle x = 1, r = 1 \rangle) = \{x, y\}$
- $L(\langle x = 0, r = 0 \rangle) = \{y\}$ and $L(\langle x = 1, r = 0 \rangle) = \{x\}$
- example property: "y is set infinitely often"
- the register valuation is no longer visible

Modeling software: data-dependent systems

The beverage vending machine revisited:

"Abstract" transitions:

Action	Effect on variables
coin	
ret_coin	
sget	<i>nsprite</i> := <i>nsprite</i> – 1
bget	nbeer := nbeer – 1
refill	nsprite := max; nbeer := max

Some preliminaries

- typed variables with a valuation that assigns values to variables
 - e.g., $\eta(x) = 17$ and $\eta(y) = -2$
- Boolean conditions over Var
 - propositional logic formulas whose propositions are of the form " $\overline{x} \in \overline{D}$ ", where \overline{x} denotes a tuple of variables
 - for example: $(-3 < x \le 5) \land (y = green)$
- effect of the actions is formalized by means of a mapping:

 $\textit{Effect}:\textit{Act} \times \textit{Eval}(\textit{Var}) \rightarrow \textit{Eval}(\textit{Var})$

example: $\alpha \equiv x := y+5$ and evaluation $\eta(x) = 17$ and $\eta(y) = -2$

- *Effect*(α, η)(x) = $\eta(y) + 5 = 3$,
- Effect(α, η)(y) = $\eta(y) = -2$

Program graphs

A program graph PG over set Var of typed variables is a tuple

 $(Loc, Act, Effect, \rightarrow, Loc_0, g_0)$ where

- ► Loc is a set of locations with initial locations $Loc_0 \subseteq Loc$
- Act is a set of actions
- *Effect* : $Act \times Eval(Var) \rightarrow Eval(Var)$ is the effect function
- $\blacktriangleright \longrightarrow \subseteq Loc \times (Cond(Var) \times Act) \times Loc$

Boolean condition over Var is the transition relation

• $g_0 \in Cond(Var)$ is the initial condition.

Notation: $\ell \xrightarrow{g:\alpha} \ell'$ denotes $(\ell, g, \alpha, \ell') \in \longrightarrow$

Beverage vending machine

- Loc = { start, select } with Loc₀ = { start }
- Act = { bget, sget, coin, ret_coin, refill }
- $Var = \{ nsprite, nbeer \}$ with domain $\{ 0, 1, \ldots, max \}$
- ► Effect:

$$Effect(coin, \eta) = \eta$$

$$Effect(ret_coin, \eta) = \eta$$

$$Effect(sget, \eta) = \eta[nsprite := nsprite-1]$$

$$Effect(bget, \eta) = \eta[nbeer := nbeer-1]$$

$$Effect(refill, \eta) = \eta[nsprite := max, nbeer := max]$$

$$g_0 = (nsprite = max \land nbeer = max)$$

From program graphs to transition systems

Basic strategy: unfolding

- **state** = location (current control) ℓ + data valuation η
- **initial state** = initial location satisfying the initial condition g_0
- Propositions and labeling
 - **propositions:** " ℓ " and " $x \in D$ " for $D \subseteq dom(x)$
 - $\langle \ell, \eta \rangle$ is **labeled with** " ℓ " and all conditions that hold in η
- if $\ell \xrightarrow{g:\alpha} \ell'$ and g holds in η , then $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \textit{Effect}(\alpha, \eta) \rangle$